Dolphin \(Fish\), Or Mahi Mahi Or Dorado Catch by Southern California Commercial Passenger Fishing Vessels

Total Page:16

File Type:pdf, Size:1020Kb

Dolphin \(Fish\), Or Mahi Mahi Or Dorado Catch by Southern California Commercial Passenger Fishing Vessels California Fisheries and Ecological Responses to Abrupt Ocean Climate Changes (or did foreign markets do it?) Jerry Norton, Jan Mason and Sam Herrick Southwest Fisheries Science Center (NOAA) Question: How much of the variation in fisheries landings is due to economic and management factors and how much is due to measurable environmental variation? First, illustrate controversy and confusion. (apparent responses to climate events) Second, present progress in finding solutions. Dolphin (fish), or mahi mahi or dorado catch by southern California Commercial Passenger Fishing Vessels Dolphin (fish), or mahi mahi or dorado catch by southern California Commercial Passenger Fishing Vessels History of California Commercial Swordfish Landings Time and area closures, net (Imports limited) restrictions, limited entry Use composite to avoid particular problems EOF analysis of 29 species with landings reported through 75 years Table 1. Harvest habitat for the 29 ecosystem indicator species. Demersal species code* scientific name cabezon cbzn Scorpaenichthys marmoratus California halibut chlb Paralicthys californicus California scorpionfish scor Scorpaena guttata California sheephead shpd Semicossyphus pulcher Dungeness (market) crab dcrb Cancer magister giant seabass gbas Stereolepis gigas lingcod lcod Ophiodon elongatus ocean whitefish owfs Caulolatilus princeps Pacific hake (whiting) pwht Merluccius productus Pacific halibut phlb Hippoglossus stenolepis spiny lobster slbs Panulirus interruptus sablefish sabl Anoplopoma fimbria white croaker wcrk Genyonemus lineatus Wide trophic Migratory species albacore albc Thunnus alalunga representation….. Pacific barracuda cuda Sphyraena argentea Pacific bluefin tuna btna Thunnus orientalis Pacific bonito pbnt Sarda chiliensis skipjack tuna stna Katsuwonus pelamis swordfish swrd Xiphias gladius white seabass wbas Atractoscion noblis yellowfin tuna ytna Thunnus albacares yellowtail yltl Seriola dorsalis Pelagic species chub (Pacific) mackerel cmck Scomber japonicus jack mackerel jmck Trachurus symmetricus market squid msqd Loligo opalescens northern anchovy nanc Engraulis mordax Pacific herring phrg Clupea pallasii Pacific pompano (butterfish) pbtr Peprilus simillimus Pacific sardine (pilchard) psdn Sardinops sagax *Pacific States Marine Fisheries Commission code used in Figure 1 Hunboldt squid: a memorable character La Jolla (SIO) SST Index McGowan, Cayan and Dorman, 1998, Science 281: 210 Ending comments 1. Studies at the largest scales of combination suggest that changes in the physical environment affect the availability of fish, revenue earned by the total California catch and capital investment, but additional detail is needed. 2. Management is having increasing affects on landings. 3. Success of management plans in achieving stability in the fisheries will depend on consideration of environmental influence. 4. Ecological space developed in EOF analysis may have utility in organizing other ecosystem components..
Recommended publications
  • A Very Long Term Tag Recovery of a California Scorpionfish (Scorpaena Guttata)
    California Fish and Game 105(1):8-9; 2019 A very long term tag recovery of a California Scorpionfish (Scorpaena guttata) EDGAR W. ROBERTS III* AND DOYLE A. HANAN, PHD California Department of Fish and Wildlife, Marine Region, 619 2nd Street Eureka, CA 95501, USA (EWR) Hanan and Associates, P.O. Box 8914 Rancho Santa Fe, CA 92067, USA (DAH) *Correspondent: [email protected] Key words: California scorpionfish, days at liberty, Floy FD-94,Scorpaena guttata, tag return During the four-year period from 21 November 2002 to 24 July 2006, we performed a mark-recapture study on nearshore groundfish off southern and central California (Hanan and Curry 2012). For the study, volunteer fishermen aboard chartered commercial passen- ger fishing vessels (CPFV) caught by hook and line, 32 species of groundfish (32,366 total fish), including 2,751 California Scorpionfish, Scorpaena guttata; these fish were marked with Floy FD-94 tags and released. As of the date of the Hanan and Curry paper, 257 scor- pionfish were reported as recaptured with an average days at liberty (DAL) of 408.8 days (431.6 SD; range 2 - 2,126 days). A total of 76 (33%) of these recaptured scorpionfish were recaptured within 1 km of their original tagging site, 155 (67%) were within 5 km, and 17 (1%) were recaptured at distances of 50 km or more from the original tagging site with a range of 68 to 1,788 DAL. On 21 November 2017, a tagged California scorpionfish was reported caught by Mr. Robert Rosenberg, a recreational angler, on a one-day trip aboard the CPFV New Del Mar out of Marina Del Rey, California.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • Paralabrax Nebulifer) in Nearshore Waters Off Northern San Diego County
    ROBERTS ET AL.: FEEDING HABITS OF BARRED SAND BASS CalCOFI Rep., Vol. XXV, 1984 THE FEEDING HABITS OF JUVENILE-SMALL ADULT BARRED SAND BASS (PARALABRAX NEBULIFER) IN NEARSHORE WATERS OFF NORTHERN SAN DIEGO COUNTY DALE A. ROBERTS‘, EDWARD E. DeMARTINI’, AND KENNETH M. PLUMMER2 Marine Science Institute University of California Santa Barbara, California 93106 ABSTRACT pelecipodos y peces epibent6nicos. Estas observa- The feeding habits of juvenile-small adult barred ciones no concuerdan con estudios previos, 10s cuales sand bass (Purulubrax nebulifer) are described, based consideran a la anchoveta del norte, Engruulis mor- on 165 specimens 123-523 mm standard length (SL) dux, como el elemento mas importante en la dieta de collected between San Onofre and Oceanside, Califor- P. nebulifer de tallas similares a las analizadas durante nia, at depths ranging from 8 to 30 m. Collections esta estudio. La dieta de P. nebulifer pequeiios (< 240 were made during an annual cycle from March 1981 to mm de longitud esthndar) es distinta debido a la pre- March 1982. sencia de crustaceos (misidaceos y antipodos gamir- The diet of the barred sand bass indicates that it idos), mientras que 10s ejemplares grandes (> 320 forages in close proximity to the substrate. Brachyuran mm LE) consumieron presas grandes como Porich- crabs, mysids, pelecypods, and epibenthic fishes were thys notutus (80-160 mm LE) y Octopus. P. nebulifer the most important prey. These findings are contrary de talla mediana (240-320 mm LE) contenian en su to previous studies, which found northern anchovy est6mago presas similares a las consumidas por 10s (Engruulis mordux) to be of major importance in the ejemplares grandes y pequeiios.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis Gigas) Off Santa Catalina Island, California, 2014-2015
    Bull. Southern California Acad. Sci. 115(1), 2016, pp. 1–14 E Southern California Academy of Sciences, 2016 The Return of the King of the Kelp Forest: Distribution, Abundance, and Biomass of Giant Sea Bass (Stereolepis gigas) off Santa Catalina Island, California, 2014-2015 Parker H. House*, Brian L.F. Clark, and Larry G. Allen California State University, Northridge, Department of Biology, 18111 Nordhoff St., Northridge, CA, 91330 Abstract.—It is rare to find evidence of top predators recovering after being negatively affected by overfishing. However, recent findings suggest a nascent return of the critically endangered giant sea bass (Stereolepis gigas) to southern California. To provide the first population assessment of giant sea bass, surveys were conducted during the 2014/2015 summers off Santa Catalina Island, CA. Eight sites were surveyed on both the windward and leeward side of Santa Catalina Island every two weeks from June through August. Of the eight sites, three aggregations were identified at Goat Harbor, The V’s, and Little Harbor, CA. These three aggregation sites, the largest containing 24 individuals, contained a mean stock biomass of 19.6 kg/1000 m2 over both summers. Over the course of both summers the giant sea bass population was primarily made up of 1.2 - 1.3 m TL individuals with several small and newly mature fish observed in aggregations. Comparison to historical data for the island suggests giant sea bass are recovering, but have not reached pre-exploitation levels. The giant sea bass (Stereolepis gigas) is the largest teleost to inhabit nearshore rocky reefs and kelp forests in the northeastern Pacific (Hawk and Allen 2014).
    [Show full text]
  • California Yellowtail, White Seabass California
    California yellowtail, White seabass Seriola lalandi, Atractoscion nobilis ©Monterey Bay Aquarium California Bottom gillnet, Drift gillnet, Hook and Line February 13, 2014 Kelsey James, Consulting researcher Disclaimer Seafood Watch® strives to ensure all our Seafood Reports and the recommendations contained therein are accurate and reflect the most up-to-date evidence available at time of publication. All our reports are peer- reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science or aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch program or its recommendations on the part of the reviewing scientists. Seafood Watch is solely responsible for the conclusions reached in this report. We always welcome additional or updated data that can be used for the next revision. Seafood Watch and Seafood Reports are made possible through a grant from the David and Lucile Packard Foundation. 2 Final Seafood Recommendation Stock / Fishery Impacts on Impacts on Management Habitat and Overall the Stock other Spp. Ecosystem Recommendation White seabass Green (3.32) Red (1.82) Yellow (3.00) Green (3.87) Good Alternative California: Southern (2.894) Northeast Pacific - Gillnet, Drift White seabass Green (3.32) Red (1.82) Yellow (3.00) Yellow (3.12) Good Alternative California: Southern (2.743) Northeast Pacific - Gillnet, Bottom White seabass Green (3.32) Green (4.07) Yellow (3.00) Green (3.46) Best Choice (3.442) California: Central Northeast Pacific - Hook/line
    [Show full text]
  • The Biology and Ecology of Samson Fish Seriola Hippos
    The biology of Samson Fish Seriola hippos with emphasis on the sportfishery in Western Australia. By Andrew Jay Rowland This thesis is presented for the degree of Doctor of Philosophy at Murdoch University 2009 DECLARATION I declare that the information contained in this thesis is the result of my own research unless otherwise cited. ……………………………………………………. Andrew Jay Rowland 2 Abstract This thesis had two overriding aims. The first was to describe the biology of Samson Fish Seriola hippos and therefore extend the knowledge and understanding of the genus Seriola. The second was to uses these data to develop strategies to better manage the fishery and, if appropriate, develop catch-and-release protocols for the S. hippos sportfishery. Trends exhibited by marginal increment analysis in the opaque zones of sectioned S. hippos otoliths, together with an otolith of a recaptured calcein injected fish, demonstrated that these opaque zones represent annual features. Thus, as with some other members of the genus, the number of opaque zones in sectioned otoliths of S. hippos are appropriate for determining age and growth parameters of this species. Seriola hippos displayed similar growth trajectories to other members of the genus. Early growth in S. hippos is rapid with this species reaching minimum legal length for retention (MML) of 600mm TL within the second year of life. After the first 5 years of life growth rates of each sex differ, with females growing faster and reaching a larger size at age than males. Thus, by 10, 15 and 20 years of age, the predicted fork lengths (and weights) for females were 1088 (17 kg), 1221 (24 kg) and 1311 mm (30 kg), respectively, compared with 1035 (15 kg), 1124 (19 kg) and 1167 mm (21 kg), respectively for males.
    [Show full text]
  • SWFSC) Conducts Fisheries and Marine Mammal Research at Three Laboratories in California
    NMFS Southwest Fisheries Science Center DRAFT Agency Report to the Technical Subcommittee of the Canada-U.S. Groundfish Committee April 2019 Edited by Melissa Monk With contributions from John Field, Tom Laidig, Nick Wegner, and William Watson 1 A. AGENCY OVERVIEW The Southwest Fisheries Science Center (SWFSC) conducts fisheries and marine mammal research at three laboratories in California. Activities are primarily in support of the Pacific Fishery Management Council, the Endangered Species Act (ESA), the Marine Mammal Protection Act (MMPA), as well as a number of international fisheries commissions and conventions. The Science and Research Director is Kristen Koch and the Acting Deputy Director is Dr. Toby Garfield. All SWFSC divisions have supported the essential needs of the NMFS and the Pacific Fishery Management Council (PFMC) for groundfish, including as active members of the PFMC’s Scientific and Statistical Committee (SSC), the Groundfish Management Team, and other management teams and advisory bodies. The Center is headquartered in La Jolla, which hosts three divisions that conduct research on a wide range of Pacific and Antarctic fish, marine mammals, sea turtles, and marine habitats; the Antarctic Ecosystem Research Division (led by Dr. George Watters), the Marine Mammal and Turtle Division (led by Dr. Lisa Ballance), and the Fisheries Resources Division (led by Dr. Gerard DiNardo). The Fisheries Resources Division (FRD) conducts research on groundfish, large pelagic fishes (tunas, billfish and sharks), and small coastal pelagic fishes (anchovy, sardine and mackerel), and is the only source of groundfish research at the La Jolla facility. The Fisheries Research Division is also the primary source of federal support for the California Cooperative Oceanic Fisheries Investigations (CalCOFI) surveys that have taken place along much of the California coast since 1951.
    [Show full text]
  • Anacapa Island State Marine Reserve
    Anacapa Island State Marine Reserve Southern California Marine Protected Areas (MPAs), Established January 2012 Anacapa Island SMR, Anacapa Island SMR, Anacapa Island SMR, Copper rockfish (Sebastes caurinus) California scorpionfish (Scorpaena guttata) Horn shark (Heterodontus francisci) ROV photo by MARE/CDFW ROV photo by MARE/CDFW ROV photo by MARE/CDFW Site Overview Photos are representative of the South Coast Region and may not be within this MPA. What is an MPA? MPAs are a type of marine managed area (MMA) where marine or estuarine waters are set aside primarily to protect or conserve marine life and associated habitats. California has a coastal network of 124 protected areas designed to help increase the coherence and effectiveness of protecting the state’s marine life, habitats, and ecosystems. The network includes three types of MPA: state marine reserve (SMR), state marine conservation area (SMCA), and state marine park (SMP); one MMA: state marine recreational management area (SMRMA); and special closures. There are 119 MPAs, 5 MMAs and 15 special closures, each with unique boundaries and regulations in the network. Non-consumptive activities, restoration, and permitted scientific research are allowed. What is an SMR? An SMR is a type of MPA that protects resources by prohibit ing the recreational and/or commercial take of all marine resources. Anacapa Island SMR Key Habitats Anacapa Island SMR Overview Beaches: 0.99 miles MPA size: 11.55 square miles Rocky shores: 6.47 miles Depth range: 0 to 709 feet Surfgrass: 2.81 miles Along-shore span (shoreline): 3.1 miles Sand (all depths): 8.9 square miles Rock (all depths): 0.38 square miles Boundaries and Regulations Average kelp (1989 to 2008): 0.01 square miles Unidentified (all depths): 2.26 square miles This area includes Anacapa Island State Marine Reserve and the adjoining federal Anacapa Island Marine Where is Anacapa Island SMR? Reserve*.
    [Show full text]
  • Fish Bulletin 161. California Marine Fish Landings for 1972 and Designated Common Names of Certain Marine Organisms of California
    UC San Diego Fish Bulletin Title Fish Bulletin 161. California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California Permalink https://escholarship.org/uc/item/93g734v0 Authors Pinkas, Leo Gates, Doyle E Frey, Herbert W Publication Date 1974 eScholarship.org Powered by the California Digital Library University of California STATE OF CALIFORNIA THE RESOURCES AGENCY OF CALIFORNIA DEPARTMENT OF FISH AND GAME FISH BULLETIN 161 California Marine Fish Landings For 1972 and Designated Common Names of Certain Marine Organisms of California By Leo Pinkas Marine Resources Region and By Doyle E. Gates and Herbert W. Frey > Marine Resources Region 1974 1 Figure 1. Geographical areas used to summarize California Fisheries statistics. 2 3 1. CALIFORNIA MARINE FISH LANDINGS FOR 1972 LEO PINKAS Marine Resources Region 1.1. INTRODUCTION The protection, propagation, and wise utilization of California's living marine resources (established as common property by statute, Section 1600, Fish and Game Code) is dependent upon the welding of biological, environment- al, economic, and sociological factors. Fundamental to each of these factors, as well as the entire management pro- cess, are harvest records. The California Department of Fish and Game began gathering commercial fisheries land- ing data in 1916. Commercial fish catches were first published in 1929 for the years 1926 and 1927. This report, the 32nd in the landing series, is for the calendar year 1972. It summarizes commercial fishing activities in marine as well as fresh waters and includes the catches of the sportfishing partyboat fleet. Preliminary landing data are published annually in the circular series which also enumerates certain fishery products produced from the catch.
    [Show full text]
  • Common Fishes of California
    COMMON FISHES OF CALIFORNIA Updated July 2016 Blue Rockfish - SMYS Sebastes mystinus 2-4 bands around front of head; blue to black body, dark fins; anal fin slanted Size: 8-18in; Depth: 0-200’+ Common from Baja north to Canada North of Conception mixes with mostly with Olive and Black R.F.; South with Blacksmith, Kelp Bass, Halfmoons and Olives. Black Rockfish - SMEL Sebastes melanops Blue to blue-back with black dots on their dorsal fins; anal fin rounded Size: 8-18 in; Depth: 8-1200’ Common north of Point Conception Smaller eyes and a bit more oval than Blues Olive/Yellowtail Rockfish – OYT Sebastes serranoides/ flavidus Several pale spots below dorsal fins; fins greenish brown to yellow fins Size: 10-20in; Depth: 10-400’+ Midwater fish common south of Point Conception to Baja; rare north of Conception Yellowtail R.F. is a similar species are rare south of Conception, while being common north Black & Yellow Rockfish - SCHR Sebastes chrysomelas Yellow blotches of black/olive brown body;Yellow membrane between third and fourth dorsal fin spines Size: 6-12in; Depth: 0-150’ Common central to southern California Inhabits rocky areas/crevices Gopher Rockfish - SCAR Sebastes carnatus Several small white blotches on back; Pale blotch extends from dorsal spine onto back Size: 6-12 in; Depth: 8-180’ Common central California Inhabits rocky areas/crevice. Territorial Copper Rockfish - SCAU Sebastes caurinus Wide, light stripe runs along rear half on lateral line Size:: 10-16in; Depth: 10-600’ Inhabits rocky reefs, kelpbeds,
    [Show full text]
  • A Checklist of the Fishes of the Monterey Bay Area Including Elkhorn Slough, the San Lorenzo, Pajaro and Salinas Rivers
    f3/oC-4'( Contributions from the Moss Landing Marine Laboratories No. 26 Technical Publication 72-2 CASUC-MLML-TP-72-02 A CHECKLIST OF THE FISHES OF THE MONTEREY BAY AREA INCLUDING ELKHORN SLOUGH, THE SAN LORENZO, PAJARO AND SALINAS RIVERS by Gary E. Kukowski Sea Grant Research Assistant June 1972 LIBRARY Moss L8ndillg ,\:Jrine Laboratories r. O. Box 223 Moss Landing, Calif. 95039 This study was supported by National Sea Grant Program National Oceanic and Atmospheric Administration United States Department of Commerce - Grant No. 2-35137 to Moss Landing Marine Laboratories of the California State University at Fresno, Hayward, Sacramento, San Francisco, and San Jose Dr. Robert E. Arnal, Coordinator , ·./ "':., - 'I." ~:. 1"-"'00 ~~ ~~ IAbm>~toriesi Technical Publication 72-2: A GI-lliGKL.TST OF THE FISHES OF TtlE MONTEREY my Jl.REA INCLUDING mmORH SLOUGH, THE SAN LCRENZO, PAY-ARO AND SALINAS RIVERS .. 1&let~: Page 14 - A1estria§.·~iligtro1ophua - Stone cockscomb - r-m Page 17 - J:,iparis'W10pus." Ribbon' snailt'ish - HE , ,~ ~Ei 31 - AlectrlQ~iu.e,ctro1OphUfi- 87-B9 . .', . ': ". .' Page 31 - Ceb1diehtlrrs rlolaCewi - 89 , Page 35 - Liparis t!01:f-.e - 89 .Qhange: Page 11 - FmWulns parvipin¢.rl, add: Probable misidentification Page 20 - .BathopWuBt.lemin&, change to: .Mhgghilu§. llemipg+ Page 54 - Ji\mdJ11ui~~ add: Probable. misidentifioation Page 60 - Item. number 67, authOr should be .Hubbs, Clark TABLE OF CONTENTS INTRODUCTION 1 AREA OF COVERAGE 1 METHODS OF LITERATURE SEARCH 2 EXPLANATION OF CHECKLIST 2 ACKNOWLEDGEMENTS 4 TABLE 1
    [Show full text]