Bayerisches Geoinstitut Jahresbericht 2010

Total Page:16

File Type:pdf, Size:1020Kb

Bayerisches Geoinstitut Jahresbericht 2010 A N N U A L R E P O R T 2010 and list of publications Bayerisches Forschungsinstitut für Experimentelle Geochemie und Geophysik Universität Bayreuth Bayerisches Geoinstitut Universität Bayreuth D-95440 Bayreuth Germany Telephone: +49-(0)921-55-3700 Telefax: +49-(0)921-55-3769 e-mail: [email protected] www: http://www.bgi.uni-bayreuth.de Editorial compilation by: Stefan Keyssner and Petra Buchert Section editors: Andreas Audétat, Tiziana Boffa Ballaran, Leonid Dubrovinsky, Dan Frost, Florian Heidelbach, Tomoo Katsura, Hans Keppler, Falko Langenhorst, Catherine McCammon, Nobuyoshi Miyajima, Dave Rubie, Henri Samuel, Gerd Steinle-Neumann, Nicolas Walte Staff and guests of the Bayerisches Geoinstitut in July 2010: Die Mitarbeiter und Gäste des Bayerischen Geoinstituts im Juli 2010: First row, from left (1. Reihe, v. links) Stefan Keyssner, Davide Novella, Hongzhan Fei, Richard McCormack, Qingguo Wei, Vojtech Vlcek, Mezhoura Oussadou, Ruifang Huang, Li Zhang, Federica Schiavi Second row, from left (2. Reihe, v. links) Florian Heidelbach, Sushant Shekhar, Coralie Weigel, Gleb Parakhonskiy, Lu Feng, Martha Pamato, Azzurra Zucchini, Mattia Giannini, Antje-Kathrin Vogel, Catherine McCammon, Vincenzo Stagno Third row, from left (3. Reihe, v. links) Henri Samuel, Alexander Kurnosov, Kilian Pollok, Sven Linhardt, Ryosuke Sinmyo, Yuan Li, Geeth Manthilake, Nobuyoshi Miyajima, Yoichi Nakajima, Heinz Fischer, Holger Kriegl Fourth row, from left (4. Reihe, v. links) Petra Buchert, Juliane Hopf, Nico de Koker, Mainak Mookherjee, Huaiwei Ni, Alberto Escudero, Diego Bernini, Xiaozhi Yang, Tomoo Katsura, Julien Chantel, Linda Lerchbaumer, Anna Spivak Fifth row, from left (5. Reihe, v. links) Dmytro Trots, Hans Keppler, Gerd Steinle-Neumann, Razvan Caracas, Patrick Cordier, Vladislav Aleksandrov, David Dolejš, Eran Greenberg, Hubert Schulze, Dan Frost Sixth row, from left (6. Reihe, v. links) Dennis Harries, Svyatoslav Shcheka, Ulrich Böhm, Oliver Rausch, Detlef Krauße, Volker Pechtold, Falko Langenhorst, Andreas Audétat, Stefan Übelhack, Leonid Dubrovinsky, Dave Rubie Absent (Es fehlten) Enikő Bali, Tiziana Boffa Ballaran, Uwe Dittmann, Ahmed El Goresy, Geertje Ganskow, Konstantin Glazyrin, Gertrud Gollner, Scott King, Lydia Kison-Herzing, Kurt Klasinski, Suzanne McEnroe, Sergey Ovsyannikov, Clemens Prescher, Wei Sun, Willem van Mierlo, Nico Walte Contents Foreword/Vorwort .............................................................................................................. 9/I 1. Advisory Board and Directorship ............................................................................... 11 1.1 Advisory Board .................................................................................................. 11 1.2 Leadership .......................................................................................................... 11 2. Staff, Funding and Facilities ...................................................................................... 13 2.1 Staff .................................................................................................................... 13 2.2 Funding ............................................................................................................... 13 2.3 Laboratory and office facilities .......................................................................... 18 2.4 Experimental and analytical equipment ............................................................. 18 3. Forschungsprojekte - Zusammenfassung in deutscher Sprache.................................. III 3. Research Projects ....................................................................................................... 21 3.1 Earth and Planetary Structure ........................................................................... 21 a. Combined effects of plate motion and small-scale convection on mantle stirring efficiency (H. Samuel and S.D. King/Blacksburg) .............................. 23 b. The effect of continental lids on mantle convective stirring efficiency (H. Samuel, V. Aleksandrov and B. Deo/Kharagpur) ...................................... 24 c. Convective stirring efficiency at finite Prandtl number (H. Samuel) ............... 26 d. Adiabatic temperature profiles in the mantle (T. Katsura, in collaboration with A. Yoneda, D. Yamazaki, T. Yoshino and E. Ito/Misasa) ....................... 27 e. Subducting slab with pressure- and temperature-dependent thermal properties (P. Maierová and G. Steinle-Neumann) .......................................... 30 f. The elasticity of lawsonite and the occurrence of low velocity layers (LVL) in subduction zones (J. Chantel, M. Mookherjee and D.J. Frost) .................... 31 g. Composition and stability of hydrous partial melts at 410 km (M. Mookherjee and D.J. Frost) ....................................................................... 33 h. Thermal conductivity of MgO periclase at deep mantle pressures: Implications for core-mantle boundary heat flux (N. de Koker) ...................... 35 i. Thermodynamics of iron melting to 100 GPa (G. Steinle-Neumann and D. Dolejš/Prague) ............................................................................................. 36 j. Stability of iron carbides at inner core conditions (M. Mookherjee and G. Steinle-Neumann) ........................................................................................ 38 k. Fragmentation of metal diapirs in terrestrial magma oceans (H. Samuel, D.C. Rubie and H.J. Melosh/West Lafayette) .............................. 40 3.2 Geochemistry .................................................................................................... 43 a. Oxygen isotopes in the ultra-refractory CAI Efremovka 101,1 and in the early solar nebula (J. Aléon/Orsay, K.D. McKeegan/Los Angeles, A. El Goresy and E. Charon/Paris) ................................................................... 44 1 b. Sulphide assemblages in primitive EH-3 chondrites ALHA77295, Sahara97072 and Sahara97158 (A. El Goresy, in collaboration with A. Gannoun/Clermont-Ferrand, M. Boyet/Clermont-Ferrand and S. Mostefaoui/Paris) ......................................................................................... 46 c. REE abundances in primitive EH chondrites (A. Gannoun and M. Boyet/ Clermont-Ferrand, A. El Goresy and B. Devouard/Clermont-Ferrand) ........... 49 d. Native Hg, cinnabarite, chalcocite, covellite and copper in the primitive H-3 chondrite Tieschitz: Novel constraints on condensation and accretion processes in the early Solar System (C. Caillet Komorowski/Paris, A. El Goresy, M. Miyahara/Sendai, O. Boudouma/Paris, M. Humayun/ Tallahassee, C. Ma/Pasadena and F. Robert/Paris) .......................................... 51 e. Sulphide mineralogies in CM and CM-like chondrites and their record of early solar system processes (D. Harries and F. Langenhorst) ......................... 52 f. Heterogeneous accretion and core-mantle differentiation of the terrestrial planets (D.C. Rubie, D.J. Frost, Y. Nakajima, A.-K. Vogel, in collaboration with F. Nimmo/Santa Cruz, D.P. O’Brien/Tucson, U. Mann/Zürich and H. Palme/Frankfurt) .......................................................................................... 54 g. The partitioning of volatile elements between metal and silicate at high pressures and temperatures (A.K. Vogel, D.C. Rubie, D.J. Frost and A. Audetat, in collaboration with H. Palme/Frankfurt) .................................... 55 h. Silicon and oxygen partitioning between metal, lower-mantle minerals, and silicate-melt during formation of the Earth’s core (Y. Nakajima, D.J. Frost and D.C. Rubie) ............................................................................... 57 i. Silicate perovskite and the terrestrial noble gas signature (S. Shcheka and H. Keppler) ....................................................................................................... 60 j. The stability of magnesite in the lower mantle and the transition zone as a function of oxygen fugacity (V. Stagno, Y. Tange/Ehime, N. Miyajima, C.A. McCammon, T. Irifune/Ehime and D.J. Frost) ........................................ 62 k. The oxygen fugacity for carbonate reduction in eclogite assemblages (V. Stagno, C.A. McCammon and D.J. Frost) ................................................. 64 l. Fe-Mg partitioning between carbonate melts and olivine (D.J. Frost and V. Stagno) ......................................................................................................... 67 m. Iron oxidation state of garnet from upper mantle xenoliths in the Gibeon kimberlite province (Namibia) (M. Longo, P. Nimis, F. Nestola and L. Ziberna/Padua; L. Franz/Basel and C.A. McCammon) .................................... 68 n. The oxidation state of mantle wedge garnet peridotites metasomatised by C-bearing subduction fluids (N. Malaspina and S. Poli/Milano; F. Langenhorst) ................................................................................................ 70 o. Partitioning of halogens between mantle minerals and aqueous fluids (D. Bernini, D. Dolejš/Prague, M. Wiedenbeck/Potsdam and H. Keppler) ..... 72 p. Composition of the bulk oceanic crust and its implications for mineralogical and physical properties of subducting lithosphere (Z. Chemia/Trondheim, D. Dolejš/Prague and G. Steinle-Neumann) ..................................................... 74 2 q. Molybdenite saturation in silicic magmas and its use to estimate magmatic fO2 and fS2 (A. Audétat, D. Dolejš/Prague, J.B. Lowenstern/Menlo
Recommended publications
  • Revealing Electronic Signature of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-Ion Battery Material Designs
    Revealing Electronic Signature of Lattice Oxygen Redox in Lithium Ruthenates and Implications for High-Energy Li-ion Battery Material Designs Yang Yua,*, Pinar Karayaylalib, Stanisław H. Nowakc, Livia Giordanob,d, Magali Gauthierd, †, Wesley Honga, Ronghui Koue, Qinghao LiF, John Vinsong, Thomas Krollc, Dimosthenis Sokarasc, *, Cheng-Jun Sune, Nenian Charlesd, Filippo Magliah, Roland Jungh, Yang Shao- Horna,b,d,* a Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA b Department of Mechanical Engineering, MIT, Cambridge, MA 02139, USA c SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA d Research Laboratory of Electronics, MIT, Cambridge, MA 02139, USA e Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA f Advanced Light Source, Lawrence Berkeley National Laboratory, CA 94720, USA gNational Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA h BMW Group, Petuelring 130, 80788 Munich, Germany †Current address: M.G.: LEEL, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif-sur-Yvette, France. Corresponding Authors * Yang Yu ([email protected]) * Dimosthenis Sokaras ([email protected]) * Yang Shao-Horn ([email protected]) 1 ABstract Anion redox in lithium transition metal oxides such as Li2RuO3 and Li2MnO3, has catalyzed intensive research efforts to find transition metal oxides with anion redox that may boost the energy density of lithium-ion batteries. The physical origin of observed anion redox remains debated, and more direct experimental evidence is needed. In this work, we have shown electronic signatures 2- n- of oxygen-oxygen coupling, direct evidence central to lattice oxygen redox (O /(O2) ), in charged 4+ 5+ Li2-xRuO3 after Ru oxidation (Ru /Ru ) upon first-electron removal with lithium de-intercalation.
    [Show full text]
  • Crystal Growth and Structural Aspects of Alkali Iridates and Ruthenates of Lithium and Sodium
    Crystal growth and structural aspects of alkali iridates and ruthenates of lithium and sodium INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Linda Kerkhoff, geb. Hollenbeck aus Düsseldorf Köln 2021 Berichterstatter/in: Prof. Dr. Petra Becker-Bohatý Prof. Dr. Thomas Lorenz Tag der mündlichen Prüfung: 23.04.2021 Abstract The aim of the present investigation of alkali iridates and ruthenates of lithium and sodium is to achieve insights into their growth mechanisms, structural properties, and thermal behaviour. In recent times, these compounds as part of the Alkali Platinum-Group Metal Oxides (APGMO) family attracted considerable attention due to their unconventional magnetic properties. Here, four systems of different chemical composition were investigated: the Li-Ir-O system (a- and b-Li2IrO3), the Li-Ru-O system (Li2RuO3; Li3RuO4), the Li-Ir-Ru-O system (Li2Ir1 – xRuxO3), and the Na-Ru-O system (Na3 – xRu4O9; Na27Ru14O48). Single crystals were grown by the Chemical Vapour Transport Reaction (CVTR) method and the solid-state reaction method. The former method was performed using an Al2O3 setup with separated educts and distinct crystallisation sites. Growth conditions were determined based on thermodynamic considerations of assumed chemical reactions. Thorough investigations demonstrate that the growth from the gaseous phase is not only possible for systems with similar partial pressures of gaseous com- ponents (Li2IrO3) but also for systems with different partial pressures (Li2RuO3 and Li2Ir1 – xRuxO3). In the Li-Ir-Ru-O system yielding Li2Ir1 – xRuxO3, the crystal symmetry of the end members a-Li2IrO3 and Li2RuO3 reveal a solid-solution series only at growth temperature.
    [Show full text]
  • Dfpub 63/198228
    USPTO coversheet: Collaborative deferred-fee provisional patent application pilot program for COVID-19 invention, 85 Fed. Reg. 58038 (September 17, 2020) Identification number DFPUB_63198228 Date of filing 10/05/2020 Date available to public 10/28/2020 First inventor Ganio Title of invention Methods of treating infection and symptoms caused by SARS-CoV-2 using lithium Assignee (if any) -- Contact information Shawna Lemon 982 Trinity Road Raleigh, NC 27607 (919) 277-9100 [email protected] Attorney Docket No. 190709-00006(PR) Methods of Treating Infection and Symptoms Caused by SARS-CoV-2 Using Lithium Abstract The present inventive concept provides methods of using lithium to treat infection and symptoms caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS- CoV-2) and other pathogenic microbial organisms through direct application of lithium to areas of the respiratory tract. Lithium-based formulations and kits including the same for the treatment of respiratory infections and symptoms thereof are also provided. 12 Attorney Docket No. 190709-00006(PR) Methods of Treating Infection and Symptoms Caused by SARS-CoV-2 Using Lithium Field [0001] The present inventive concept provides methods of using lithium to treat infection and symptoms caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and other pathogenic microbial organisms affecting the respiratory tract. Background [0002] As disclosed in PCT/US2020/038736, the contents of which are incorporated herein by reference, formulations including lithium can be used for the prevention and treatment of inflammatory conditions, gout, joint disease and pain, and symptoms thereof. [0003] Mulligan et al., 1993 demonstrated that a murine antibody to human IL-8 had protective effects in inflammatory lung injury in rats.
    [Show full text]
  • Download Programme Book
    ICMAT 2017 9th International Conference on Materials for Advanced Technologies 18 – 23 June 2017 Suntec Singapore Technical Programme www.mrs.org.sg Organized by In association with Supported by ACKNOWLEDGEMENTS The organizer would like to acknowledge the following organizations for their generous support: Grand Premier Sponsor Premier Sponsor Major Sponsor Supported by CONTENTS Preface 2 Committees 4 Day-by-Day Programme Overview 8 Programme Highlights - Plenary Lectures 14 - Theme Lectures 19 - Nobel Laureate Public Lectures 22 - Editors Forum 24 General Information 26 Symposium Technical Programme A. III-V Semiconductor Integration with Silicon and Other Substrates 30 B. Novel Semiconductor Materials – Physics and Devices 36 C. Functionalized π-Electron Materials and Devices 44 D. Advanced Batteries for Sustainable Technologies 56 E. Nanomaterials for Advanced Energy and Environmental Applications 66 F. Advanced Inorganic Materials and Thin Film Technology for Solar Energy Harvesting 80 G. Solar PV (Photovoltaics) Materials, Manufacturing and Reliability 90 H. 2D Materials and Devices Beyond Graphene 96 I. Extreme Mechanics – Mechanical Behaviors of Nanoscale and Emerging Materials 106 J. Transparent Electrode Materials and Devices 112 K. Computational Modeling and Simulation of Advanced Material Systems 120 L. Novel Solution Processes for Advanced Functional Materials 128 M. Additive Manufacturing for Fabrication of Advanced Materials/Devices 140 N. Advanced Ceramics and Nanohybrids for Energy, Environment and Health 146 O. Smart Materials and Material-Critical Sensors & Transducers 158 P. Progress and Challenges in Molecular Electronics 168 Q. Multifunctional Nano Materials and Composites for EMI Shielding/Absorption and Related Devices Applications 176 R. Wearable and Stretchable Electronics 184 S. Spintronics and Magnetic Materials 190 T.
    [Show full text]
  • INL Intellectual Property Available for Rapid Licensing
    INL Intellectual Property Available for Rapid Licensing Docket #: Application # Application Date Patent #: Grant Date B-113D1 12/165,301 06/30/08 7,670,568 03/02/10 System For Reactivating Catalysts A method of reactivating a catalyst, such as a solid catalyst or a liquid catalyst is provided. The method comprises providing a catalyst that is at least partially deactivated by fouling agents. The catalyst is contacted with a fluid reactivating agent that is at or above a critical point of the fluid reactivating agent and is of sufficient density to dissolve impurities. The fluid reactivating agent reacts with at least one fouling agent, releasing the at least one fouling agent from the catalyst. The at least one fouling agent becomes dissolved in the fluid reactivating agent and is subsequently separated or removed from the fluid reactivating agent so that the fluid reactivating agent may be reused. A system for reactivating a catalyst is also disclosed. B-118 10/059,669 01/29/02 6,896,854 05/24/05 Nonthermal Plasma Systems And Methods For Natural Gas And Heavy Hydrocarbon Co-conversion A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion.
    [Show full text]
  • Book of Abstract PUBLIC TALK
    Book of Abstract PUBLIC TALK ....................................................................................................... 2 Public Talk | Examining Old Paintings With New X-Ray Methods: A Fresh Look At And Below The Surface......... 2 Public Talk | More than a century of Crystallography: What has it taught us and where will it lead? ....... 3 PLENARY ........................................................................................................... 4 PL1 | The Cytomotive Switch In Actins And Tubulins.............................................................................................. 4 PL2 | Quantum Crystallographic Studies Of Advanced Materials ........................................................................... 5 KEYNOTE ........................................................................................................... 6 KN01 | Ground State Selection In Quantum Pyrochlore Magnets ........................................................................... 6 KN02 | New Experimental Techniques For Exploring Crystallization Pathways And Structural Properties Of Solids ...................................................................................................................................................................... 7 KN03 | Solar System Secrets Hidden In Quasicrystals ........................................................................................... 8 KN04 | Metal-Organic Frameworks As Chemical Reactors: X-Ray Crystallographic Snapshots Of The Confined State ......................................................................................................................................................................
    [Show full text]
  • (Dgk) Programme 25–28 March 2019
    © LianeM - fotolia.com 27th ANNUAL MEETING of the GERMAN CRYSTALLOGRAPHIC SOCIETY (DGK) PROGRAMME 25–28 MARCH 2019 LEIPZIG www.dgk-conference.de Available in Rigaku Oxford Diff raction, marXperts and STOE instruments PILATUS3 R CdTe HPC detectors for your laboratory Synchrotron technology for cutting-edge laboratory experiments – Zero detector noise for best data – Ultimate resolution and sensitivity thanks to direct detection – Proven reliability [email protected] | www.dectris.com TABLE OF CONTENTS Organisation and imprint ....................................................................................................... 4 Available in Rigaku Oxford Diff raction, Welcome note ........................................................................................................................ 5 marXperts and STOE instruments Programme overview ............................................................................................................. 6 Scientific programme Monday, 25 March .................................................................................................... 8 Tuesday, 26 March .................................................................................................... 12 Wednesday, 27 March .............................................................................................. 20 Thursday, 28 March ................................................................................................... 28 Poster presentations .............................................................................................................
    [Show full text]
  • Chernr'k- a Division of Mcbn 1135 Atlantlc Avenue Alarneda
    .. ChernR'k- A Division of Mcbn 1135 Atlantlc Avenue Alarneda. CA 94501 MEMORANDUM 415.52 1.5200 FAX 415.521.1547 DATE: 2, 1991 TO: Rocky Flats Health Advisory Committee FROM: Steve Ripple M SUBJEms TASK 1 REPORT Node has asked that I distribute copies of the revised Task 1 report. The changes- reflect your comments from the January HAP meeting. We received no further comments from the public. The primary changes to the report are: The insertion of a summary at the beginning of the report, e The removal of some of the information listings from the text and placement of them in tables (Section 4), Brief discussion of the general nature of information considered classified (Section 2), e Notation that inventory quantities for beryllium are incomplete (Table 4-1),-. and e Some minor corrections to the chemicals listings for consistency and accuracy (Appendices A, B, and C). 0402ALRl PROJECI' BACKGROUND ChemRisk is conducting a Rocky Flats Toxicologic Review and Dose Reconstruction study for The Colorado Department of Health. The two year study will be completed by the fall of 1992. The ChemRisk study is composed of twelve tasks that represent the first phase of an independent investigation of off-site health risks associated with the operation of the ~ Rocky Flats nuclear weapons plant northwest of Denver. The first eight tasks address the collection of historic information on operations and releases and a detailed dose reconstruction analysis. Tasks 9 through 12 address the compilation of information and communication of the results of the study. Task 1will involve the creation of an inventory of chemicals and radionuclides that have been present at Rocky Flats.
    [Show full text]