Atlantic Hurricane Season of 2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hurricane Ernesto (2006): Frontal Influence on Precipitation Distribution
Hurricane Ernesto (2006): Frontal Influence on Precipitation Distribution Jordan Dale and Gary Lackmann North Carolina State University Barrett Smith NOAA/National Weather Service Raleigh, North Carolina Motivation Observational Analysis Simulated Frontal Analysis • The distribution of precipitation associated with landfalling tropical 0600 UTC 1 September 0600 UTC 1 September cyclones remains a critical forecast problem and is dependent on several factors, including: . storm motion . intensity . areal extent . synoptic-scale forcing Surface observations RUC Theta and 2-D Frontogenesis 0.5° Reflectivity Theta and 2-D Frontogenesis 850mb Temperature Advection Simulated Total Reflectivity . topographical characteristics • A warm front is noted by a theta gradient strong frontogenesis along the • The locations of frontogenesis and theta gradients with respect to the TC . mesoscale boundaries center are similar to observations but displaced westward. Enhanced coast east of the TC center. A region of enhanced reflectivity is north of • Of these factors, mesoscale boundaries are a prominent forecasting the warm front near the TC center. reflectivities are present to the north of the frontal boundary in locations challenge due to the small spatial scales and complex origins. where 850mb warm advection is occurring. 1800 UTC 1 September • The purpose of this study is to isolate the physical processes at play 1800 UTC 1 September during the interaction of tropical cyclones (TC) and boundaries, and then investigate the predictability and impact -
Portugal – an Atlantic Extreme Weather Lab
Portugal – an Atlantic extreme weather lab Nuno Moreira ([email protected]) 6th HIGH-LEVEL INDUSTRY-SCIENCE-GOVERNMENT DIALOGUE ON ATLANTIC INTERACTIONS ALL-ATLANTIC SUMMIT ON INNOVATION FOR SUSTAINABLE MARINE DEVELOPMENT AND THE BLUE ECONOMY: FOSTERING ECONOMIC RECOVERY IN A POST-PANDEMIC WORLD 7th October 2020 Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. Portugal in the track of extreme extra-tropical storms Spatial distribution of positions where rapid cyclogenesis reach their minimum central pressure Azores and mainland Portugal On average: 1 rapid cyclogenesis every 1 or 2 wet seasons ECMWF ERA 40 (1958-2000) Events per DJFM season: Source: Trigo, I., 2006: Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Climate Dynamics volume 26, pages127–143. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland 00:00 UTC, 23 Dec 2009 Source: Pinto, P. and Belo-Pereira, M., 2020: Damaging Convective and Non-Convective Winds in Southwestern Iberia during Windstorm Xola. Atmosphere, 11(7), 692. … affected by sting jets of extra-tropical storms… Example of a rapid cyclogenesis with a sting jet over mainland Maximum wind gusts: Official station 140 km/h Private station 00:00 UTC, 23 Dec 2009 203 km/h (in the most affected area) Source: Pinto, P. -
Lecture 15 Hurricane Structure
MET 200 Lecture 15 Hurricanes Last Lecture: Atmospheric Optics Structure and Climatology The amazing variety of optical phenomena observed in the atmosphere can be explained by four physical mechanisms. • What is the structure or anatomy of a hurricane? • How to build a hurricane? - hurricane energy • Hurricane climatology - when and where Hurricane Katrina • Scattering • Reflection • Refraction • Diffraction 1 2 Colorado Flood Damage Hurricanes: Useful Websites http://www.wunderground.com/hurricane/ http://www.nrlmry.navy.mil/tc_pages/tc_home.html http://tropic.ssec.wisc.edu http://www.nhc.noaa.gov Hurricane Alberto Hurricanes are much broader than they are tall. 3 4 Hurricane Raymond Hurricane Raymond 5 6 Hurricane Raymond Hurricane Raymond 7 8 Hurricane Raymond: wind shear Typhoon Francisco 9 10 Typhoon Francisco Typhoon Francisco 11 12 Typhoon Francisco Typhoon Francisco 13 14 Typhoon Lekima Typhoon Lekima 15 16 Typhoon Lekima Hurricane Priscilla 17 18 Hurricane Priscilla Hurricanes are Tropical Cyclones Hurricanes are a member of a family of cyclones called Tropical Cyclones. West of the dateline these storms are called Typhoons. In India and Australia they are called simply Cyclones. 19 20 Hurricane Isaac: August 2012 Characteristics of Tropical Cyclones • Low pressure systems that don’t have fronts • Cyclonic winds (counter clockwise in Northern Hemisphere) • Anticyclonic outflow (clockwise in NH) at upper levels • Warm at their center or core • Wind speeds decrease with height • Symmetric structure about clear "eye" • Latent heat from condensation in clouds primary energy source • Form over warm tropical and subtropical oceans NASA VIIRS Day-Night Band 21 22 • Differences between hurricanes and midlatitude storms: Differences between hurricanes and midlatitude storms: – energy source (latent heat vs temperature gradients) - Winter storms have cold and warm fronts (asymmetric). -
Ex-Hurricane Ophelia 16 October 2017
Ex-Hurricane Ophelia 16 October 2017 On 16 October 2017 ex-hurricane Ophelia brought very strong winds to western parts of the UK and Ireland. This date fell on the exact 30th anniversary of the Great Storm of 16 October 1987. Ex-hurricane Ophelia (named by the US National Hurricane Center) was the second storm of the 2017-2018 winter season, following Storm Aileen on 12 to 13 September. The strongest winds were around Irish Sea coasts, particularly west Wales, with gusts of 60 to 70 Kt or higher in exposed coastal locations. Impacts The most severe impacts were across the Republic of Ireland, where three people died from falling trees (still mostly in full leaf at this time of year). There was also significant disruption across western parts of the UK, with power cuts affecting thousands of homes and businesses in Wales and Northern Ireland, and damage reported to a stadium roof in Barrow, Cumbria. Flights from Manchester and Edinburgh to the Republic of Ireland and Northern Ireland were cancelled, and in Wales some roads and railway lines were closed. Ferry services between Wales and Ireland were also disrupted. Storm Ophelia brought heavy rain and very mild temperatures caused by a southerly airflow drawing air from the Iberian Peninsula. Weather data Ex-hurricane Ophelia moved on a northerly track to the west of Spain and then north along the west coast of Ireland, before sweeping north-eastwards across Scotland. The sequence of analysis charts from 12 UTC 15 to 12 UTC 17 October shows Ophelia approaching and tracking across Ireland and Scotland. -
Fishing Pier Design Guidance Part 1
Fishing Pier Design Guidance Part 1: Historical Pier Damage in Florida Ralph R. Clark Florida Department of Environmental Protection Bureau of Beaches and Coastal Systems May 2010 Table of Contents Foreword............................................................................................................................. i Table of Contents ............................................................................................................... ii Chapter 1 – Introduction................................................................................................... 1 Chapter 2 – Ocean and Gulf Pier Damages in Florida................................................... 4 Chapter 3 – Three Major Hurricanes of the Late 1970’s............................................... 6 September 23, 1975 – Hurricane Eloise ...................................................................... 6 September 3, 1979 – Hurricane David ........................................................................ 6 September 13, 1979 – Hurricane Frederic.................................................................. 7 Chapter 4 – Two Hurricanes and Four Storms of the 1980’s........................................ 8 June 18, 1982 – No Name Storm.................................................................................. 8 November 21-24, 1984 – Thanksgiving Storm............................................................ 8 August 30-September 1, 1985 – Hurricane Elena ...................................................... 9 October 31, -
Richmond, VA Hurricanes
Hurricanes Influencing the Richmond Area Why should residents of the Middle Atlantic states be concerned about hurricanes during the coming hurricane season, which officially begins on June 1 and ends November 30? After all, the big ones don't seem to affect the region anymore. Consider the following: The last Category 2 hurricane to make landfall along the U.S. East Coast, north of Florida, was Isabel in 2003. The last Category 3 was Fran in 1996, and the last Category 4 was Hugo in 1989. Meanwhile, ten Category 2 or stronger storms have made landfall along the Gulf Coast between 2004 and 2008. Hurricane history suggests that the Mid-Atlantic's seeming immunity will change as soon as 2009. Hurricane Alley shifts. Past active hurricane cycles, typically lasting 25 to 30 years, have brought many destructive storms to the region, particularly to shore areas. Never before have so many people and so much property been at risk. Extensive coastal development and a rising sea make for increased vulnerability. A storm like the Great Atlantic Hurricane of 1944, a powerful Category 3, would savage shorelines from North Carolina to New England. History suggests that such an event is due. Hurricane Hazel in 1954 came ashore in North Carolina as a Category 4 to directly slam the Mid-Atlantic region. It swirled hurricane-force winds along an interior track of 700 miles, through the Northeast and into Canada. More than 100 people died. Hazel-type wind events occur about every 50 years. Areas north of Florida are particularly susceptible to wind damage. -
Remote Sensing-Based Flood Mapping and Flood Hazard Assessment in Haiti
www.dartmouth.edu/~floods/ csdms.colorado.edu Remote Sensing-based Flood Mapping and Flood Hazard Assessment in Haiti “Rebuilding for Resilience: How Science and Engineering Can Inform Haiti's Reconstruction, March 22 - March 23, 2010, University of Miami - Coral Gables, FL Prof. G. Robert Brakenridge Dartmouth Flood Observatory, Dartmouth College, and Visiting Scientist, Community Surface Dynamics Modeling System, University of Colorado Dr. Scott D. Peckham (Presenter) Community Surface Dynamics Modeling System, University of Colorado 1) Floods commonly produce catastrophic damage in Haiti 2) Not all such floods are from tropical cyclones On May 18-25, 2004, a low-pressure system originating from Central America brought exceptionally heavy showers and thunderstorms to Haiti and the Dominican Republic. Rainfall amounts exceeded 500 mm (19.7 inches) across the border areas of Haiti and the Dominican Republic At the town of Jimani, DR, 250 mm (10 inches) of rain fell in just 24 hours. NASA Tropical Rainfall Measuring Mission (TRMM) data. Lethal Major Floods in the Dominican Republic / Haiti are a Near-Annual Event The Dartmouth Flood Observatory data archive dates back to 1985. Between 1986 and early 2004 (prior to Hurricane Jeanne in November), at least, fourteen lethal events impacted the island, including: Year Month Casualties 1986 early June >39 1986 late October 40 1988 early September - Hurricane Gilbert 237 1993 late May 20 1994 early November – Hurricane Gordon >1000 1996 mid November 18 1998 Late August – Hurricane Gustaf >22 1998 late September - Hurricane Georges >400 1999 late October - Hurricane Jose 4 2001 mid-May 15 2002 late May 30 2003 early December - Tropical Storm Odette 8 2003 mid-November 10 2004 late May >2000 NASA’s two MODIS sensors, Aqua and Terra, are an important flood mapping tool: • Visible and near IR spectral bands provide excellent land/water discrimination over wide areas. -
Hurricane & Tropical Storm
5.8 HURRICANE & TROPICAL STORM SECTION 5.8 HURRICANE AND TROPICAL STORM 5.8.1 HAZARD DESCRIPTION A tropical cyclone is a rotating, organized system of clouds and thunderstorms that originates over tropical or sub-tropical waters and has a closed low-level circulation. Tropical depressions, tropical storms, and hurricanes are all considered tropical cyclones. These storms rotate counterclockwise in the northern hemisphere around the center and are accompanied by heavy rain and strong winds (NOAA, 2013). Almost all tropical storms and hurricanes in the Atlantic basin (which includes the Gulf of Mexico and Caribbean Sea) form between June 1 and November 30 (hurricane season). August and September are peak months for hurricane development. The average wind speeds for tropical storms and hurricanes are listed below: . A tropical depression has a maximum sustained wind speeds of 38 miles per hour (mph) or less . A tropical storm has maximum sustained wind speeds of 39 to 73 mph . A hurricane has maximum sustained wind speeds of 74 mph or higher. In the western North Pacific, hurricanes are called typhoons; similar storms in the Indian Ocean and South Pacific Ocean are called cyclones. A major hurricane has maximum sustained wind speeds of 111 mph or higher (NOAA, 2013). Over a two-year period, the United States coastline is struck by an average of three hurricanes, one of which is classified as a major hurricane. Hurricanes, tropical storms, and tropical depressions may pose a threat to life and property. These storms bring heavy rain, storm surge and flooding (NOAA, 2013). The cooler waters off the coast of New Jersey can serve to diminish the energy of storms that have traveled up the eastern seaboard. -
Widespread Flooding Continued Over Mississippi and Louisiana in the Wake of Hurricane Isaac…
NWS FORM E-5 U.S. DEPARTMENT OF COMMERCE HYDROLOGIC SERVICE AREA (HSA) (11-88) NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION (PRES. by NWS Instruction 10-924) NATIONAL WEATHER SERVICE NEW ORLEANS/BATON ROUGE, LA REPORT FOR: MONTHLY REPORT OF HYDROLOGIC CONDITIONS MONTH YEAR SEPTEMBER 2012 SIGNATURE TO: Hydrometeorological Information Center, W/OH2 NOAA / National Weather Service KENNETH GRAHAM 1325 East West Highway, Room 7230 METEOROLOGIST-IN-CHARGE Silver Spring, MD 20910-3283 DATE OCTOBER 15, 2012 When no flooding occurs, include miscellaneous river conditions, such as significant rises, record low stages, ice conditions, snow cover, droughts, and hydrologic products issued (NWS Instruction 10-924) An X inside this box indicates that no flooding occurred within this hydrologic service area. …Widespread Flooding Continued over Mississippi and Louisiana in the Wake of Hurricane Isaac… Hurricane Isaac formed on August 28, 2012 and made landfall between Buras and Port Fourchon in Louisiana. The hurricane progressed to the Arkansas border on August 30th, although feeder bands persisted over Mississippi and Louisiana through the first days of September. By September 5th, a remnant of Hurricane Isaac moved south from the Ohio River Valley back to the Gulf of Mexico. That remnant remained quasi-stationary along the Gulf Coast until September 8th, when a cold front steered the storm northeast, away from Louisiana and Mississippi. The bulk of the heavy rains occurred during August in Hurricane Isaac. Rain totals over 10.0 inches were reported at several locations; Livingston, LA measured 17.87 inches by September 2nd. Areal rainfall totals for August 27th through September 2nd, were over 7.0 inches for southeast and east-central Louisiana. -
Hurricane Helene Information from NHC Advisory 13, 11:00 AM AST Mon Sep 10, 2018 Helene Is Moving Toward the West-Northwest Near 16 Mph (26 Km/H)
eVENT Hurricane Tracking Advisory Hurricane Helene Information from NHC Advisory 13, 11:00 AM AST Mon Sep 10, 2018 Helene is moving toward the west-northwest near 16 mph (26 km/h). A west-northwestward motion with a decrease in forward speed is expected through late Tuesday, followed by a turn toward the n orthwest and then toward the north-northwest on Wednesday and Thursday. Maximum sustained winds have increased to near 105 mph (165 km/h) with higher gusts. Some additional strengthening is expected today, and Helene is forecast to become a major hurricane by tonight. Intensity Measures Position & Heading U.S. Landfall (NHC) 105 mph Max Sustained Wind Position Relativ e to 375 mi W of the Southernmost Speed: (Cat 2 Land: Cabo Verde Islands Hurricane) Est. Time & Region: n/a Min Central Pressure: 974 mb Coordinates: 14.6 N, 30.0 W Trop. Storm Force 105 miles Bearing/Speed: WNW or 285 degrees at 16 mph Est. Max Sustained n/a Winds Ex tent: Wind Speed: Forecast Summary Ï!D Trop Dep ■ The NHC forecast map (below left) and the wind-field map (below right), which is based on the NHC’s forecast track, both show Helene moving west- northwestward followed by a turn toward the northwest and then toward the north-northwest on Wednesday or Thursday. To illustrate theÏ!S Trop uncertainty Storm in Ï!D Trop Dep !1 Helene’s forecast track, forecast tracks for all current models are shown on the wind -field map (below right) in pale gray. Ï Ca t 1 Ï!S Trop Storm 2 ■ Tropical-storm-force winds extend outward up to 105 miles from the center. -
Hurricane Isaac Information from NHC Advisory 33B, 8:00 AM CDT Wednesday August 29, 2012 Hurricane Isaac Continues to Lash New Orleans
HURRICANE TRACKING ADVISORY eVENT™ Hurricane Isaac Information from NHC Advisory 33B, 8:00 AM CDT Wednesday August 29, 2012 Hurricane Isaac continues to lash New Orleans. Isaac is expected to move over Louisiana today and tomorrow and over southern Arkansas early Friday. Weakening is forecast as Isaac moves over land over the next 48 hours, but dangerous storm surge and flood threats from heavy rains are likely to continue through today and tonight. Intensity Measures Position & Heading Landfall Forecast (NHC) Max Sustained Wind 80 mph Position Relative to 40 miles SSW of New Orleans Speed: (cat. 1 hurricane) Land: Now southwest of New Est. Time & Region: Orleans Louisiana Min Central Pressure: 970 mb Coordinates: 29.5 N, 90.5 W T.S. Force Winds: 175 miles Est. Max Sustained Wind 80 mph Bearing/Speed: NW or 310 degrees at 6 mph Hurricane Force Winds: 60 miles Speed: (cat. 1 hurricane) Forecast Summary Within 24 hours, there is a 12% chance Isaac will remain at hurricane strength (74+ mph winds), a 74% chance Isaac will weaken to a tropical storm (39-73 mph winds), and a 14% chance Isaac will further weaken to tropical depression strength or dissipate (winds below 39 mph). The windfield map – based on the CLP5 forecast (below right) – shows that this model has forecast the storm’s peak winds at category 1 hurricane strength (74-95 mph winds). The CLP5 – one of many models used by NOAA – has been statistically identified as the current “best performing” model for Hurricane Isaac by Kinetic Analysis Corp. The combinations of a storm surge and the tide will cause normally dry areas near the coast to be flooded by rising waters. -
Caribbean:Tropical Storm Ernesto
CARIBBEAN:TROPICAL Information Bulletin no. 2/2006 STORM ERNESTO 27 August 2006 The Federation’s mission is to improve the lives of vulnerable people by mobilizing the power of humanity. It is the world’s largest humanitarian organization and its millions of volunteers are active in over 183 countries. In Brief This Bulletin is being issued for information only, and reflects the situation and the information available at this time. The Federation is not seeking funding or other assistance from donors for this operation at this time. The International Federation undertakes activities that are aligned with its Global Agenda, which sets out four broad goals to achieve the Federation's mission to "improve the lives of vulnerable people by mobilizing the power of humanity". Global Agenda Goals: · Reduce the numbers of deaths, injuries and impact from disasters. · Reduce the number of deaths, illnesses and impact from diseases and public health emergencies. · Increase local community, civil society and Red Cross Red Crescent capacity to address the most urgent situations of vulnerability. · Reduce intolerance, discrimination and social exclusion and promote respect for diversity and human dignity. For further information specifically related to this operation please contact: · In Cuba: Dr Foyo Ceballos, Secretary General, Cuban Red Cross, [email protected] · In Haiti: Dr. Michaele Amedée Gédéon, President, Haitian National Red Cross Society e-mail: [email protected] phone (509) 222 55 54; Dr. Jean-Pierre Guiteau, Executive Officer, Haitian