Drivers of Forest Dynamics: Joint Effects of Climate and Competition

Total Page:16

File Type:pdf, Size:1020Kb

Drivers of Forest Dynamics: Joint Effects of Climate and Competition Drivers of forest dynamics: Joint effects of climate and competition Dissertation zur Erlangung des akademischen Grades Dr. rer. nat. vorgelegt der Fakultät für Biologie, Chemie und Geowissenschaften der Universität Bayreuth von Frau Dipl. Geoökologin Klara Dolos geboren am 03.03.1982 in Stuttgart Die vorliegende Arbeit von Frau Dipl.-Geoökol. Klara Dolos, geb. am 03.03.1982 in Stuttgart, wurde in der Zeit von Mai 2009 bis April 2013 unter der Betreuung von Herrn Prof. Dr. Björn Reineking an der Juniorprofessur Biogeographische Model- lierung der Universität Bayreuth angefertigt. Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und Geowis- senschaften der Universität Bayreuth genehmigten Dissertation zur Erlangung des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. Nat). Dissertation eingereicht am: 25.4. 2013 Zulassung durch die Prüfungskommission: 22.5.2013 Wissenschaftliches Kolloquium: 31.10.2013 Amtierender Dekan: Prof. Dr. Rhett Kempe Prüfungsausschuss: Prof. Dr. B. Reineking (Erstgutachter) Prof. Dr. B. Engelbrecht (Zweitgutachterin) Prof. Dr. M. Hauhs (Vorsitz) Prof. Dr. B. Huwe PD Dr. G Aas 1 Wer immer nur tut, was er schon kann, bleibt immer nur dass, was er schon ist. Henry Ford Table of contents Abstract........................................................................................................II Zusammenfassung....................................................................................IV Introduction..................................................................................................1 Background.............................................................................................1 Natural forest dynamics..........................................................................3 Demographic processes.....................................................................4 Forest disturbances............................................................................8 Forest succession...............................................................................9 Climatic gradients..................................................................................10 Spatial climatic gradients..................................................................11 Climate change.................................................................................12 Forest modelling....................................................................................13 Statistical models..............................................................................14 Simulation models............................................................................15 Mathematical models........................................................................17 Limits.................................................................................................17 Conclusions...........................................................................................19 References............................................................................................20 Manuscripts...............................................................................................33 Summary of the following manuscripts.................................................33 Manuscript 1: Long-term vegetation dynamics in New Zealand...........35 Manuscript 2: Climatic turning point for beech and oak........................69 Manuscript 3: Symmetric and asymmetric competition......................103 Manuscript 4: Ecotype mixing as climate change adaptation.............133 Manuscript 5: Disturbance interactions...............................................157 Acknowledgements.................................................................................190 Supplement.............................................................................................191 List of manuscripts and specification of own contribution..................191 Presentations on this research...........................................................193 Non-refereed periodicals.....................................................................194 Further publications............................................................................194 Erklärung.............................................................................................195 I Abstract The present dissertation thesis addresses different aspects of forest dynamics and possible changes due to climate change. Various modelling approaches are used to explore joint effects of climate and competition on forest dynamics with a focus on temperate forests. Motivated by scientific interest, this thesis is aimed at contributing to the establishment of fundamental knowledge for proper ecosystem management. Each of the research projects of this thesis explores a facet of forest dynamics. It appears that for projections of forest dynamics under climate change particularly, it is critical to consider competition among trees. In the first study, the joint effect of climate and competition on forest dynamics in a mountain forest of New Zealand was investigated. The landscape simulation model LandClim was calibrated based on empirical data and applied to reproduce a 1700 years forest succession under stationary climate at the slope of Mt. Hauhungatahi, North Island. Although designed for European temperate forests, LandClim was capable of simulating NZ´s forest dynamics. Under non-stationary climate, forests likely remain in disequilibrium with cli- mate for some time due to the longevity of trees and competitive prevention of establishment. This aspect was investigated in a mixed beech-oak forest in Ger- many, using LandClim and the forest gap model SILVA in a cooperation study. Furthermore, a possible ‘climatic turning point’ was investigated, the point at which species dominances change due to changes in competitiveness caused by climate change. Both models projected a potential climatic turning point at a mean annual temperature of 11-12 °C and precipitation sum of 500-530 mm. However, the change of species composition in existing mixed stands was much slower since the turning point also depended on inherited stand structure. Based on these projections the promotion of oak at dry sites seems advisable due to its superior resistance and resilience to drought. The applied simulation models consider joint effects of climate and competi- tion but no changes in species sensitivity to competition along climatic gradients. The Spanish National Forest Inventories provided a solid basis to develop a stat- istical model for the influence of climate and competition on tree growth. The res- ults indicated that in Mediterranean forests the effect of competition increases with aridity potentially resulting in an additional disadvantage for drought sens- itive oaks compared to pines under climate change. II Under the prerequisite that forest dynamics will be affected by climate change, different forest management strategies on adaptation are currently discussed. One option is the promotion of tree species that are better adapted to anticipated future climates (such as oak instead of beech in Germany) and also the introduction of non-local ecotypes of local species. This increase in biodiversity intuitively appears promising because it is in line with the insurance hypothesis and the port- folio effect theory. Within this thesis the effect of ecotype mixing as an increase of within stand diversity under consideration of self-thinning was assessed. It was shown that ecotype mixing in forest stands might lower the risk of yield losses and at the same time might exempt the portfolio effect from its drawback of lower chances for high yields. Climate not only affects demographic rates of tree species but also all other ecosystem components. Disturbances are an important component of forest dynamics because they initiate successions and thereby influence species coexist- ence. Climate will alter disturbance regimes not only directly but also due to inter- actions among disturbances, for example an increased risk of insect outbreaks due to weak tree defence caused by severe drought stress. Most disturbance interac- tions have been observed to be positive, implying that increases of disturbances in quality and quantity due to climate change will be amplified. Furthermore, sys- tems containing positive feedback loops are considered to be mostly unstable, which would result in forest collapse. A theoretical study on disturbance interac- tions showed why positive feedback loops of disturbances do not necessarily lead to a forest collapse. Disturbance interactions might cause only a minor part of dis- turbances, whereas direct changes due to climate change are of much higher importance. The described studies reflect the diversity of the research field forest dynamics and innovative ecological methodology. Nevertheless, the present thesis is not an exhaustive discussion of drivers of forest dynamics under climate change. Forest dynamics and its drivers provide a range of open research questions posing a chal- lenge for fundamental an applied research of high relevance for society. III Zusammenfassung Diese Dissertation befasst sich mit Walddynamik und möglichen Verände- rungen in Folge des Klimawandels. Verschiedene Modellierungsansätze werden verwendet, um den Einfluss von Klima und Konkurrenz auf die Walddynamik zu untersuchen. Motiviert durch wissenschaftliche Neugier soll diese Arbeit auch dazu beitragen, fundiertes Wissen als Basis für nachhaltiges Forstmanagement
Recommended publications
  • Health Guidelines Vegetation Fire Events
    HEALTH GUIDELINES FOR VEGETATION FIRE EVENTS Background papers Edited by Kee-Tai Goh Dietrich Schwela Johann G. Goldammer Orman Simpson © World Health Organization, 1999 CONTENTS Preface and acknowledgements Early warning systems for the prediction of an appropriate response to wildfires and related environmental hazards by J.G. Goldammer Smoke from wildland fires, by D E Ward Analytical methods for monitoring smokes and aerosols from forest fires: Review, summary and interpretation of use of data by health agencies in emergency response planning, by W B Grant The role of the atmosphere in fire occurrence and the dispersion of fire products, by M Garstang Forest fire emissions dispersion modelling for emergency response planning: determination of critical model inputs and processes, by N J Tapper and G D Hess Approaches to monitoring of air pollutants and evaluation of health impacts produced by biomass burning, by J P Pinto and L D Grant Health impacts of biomass air pollution, by M Brauer A review of factors affecting the human health impacts of air pollutants from forest fires, by J Malilay Guidance on methodology for assessment of forest fire induced health effects, by D M Mannino Gaseous and particulate emissions released to the atmosphere from vegetation fires, by J S Levine Basic fact-determining downwind exposures and their associated health effects, assessment of health effects in practice: a case study in the 1997 forest fires in Indonesia, by O Kunii Smoke episodes and assessment of health impacts related to haze from forest
    [Show full text]
  • Boreal Forests from a Climate Perspective Roger Olsson
    AIR POLLUTION AND CLIMATE SERIES 26 To Manage or Protect? Boreal Forests from a Climate Perspective Roger Olsson 1 Air Pollution & Climate Secretariat AIR POLLUTION AND CLIMATE SERIES 26 To Manage or Protect? - Boreal Forests from a Climate Perspective By Roger Olsson About the author Roger Olsson is a Swedish journalist and science writer. He has for many years worked as an expert for environment NGOs and other institutions and has published several books on, among other things, forest management and bio- diversity. The study was supervised by a working group consisting of Peter Roberntz and Lovisa Hagberg from World Wide Fund for Nature (WWF), Sweden, Svante Axelsson and Jonas Rudberg from the Swedish Society for Nature Conservation and Reinhold Pape from AirClim. Many thanks also to a number of forest and climate experts who commented on drafts of the study. Cover illustration: Lars-Erik Håkansson (Lehån). Graphics and layout: Roger Olsson Translation: Malcolm Berry, Seven G Translations, UK ISBN: 91-975883-8-5 ISSN: 1400-4909 Published in September 2011 by the Air Pollution & Climate Secretariat (Rein- hold Pape). Address: AirClim, Box 7005, 402 31 Göteborg, Sweden. Phone: +46 (0)31 711 45 15. Website: www.airclim.org. The Secretariat is a joint project by Friends of the Earth Sweden, Nature and Youth Sweden, the Swedish Society for Nature Conservation and the World Wide Fund for Nature (WWF) Sweden. Further copies can be obtained free of charge from the publisher, address as above.The report is also available in pdf format at www.airclim.org. The views expressed here are those of the author and not necessarily those of the publisher.
    [Show full text]
  • Inventory and Review of Quantitative Models for Spread of Plant Pests for Use in Pest Risk Assessment for the EU Territory1
    EFSA supporting publication 2015:EN-795 EXTERNAL SCIENTIFIC REPORT Inventory and review of quantitative models for spread of plant pests for use in pest risk assessment for the EU territory1 NERC Centre for Ecology and Hydrology 2 Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, UK ABSTRACT This report considers the prospects for increasing the use of quantitative models for plant pest spread and dispersal in EFSA Plant Health risk assessments. The agreed major aims were to provide an overview of current modelling approaches and their strengths and weaknesses for risk assessment, and to develop and test a system for risk assessors to select appropriate models for application. First, we conducted an extensive literature review, based on protocols developed for systematic reviews. The review located 468 models for plant pest spread and dispersal and these were entered into a searchable and secure Electronic Model Inventory database. A cluster analysis on how these models were formulated allowed us to identify eight distinct major modelling strategies that were differentiated by the types of pests they were used for and the ways in which they were parameterised and analysed. These strategies varied in their strengths and weaknesses, meaning that no single approach was the most useful for all elements of risk assessment. Therefore we developed a Decision Support Scheme (DSS) to guide model selection. The DSS identifies the most appropriate strategies by weighing up the goals of risk assessment and constraints imposed by lack of data or expertise. Searching and filtering the Electronic Model Inventory then allows the assessor to locate specific models within those strategies that can be applied.
    [Show full text]
  • Mapping Land Cover and Insect Outbreaks at Test Sites in East Siberia
    Mapping land cover and insect outbreaks at test sites in East Siberia V.I. Kharuk V. N. Sukachev Institute of Forest, Krasnoyarsk, Russia Insect outbreaks are one of the primary factors of Siberian forests dynamics, determining species composition and carbon balance. This table lists the main insect species which caused outbreaks in Siberian taiga Insect species Main food source tree species Max. outbreak area, thousand hectares 1. Dendrolimus superans sibiricus Tschetw.* fir, pine, larch, spruce > 1000 2. Lymantria dispar* larch, broadleaf 300 3. Orgyia antiqua larch, birch 40 4. Dasychira abietis spruce, fir, pine, larch 1000 5. Leucoma salicis* aspen, willow 100 6. Lymantria monacha* pine, spruce 5 7. Ectropis bistortata* spruce 400 8. Bupalus piniarius* pine 50 9. Semiothisa signaria* spruce, fir 10 10. Simiothisa continuaria larch 5 11. Erranis jacobsoni* larch 50 12. Biston betularius birch 50 13. Phalera bucephala birch 50 14. Clostera anastomosis* aspen, willow 10 15. Zeiraphera rufimitrana fir 100 16. Coleophera dahurica larch 100 17. Zeiraphera griseana larch >1000 The most dangerous species is the Siberian silkmoth (Dendrolimus superans sibiricus Tschetw.). This insect causes forest damage and mortality up to >1 mln ha per outbreak The map of actual and potential Siberian silkmoth food base Outbreak areas: 1 (yellow line) – of 1950s; 2 (red line) - of 1990s, 3 (black circle) - of 21st century; The temporal trend in outbreak periodicity is observing: 25 yr, 25yr, 12 yr, and 8 yr. Solid line: northern limit of outbreak zone. Under the impact of climate change this border will shift northward. Secondary pests (bark beetles) attacked stands weakened by Siberian silkmoth Insect-killed stands becomes a “firewood” for the periodic follow-on fires The catastrophic scale of outbreaks requires adequate methods of detection and mapping.
    [Show full text]
  • Development, Calibration and Application of a 3-D Individual-Based Gap Model for Improved Characterization of Eurasian Boreal Fo
    DEVELOPMENT, CALIBRATION AND APPLICATION OF A 3-D INDIVIDUAL-BASED GAP MODEL FOR IMPROVED CHARACTERIZATION OF EURASIAN BOREAL FORESTS IN RESPONSE TO HISTORICAL AND FUTURE CHANGES IN CLIMATE KSENIA BRAZHNIK CHARLOTTESVILLE,VIRGINIA B.A. CHEMISTRY,VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, 2002 ADISSERTATION PRESENTED TO THE GRADUATE FACULTY OF THE UNIVERSITY OF VIRGINIA IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF ENVIRONMENTAL SCIENCES UNIVERSITY OF VIRGINIA DECEMBER, 2015 Abstract Climate change is altering forests globally, some in ways that may promote further warming at the regional and even continental scales. The dynamics of complex systems that occupy large spatial domains and change on the order of decades to centuries, such as forests, do not lend themselves easily to direct observation. A simulation model is often an appropriate and attainable approach toward understanding the inner workings of forest ecosystems, and how they may change with imposed perturbations. A new spatially-explicit model SIBBORK has been developed to understand how the Siberian boreal forests may respond to near-future climate change. The predictive capabilities of SIBBORK are enhanced with 3-dimensional representation of terrain and associated environmental gradients, and a 3-D light ray-tracing subroutine. SIBBORK’s outputs are easily converted to georeferenced maps of forest structure and species composition. SIBBORK has been calibrated using forestry yield tables and validated against multiple independent multi- dimensional timeseries datasets from southern, middle, and northern taiga ecotones in central Siberia, including the southern and northern boundaries of the boreal forest. Model applications simulating the vegetation response to cli- mate change revealed significant and irreversible changes in forest structure and composition, which are likely to be reached by mid-21st century.
    [Show full text]
  • Hylobius Abietis
    On the cover: Stand of eastern white pine (Pinus strobus) in Ottawa National Forest, Michigan. The image was modified from a photograph taken by Joseph O’Brien, USDA Forest Service. Inset: Cone from red pine (Pinus resinosa). The image was modified from a photograph taken by Paul Wray, Iowa State University. Both photographs were provided by Forestry Images (www.forestryimages.org). Edited by: R.C. Venette Northern Research Station, USDA Forest Service, St. Paul, MN The authors gratefully acknowledge partial funding provided by USDA Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology. Contributing authors E.M. Albrecht, E.E. Davis, and A.J. Walter are with the Department of Entomology, University of Minnesota, St. Paul, MN. Table of Contents Introduction......................................................................................................2 ARTHROPODS: BEETLES..................................................................................4 Chlorophorus strobilicola ...............................................................................5 Dendroctonus micans ...................................................................................11 Hylobius abietis .............................................................................................22 Hylurgops palliatus........................................................................................36 Hylurgus ligniperda .......................................................................................46
    [Show full text]
  • Dendrolimus Sibiricus
    Federaal Agentschap voor de Veiligheid van de Voedselketen DG Controlebeleid Directie Plantenbescherming en Veiligheid van de Plantaardige Productie Dendrolimus sibiricus I. IDENTITEIT Synoniemen: Dendrolimus laricis, EU-categorie: EU-quarantaineorganisme Dendrolimus superans sibiricus (Bijlage II, deel A van Verordening (EU) Gangbare namen: Siberische zijdemot 2019/2072); Prioritair quarantaineorganisme (NL), Papillon de soie de Sibérie (FR), (Verordening (EU) 2019/1702) Siberian Silk Moth SSM (EN) EPPO-code: DENDSI Taxonomische classificatie: Niet te verwarren met: Dendrolimus pini Insecta: Lepidoptera: Lasiocampidae (dennenspinner) verspreid in Europa II. BESCHRIJVING VAN HET ORGANISME EN GEOGRAFISCHE VERSPREIDING Dendrolimus sibiricus is een quarantaineorganisme in de Europese Unie (EU) dat werd geïdentificeerd als een absolute prioriteit omwille van de economische, ecologische en sociale schade die dit organisme kan veroorzaken als het wordt binnengebracht op het grondgebied van de EU. Deze mot houdt in het bijzonder een risico in voor alle soorten naaldbomen. Het is een insect dat ontbladert en voorkomt in Siberië en Noord-Azië (Kazachstan, Mongolië, Rusland, Noordoost- China, Noord-Korea). In 2001 zijn haarden gevonden in het Europese deel van Rusland, ten westen van de Oeral. Aanwezigheid van D. sibiricus is momenteel niet bekend op het grondgebied van de EU. De levenscyclus van D. sibiricus duurt tussen 1 en 3 jaar, afhankelijk van het klimaat, en verloopt via 6 tot 8 larvale stadia over heel het jaar. Gezien de complexe biologie van deze soort en de manier waarop ze reageert op klimaatomstandigheden, kan geen enkele EU-regio met zekerheid worden uitgesloten wat potentiële introductie en verspreiding van D. sibiricus betreft. Het potentiële verspreidingsgebied binnen de EU wordt aanzien als het gebied waar haar waardplanten worden geteeld.
    [Show full text]
  • Pest Risk Analysis Lignes Directrices Pour L'analyse Du Risque Phytosanitaire
    07-13662 FORMAT FOR A PRA RECORD (version 3 of the Decision support scheme for PRA for quarantine pests) European and Mediterranean Plant Protection Organisation Organisation Européenne et Méditerranéenne pour la Protection des Plantes Guidelines on Pest Risk Analysis Lignes directrices pour l'analyse du risque phytosanitaire Decision-support scheme for quarantine pests Version N°3 PEST RISK ANALYSIS FOR DENDROLIMUS PINI Pest risk analyst(s): Forest Research, Tree Health Division Dr Roger Moore and Dr Hugh Evans Date: 24 June 2009 (revised on 3 September and 21 October 2009) This PRA is for the UK as the PRA area. It has been developed in response to concerns arising from capture(s) of adult male moths of the pine-tree lappet moth (Dendrolimus pini) and known serious infestations of this insect in Europe. It has been carried out at the request of the Outbreak Management Team of the Forestry Commission. This PRA has been revised on 3/9/09 following pheromone and light trap surveys and again on 21/10/09 following captures of caterpillars and confirmation of a breeding population. Stage 1: Initiation 1 What is the reason for performing the This PRA was initially produced due to a suspected colonisation of Dendrolimus pini in PRA? the Scottish Highlands around Inverness. The colonisation has now been confirmed by the capture of caterpillars and pupae at a number of separate breeding sites. D. pini could cause serious defoliation of pine (Pinus) species in the area and this PRA is to determine whether the pest requires statutory action. 2
    [Show full text]
  • Data Sheet on Dendrolimus Sibiricus and Dendrolimus Superans
    EuropeanBlackwell Publishing, Ltd. and Mediterranean Plant Protection Organization Organisation Européenne et Méditerranéenne pour la Protection des Plantes Data sheets on quarantine pests Fiches informatives sur les organismes de quarantaine Dendrolimus sibiricus and Dendrolimus superans Identity Hosts Taxonomic position: Insecta: Lepidoptera: Lasiocampidae D. sibiricus and D. superans can damage more than 20 species Notes on taxonomy and nomenclature: Dendrolimus of Abies, Pinus, Larix, Picea and Tsuga. They can develop on sibiricus and Dendrolimus superans are two closely related practically all coniferous species in their natural area. The allopatric taxa, the former widespread in continental Russia preferred hosts of D. sibiricus are: Abies sibirica, Abies and the latter present in Sakhalin, the Kurile Islands and nephrolepis, Pinus sibirica, Pinus koraiensis, Larix gmelinii, northern Japan. According to the main international Larix sibirica, Picea ajanensis, Picea obovata. Those of opinion, these are two separate species. However, many D. superans are: Pinus pumila, Larix kamtschatica, Picea Russian scientists consider that there is a single species D. ajanensis and Abies sachalinensis (Rozhkov, 1963; Epova, superans with two subspecies: Dendrolimus superans sibiricus Pleshanov, 1995). There are no specific reports concerning Tschetverikov and Dendrolimus superans albolineatus Butler European species of conifers. (Rozhkov, 1963; Epova & Pleshanov, 1995). The two species are very similar and are treated together in this data Geographical
    [Show full text]
  • Morphological and Molecular Taxonomy of Dendrolimus Sibiricus Chetverikov Stat.Rev
    © Entomologica Fennica. 13 June 2008 Morphological and molecular taxonomy of Dendrolimus sibiricus Chetverikov stat.rev. and allied lappet moths (Lepidoptera: Lasiocampidae), with description of a new species Kauri Mikkola & Gunilla Ståhls Mikkola, K. & Ståhls, G. 2008: Morphological and molecular taxonomy of Den- drolimus sibiricus Chetverikov stat.rev. and allied lappet moths (Lepidoptera: Lasiocampidae), with description of a new species. — Entomol. Fennica 19: 65– 85. The populations of the well-known forest pest, Dendrolimus sibiricus Chet- verikov, 1908 stat.rev., were sampled in the European foothills of the Ural Moun- tains, Russia. D. sibiricus is a species distinct from the Japanese taxon D. supe- rans (Butler, 1877). Another taxon from the Southern Urals, taxonomically close to D. pini (Linnaeus), is described here as D. kilmez sp.n. The synthetic female pheromones prepared for D. pini and D. sibiricus attracted equally well all three taxa present, and thus cannot be used to identify these species. The Ural popula- tions of D. sibiricus show differences in external appearance, and as already in the 1840s Eversmann indicated that the species had caused local forest damage, D. sibiricus must be a long-established species in the Ural area. Thus, natural spreading westward of the pest is not to be expected. The five Dendrolimus spe- cies of the northern Palaearctic and the male genitalia are illustrated, and the dis- tinguishing characters are listed. Two Matsumura lectotypes are designated. K. Mikkola, Finnish Museum of Natural History, P.O. Box 17, FI-00014 Univer- sity of Helsinki, Finland; E-mail: [email protected] G. Ståhls, Finnish Museum of Natural History, P.O.Box 17, FI-00014 University of Helsinki, Finland; E-mail: [email protected] Received 8 January 2008, accepted 26 April 2008 1.
    [Show full text]
  • A Review of the Literature Relevant to the Monitoring of Regulated Plant Health Pests in Europe
    13_EWG_ISPM6_2015_Sep Agenda item 4.2 Appendix C to Supporting Publications 2014-EN-676 Appendix C to the final report on: Plant health surveys for the EU territory: an analysis of data quality and methodologies and the resulting uncertainties for pest risk assessment (PERSEUS) CFP/EFSA/PLH/2010/01 available online at http://www.efsa.europa.eu/en/supporting/doc/676e.pdf A Review of the Literature Relevant to the Monitoring of Regulated Plant Health Pests in Europe Work Package 1. November 2013 Howard Bell1, Maureen Wakefield1, Roy Macarthur1, Jonathan Stein1, Debbie Collins1, Andy Hart1, Alain Roques2, Sylvie Augustin2, Annie Yart2, Christelle Péré2, Gritta Schrader3, Claudia Wendt3, Andrea Battisti4, Massimo Faccoli4, Lorenzo Marini4, Edoardo Petrucco Toffolo4 1 The Food and Environment Research Agency, Sand Hutton, York, UK 2 Institut National de la Recherche Agronomique, Avenue de la Pomme de Pin, Orléans, France 3 Julius Kühn-Institut, 27 Erwin-Baur-Str, Quedlinburg, Germany 4 Universita Degli Studi di Padova (UPAD), Via 8 Febbraio 1848 No. 2, 35100, Padova, Italy DISCLAIMER The present document has been produced and adopted by the bodies identified above as author(s). In accordance with Article 36 of Regulation (EC) No 178/2002, this task has been carried out exclusively by the author(s) in the context of a grant agreement between the European Food Safety Authority and the author(s). The present document is published complying with the transparency principle to which the Authority is subject. It cannot be considered as an output adopted by the Authority. The European Food Safety Authority reserves its rights, view and position as regards the issues addressed and the conclusions reached in the present document, without prejudice to the rights of the authors.
    [Show full text]
  • 6-Insects & Disease
    2014 Tongass National Forest Monitoring and Evaluation Report 6. Insects and Disease Goals: Part 219 of the National Forest System Land and Resource Management Planning regulations (36 CFR section 219.12) requires monitoring of forest health to determine whether destructive insect and disease organisms increase following various vegetation management treatments. Forest health conditions are monitored, and areas that have experienced an increase in damage are documented. Objectives: Identify areas where destructive insect and disease organisms increase or there are changes in forest health following management. Evaluate the results and modify vegetation management practices if insects and disease agents increase to populations at which they cause significant damage. Background: A key premise of ecosystem management is that native species have evolved with natural disturbance events. Management activities can cause changes to stand structure and composition that impact insect and pathogen population dynamics, and can also affect host tree conditions. Climate change or acute weather events can alter natural disturbances; stimulate changes in insect and pathogen populations, damage levels, or distributions; and influence the vigor or susceptibility of trees and understory plants. Yellow-cedar decline (described below) represents a situation in which the vulnerability of a tree species is revealed by a modest change in climate, particularly warmer winters and reduced snowpack. Along with wind, avalanche, and other disturbance agents, insects and pathogens are important factors in the health of the Tongass National Forest. The native spruce beetle is the most destructive forest insect in Alaska, killing mature spruce on hundreds of thousands of acres. In Southeast Alaska, notable outbreaks have occurred on Kosciusko Island and in Glacier Bay National Park.
    [Show full text]