Crystal Growth and Structural Aspects of Alkali Iridates and Ruthenates of Lithium and Sodium

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Growth and Structural Aspects of Alkali Iridates and Ruthenates of Lithium and Sodium Crystal growth and structural aspects of alkali iridates and ruthenates of lithium and sodium INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Linda Kerkhoff, geb. Hollenbeck aus Düsseldorf Köln 2021 Berichterstatter/in: Prof. Dr. Petra Becker-Bohatý Prof. Dr. Thomas Lorenz Tag der mündlichen Prüfung: 23.04.2021 Abstract The aim of the present investigation of alkali iridates and ruthenates of lithium and sodium is to achieve insights into their growth mechanisms, structural properties, and thermal behaviour. In recent times, these compounds as part of the Alkali Platinum-Group Metal Oxides (APGMO) family attracted considerable attention due to their unconventional magnetic properties. Here, four systems of different chemical composition were investigated: the Li-Ir-O system (a- and b-Li2IrO3), the Li-Ru-O system (Li2RuO3; Li3RuO4), the Li-Ir-Ru-O system (Li2Ir1 – xRuxO3), and the Na-Ru-O system (Na3 – xRu4O9; Na27Ru14O48). Single crystals were grown by the Chemical Vapour Transport Reaction (CVTR) method and the solid-state reaction method. The former method was performed using an Al2O3 setup with separated educts and distinct crystallisation sites. Growth conditions were determined based on thermodynamic considerations of assumed chemical reactions. Thorough investigations demonstrate that the growth from the gaseous phase is not only possible for systems with similar partial pressures of gaseous com- ponents (Li2IrO3) but also for systems with different partial pressures (Li2RuO3 and Li2Ir1 – xRuxO3). In the Li-Ir-Ru-O system yielding Li2Ir1 – xRuxO3, the crystal symmetry of the end members a-Li2IrO3 and Li2RuO3 reveal a solid-solution series only at growth temperature. At room temperature, the phases are heterostructural (C2=m and P21=m, respectively), which complicates the growth process. For Na3 – xRu4O9 and Na27Ru14O48, the solid-state reaction is the more suitable growth method due to the isolation of educts (Na2CO3 and RuO2) and the prevented escape of volatiles during growth. The investigation of chemical instability of all grown compounds demonstrates a hygroscopic behaviour for sodium ruthenates and an instability against ethanol for lithium iridates and ruthenates. For both growth methods, comparable examinations of growth results, Energy-Dispersive X-ray Spectroscopy, and X-ray diffraction show that the amount, size, and morphology of crystals depend on many param- eters such as the growth temperature and duration, educt type and ratio, arrangement of setup parts, and partial pressures of gaseous phases. To correctly assign the influence of these parameters on the structure of grown crystals, structural investigations based on X-ray diffraction were performed. The common structural feature are the edge-sharing AO6 and MO6 octahedra (A = Li; Na and M = Ir; Ru). The majority of compounds is found in the Li2MO3 type characterised by honeycomb structures. Structural and thermal investigations reveal that the a-Li2IrO3 modification (C2=m) is ii Abstract formed at lower temperatures than b- Li2IrO3 (Fddd) and both modifications are connected via a phase transition. For Li2RuO3, the room-temperature phase is confirmed, which crystallises in P21=m symmetry and which is characterised by its Ru-Ru dimers in the two-dimensional honeycomb network. A phase transition to the high-temperature C2=m phase is not observed by thermal analysis. In accordance, powder X-ray diffraction measurements on Li2Ir1 – xRuxO3 in a temperature range between 12 K and 310 K demonstrate that at a high relative Ir amount the C2=m modification, which consists of non-dimerised honeycombs, is stable and does not undergo a phase transition. At a high relative Ru amount, the P21=m modification is determined, implying the presence of the dimerised honeycomb structure and a phase transition between growth temperature and 310 K. This indicates a favoured dimerisation of Ru than of Ir, which is explained by a slightly smaller ionic radius of Ru4+ 4+ compared to Ir . Overall, structural investigations of Li2Ir1 – xRuxO3 compounds point towards a limit between the stability areas of the non-dimerised C2=m and the dimerised P21=m phase at room temperature close to a relative Ir amount of 0.4 - 0.5. Structural investigations of Na27Ru14O48 reveal the occurrence of stacking faults and their influ- ence on the unit-cell choice and Na stoichiometry. However, a dependence of the incidence of stacking faults on growth conditions is not found. In the tunnel-like structure of Na3 – xRu4O9, a dependence of Na stoichiometry on the growth method is shown. Here, the Na stoichiometric amount is higher for a sample grown from the gaseous phase than for one grown by the solid-state reaction method. Further, the anisotropic refinement of atomic displacement parameters resulted in elongated displacement ellipsoids of Na in the direction of the tunnels, which indicates a mobility of Na atoms and, hence, suggested conducting behaviour in Na3 – xRu4O9. Kurzzusammenfassung Das Ziel der vorliegenden Untersuchung von Alkaliiridaten und -ruthenaten des Lithiums und Natri- ums ist es, Einblicke in deren Wachstumsmechanismen, strukturelle Eigenschaften und thermische Verhalten zu erlangen. Die untersuchten Verbindungen haben aufgrund ihrer unkonventionellen magnetischen Eigenschaften große Aufmerksamkeit auf sich gezogen. In dieser Arbeit wurden vier Systeme untersucht: Li-Ir-O (a- und b-Li2IrO3), Li-Ru-O (Li2RuO3; Li3RuO4), Li-Ir-Ru-O (Li2Ir1 – xRuxO3) und Na-Ru-O (Na3 – xRu4O9; Na27Ru14O48). Einkristalle wurden mittels Chemischer Transportreaktion und Festkörperreaktion gezüchtet. Für die Durchführung der ersten Methode wurde ein Al2O3-Aufbau verwendet, welcher sich durch getrennte Edukte und Kristallisationsstellen auszeichnet. Die Züchtungsbedingungen wurden auf Grundlage thermodynamischer Überlegungen der anzunehmenden chemischen Reaktionen bestimmt. Detaillierte Untersuchungen zeigen, dass die Züchtung aus der Gasphase nicht nur für Systeme mit ähnlichen Partialdrücken der gasförmigen Komponenten bei der Züchtungstemperatur möglich ist (Li2IrO3), sondern auch bei unterschiedlichen Partialdrücken (Li2RuO3 und Li2Ir1 – xRuxO3). Für das Li-Ir-Ru-O-System ergibt sich eine erweiterte Komplexität durch unterschiedliche Kristallsymmetrien von Li2Ir1 – xRuxO3 bei Züchtungs- und Raumtemperatur. Während die Endglieder a-Li2IrO3 und Li2RuO3 nur bei Züchtungstemperatur eine Mischkristallreihe mit C2=m Symmetrie bilden, sind diese Phasen bei Raumtemperatur heterostrukturell (C2=m und P21=m). Im Na-Ru-O-System zeigt sich für Na3 – xRu4O9 und Na27Ru14O48, dass, aufgrund der Isolierung der Edukte (Na2CO3 und RuO2) und der geminderten Verflüchtigung von gasförmigen Komponenten während der Züchtung, die Festkörperreaktion die bevorzugte Züchtungsmethode ist. Desweiteren wurde für Natriumruthenate ein hygroskopisches Verhalten festgestellt. Dahingegen zeigen Lithiumiridate und -ruthenate eine Instabilität gegenüber Ethanol. Für beide Züchtungsmethoden ergaben vergleichende Untersuchungen der Züchtungsergebnisse, der energie-dispersiven Röntgenspektroskopie und der Röntgenbeugung, dass die Menge, Größe und Morphologie der Kristalle von einer Vielzahl von Parametern wie der Züchtungstemperatur und -dauer, Eduktart und -verhältnis, der Anordnung des Aufbaus und den Partialdrücken der Gasphasen abhängig ist. Um den Einfluss dieser Parameter auf die Struktur der gewachsenen Kristalle einzuordnen, wurden Strukturuntersuchungen auf Basis der Röntgenbeugung durchgeführt. iv Kurzzusammenfassung Das gemeinsame Strukturmerkmal der untersuchten Verbindungen sind die kantenverknüpften AO6 und MO6-Oktaeder (A = Li; Na und M = Ir; Ru). Die Mehrzahl der Verbindungen tritt im Li2MO3-Typ mit Honigwaben-Strukturen auf. Strukturelle und thermische Untersuchungen zeigen, dass sich die a-Li2IrO3-Modifikation (C2=m) bei niedrigeren Temperaturen bildet als b- Li2IrO3 (Fddd) und beide Modifikationen über einen Phasenübergang verbunden sind. Li2RuO3 wurde in der Raumtemperatur- Phase verfeinert, welche in P21=m-Symmetrie kristallisiert und durch Ru-Ru-Dimere im zweidimen- sionalen Honigwabennetzwerk gekennzeichnet ist. Ein Phasenübergang zur Hochtemperatur-Phase mit C2=m Symmetrie ist in der Thermoanalyse nicht zu beobachten. In Übereinstimmung damit zeigen Pulver-Röntgenbeugungsmessungen an Li2Ir1 – xRuxO3-Verbindungen zwischen 12 K und 310 K, dass bei hohen relativen Ir-Anteilen die C2=m-Phase mit einer nicht-dimerisierten Honigwabenstruktur stabil ist und keinen Phasenübergang erfährt. Bei hohen relativen Ru-Anteilen kann die Struktur in P21=m-Symmetrie verfeinert werden, die eine dimerisierte Honigwabenstruktur beschreibt und einen Phasenübergang zwischen Züchtungstemperatur und 310 K impliziert. Dies deutet auf eine bevorzugte Dimerisierung von Ru gegenüber Ir hin und wird durch einen kleineren Ionenradius von Ru4+ im Ver- 4+ gleich zu Ir erklärt. Insgesamt zeigen die Strukturuntersuchungen der Li2Ir1 – xRuxO3-Verbindungen, dass bei Raumtemperatur die Grenze zwischen den Stabilitätsbereichen der nicht-dimerisierten C2=m- und der dimerisierten P21=m-Phase nahe einer relativen Ir-Menge von 0,4 - 0,5 liegt. Strukturelle Untersuchungen an Na27Ru14O48 zeigen das Auftreten von Stapelfehlern und deren Einfluss auf die Stöchiometrie von Na und die Wahl der Einheitszelle. Eine Abhängigkeit der Häu- figkeit von Stapelfehlern von den Züchtungsbedingungen ist nicht vorzufinden. In der tunnelartigen Struktur von Na3 – xRu4O9 hingegen wird eine Abhängigkeit
Recommended publications
  • Revealing Electronic Signature of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs
    Revealing Electronic Signature of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-ion Battery Material Designs Yang Yua,*, Pinar Karayaylalib, Stanisław H. Nowakc, Livia Giordanob,d, Magali Gauthierd, †, Wesley Honga, Ronghui Koue, Qinghao LiF, John Vinsong, Thomas Krollc, Dimosthenis Sokarasc, *, Cheng-Jun Sune, Nenian Charlesd, Filippo Magliah, Roland Jungh, Yang Shao- Horna,b,d,* a Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA b Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA c SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA d Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA e Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA f Advanced Light Source, Lawrence Berkeley National Laboratory, CA 94720, USA gNational Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA h BMW Group, Petuelring 130, 80788 Munich, Germany †Current address: M.G.: LEEL, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France. Corresponding Authors * Yang Yu ([email protected]) * Dimosthenis Sokaras ([email protected]) * Yang Shao-Horn ([email protected]) 1 ABstract Anion redox in lithium transition metal oxides such as Li2RuO3 and Li2MnO3, has catalyzed intensive research efforts to find transition metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of observed anion redox remains debated, and more direct experimental evidence is needed. In this work, we have shown electronic signatures 2- n- of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O /(O2) ), in charged 4+ 5+ Li2-xRuO3 after Ru oxidation (Ru /Ru ) upon first-electron removal with lithium de-intercalation.
    [Show full text]
  • Bayerisches Geoinstitut Jahresbericht 2010
    A N N U A L R E P O R T 2010 and list of publications Bayerisches Forschungsinstitut für Experimentelle Geochemie und Geophysik Universität Bayreuth Bayerisches Geoinstitut Universität Bayreuth D-95440 Bayreuth Germany Telephone: +49-(0)921-55-3700 Telefax: +49-(0)921-55-3769 e-mail: [email protected] www: http://www.bgi.uni-bayreuth.de Editorial compilation by: Stefan Keyssner and Petra Buchert Section editors: Andreas Audétat, Tiziana Boffa Ballaran, Leonid Dubrovinsky, Dan Frost, Florian Heidelbach, Tomoo Katsura, Hans Keppler, Falko Langenhorst, Catherine McCammon, Nobuyoshi Miyajima, Dave Rubie, Henri Samuel, Gerd Steinle-Neumann, Nicolas Walte Staff and guests of the Bayerisches Geoinstitut in July 2010: Die Mitarbeiter und Gäste des Bayerischen Geoinstituts im Juli 2010: First row, from left (1. Reihe, v. links) Stefan Keyssner, Davide Novella, Hongzhan Fei, Richard McCormack, Qingguo Wei, Vojtech Vlcek, Mezhoura Oussadou, Ruifang Huang, Li Zhang, Federica Schiavi Second row, from left (2. Reihe, v. links) Florian Heidelbach, Sushant Shekhar, Coralie Weigel, Gleb Parakhonskiy, Lu Feng, Martha Pamato, Azzurra Zucchini, Mattia Giannini, Antje-Kathrin Vogel, Catherine McCammon, Vincenzo Stagno Third row, from left (3. Reihe, v. links) Henri Samuel, Alexander Kurnosov, Kilian Pollok, Sven Linhardt, Ryosuke Sinmyo, Yuan Li, Geeth Manthilake, Nobuyoshi Miyajima, Yoichi Nakajima, Heinz Fischer, Holger Kriegl Fourth row, from left (4. Reihe, v. links) Petra Buchert, Juliane Hopf, Nico de Koker, Mainak Mookherjee, Huaiwei Ni, Alberto Escudero, Diego Bernini, Xiaozhi Yang, Tomoo Katsura, Julien Chantel, Linda Lerchbaumer, Anna Spivak Fifth row, from left (5. Reihe, v. links) Dmytro Trots, Hans Keppler, Gerd Steinle-Neumann, Razvan Caracas, Patrick Cordier, Vladislav Aleksandrov, David Dolejš, Eran Greenberg, Hubert Schulze, Dan Frost Sixth row, from left (6.
    [Show full text]
  • Dfpub 63/198228
    USPTO coversheet: Collaborative deferred-fee provisional patent application pilot program for COVID-19 invention, 85 Fed. Reg. 58038 (September 17, 2020) Identification number DFPUB_63198228 Date of filing 10/05/2020 Date available to public 10/28/2020 First inventor Ganio Title of invention Methods of treating infection and symptoms caused by SARS-CoV-2 using lithium Assignee (if any) -- Contact information Shawna Lemon 982 Trinity Road Raleigh, NC 27607 (919) 277-9100 [email protected] Attorney Docket No. 190709-00006(PR) Methods of Treating Infection and Symptoms Caused by SARS-CoV-2 Using Lithium Abstract The present inventive concept provides methods of using lithium to treat infection and symptoms caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) and other pathogenic microbial organisms through direct application of lithium to areas of the respiratory tract. Lithium-based formulations and kits including the same for the treatment of respiratory infections and symptoms thereof are also provided. 12 Attorney Docket No. 190709-00006(PR) Methods of Treating Infection and Symptoms Caused by SARS-CoV-2 Using Lithium Field [0001] The present inventive concept provides methods of using lithium to treat infection and symptoms caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and other pathogenic microbial organisms affecting the respiratory tract. Background [0002] As disclosed in PCT/US2020/038736, the contents of which are incorporated herein by reference, formulations including lithium can be used for the prevention and treatment of inflammatory conditions, gout, joint disease and pain, and symptoms thereof. [0003] Mulligan et al., 1993 demonstrated that a murine antibody to human IL-8 had protective effects in inflammatory lung injury in rats.
    [Show full text]
  • Download Programme Book
    ICMAT 2017 9th International Conference on Materials for Advanced Technologies 18 – 23 June 2017 Suntec Singapore Technical Programme www.mrs.org.sg Organized by In association with Supported by ACKNOWLEDGEMENTS The organizer would like to acknowledge the following organizations for their generous support: Grand Premier Sponsor Premier Sponsor Major Sponsor Supported by CONTENTS Preface 2 Committees 4 Day-by-Day Programme Overview 8 Programme Highlights - Plenary Lectures 14 - Theme Lectures 19 - Nobel Laureate Public Lectures 22 - Editors Forum 24 General Information 26 Symposium Technical Programme A. III-V Semiconductor Integration with Silicon and Other Substrates 30 B. Novel Semiconductor Materials – Physics and Devices 36 C. Functionalized π-Electron Materials and Devices 44 D. Advanced Batteries for Sustainable Technologies 56 E. Nanomaterials for Advanced Energy and Environmental Applications 66 F. Advanced Inorganic Materials and Thin Film Technology for Solar Energy Harvesting 80 G. Solar PV (Photovoltaics) Materials, Manufacturing and Reliability 90 H. 2D Materials and Devices Beyond Graphene 96 I. Extreme Mechanics – Mechanical Behaviors of Nanoscale and Emerging Materials 106 J. Transparent Electrode Materials and Devices 112 K. Computational Modeling and Simulation of Advanced Material Systems 120 L. Novel Solution Processes for Advanced Functional Materials 128 M. Additive Manufacturing for Fabrication of Advanced Materials/Devices 140 N. Advanced Ceramics and Nanohybrids for Energy, Environment and Health 146 O. Smart Materials and Material-Critical Sensors & Transducers 158 P. Progress and Challenges in Molecular Electronics 168 Q. Multifunctional Nano Materials and Composites for EMI Shielding/Absorption and Related Devices Applications 176 R. Wearable and Stretchable Electronics 184 S. Spintronics and Magnetic Materials 190 T.
    [Show full text]
  • INL Intellectual Property Available for Rapid Licensing
    INL Intellectual Property Available for Rapid Licensing Docket #: Application # Application Date Patent #: Grant Date B-113D1 12/165,301 06/30/08 7,670,568 03/02/10 System For Reactivating Catalysts A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed. B-118 10/059,669 01/29/02 6,896,854 05/24/05 Nonthermal Plasma Systems And Methods For Natural Gas And Heavy Hydrocarbon Co-conversion A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion.
    [Show full text]
  • Book of Abstract PUBLIC TALK
    Book of Abstract PUBLIC TALK ....................................................................................................... 2 Public Talk | Examining Old Paintings With New X-Ray Methods: A Fresh Look At And Below The Surface......... 2 Public Talk | More than a century of Crystallography: What has it taught us and where will it lead? ....... 3 PLENARY ........................................................................................................... 4 PL1 | The Cytomotive Switch In Actins And Tubulins.............................................................................................. 4 PL2 | Quantum Crystallographic Studies Of Advanced Materials ........................................................................... 5 KEYNOTE ........................................................................................................... 6 KN01 | Ground State Selection In Quantum Pyrochlore Magnets ........................................................................... 6 KN02 | New Experimental Techniques For Exploring Crystallization Pathways And Structural Properties Of Solids ...................................................................................................................................................................... 7 KN03 | Solar System Secrets Hidden In Quasicrystals ........................................................................................... 8 KN04 | Metal-Organic Frameworks As Chemical Reactors: X-Ray Crystallographic Snapshots Of The Confined State ......................................................................................................................................................................
    [Show full text]
  • (Dgk) Programme 25–28 March 2019
    © LianeM - fotolia.com 27th ANNUAL MEETING of the GERMAN CRYSTALLOGRAPHIC SOCIETY (DGK) PROGRAMME 25–28 MARCH 2019 LEIPZIG www.dgk-conference.de Available in Rigaku Oxford Diff raction, marXperts and STOE instruments PILATUS3 R CdTe HPC detectors for your laboratory Synchrotron technology for cutting-edge laboratory experiments – Zero detector noise for best data – Ultimate resolution and sensitivity thanks to direct detection – Proven reliability [email protected] | www.dectris.com TABLE OF CONTENTS Organisation and imprint ....................................................................................................... 4 Available in Rigaku Oxford Diff raction, Welcome note ........................................................................................................................ 5 marXperts and STOE instruments Programme overview ............................................................................................................. 6 Scientific programme Monday, 25 March .................................................................................................... 8 Tuesday, 26 March .................................................................................................... 12 Wednesday, 27 March .............................................................................................. 20 Thursday, 28 March ................................................................................................... 28 Poster presentations .............................................................................................................
    [Show full text]
  • Chernr'k- a Division of Mcbn 1135 Atlantlc Avenue Alarneda
    .. ChernR'k- A Division of Mcbn 1135 Atlantlc Avenue Alarneda. CA 94501 MEMORANDUM 415.52 1.5200 FAX 415.521.1547 DATE: 2, 1991 TO: Rocky Flats Health Advisory Committee FROM: Steve Ripple M SUBJEms TASK 1 REPORT Node has asked that I distribute copies of the revised Task 1 report. The changes- reflect your comments from the January HAP meeting. We received no further comments from the public. The primary changes to the report are: The insertion of a summary at the beginning of the report, e The removal of some of the information listings from the text and placement of them in tables (Section 4), Brief discussion of the general nature of information considered classified (Section 2), e Notation that inventory quantities for beryllium are incomplete (Table 4-1),-. and e Some minor corrections to the chemicals listings for consistency and accuracy (Appendices A, B, and C). 0402ALRl PROJECI' BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the ~ Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats.
    [Show full text]