The European Programme for Global Navigation Services
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GLONASS System As a Tool for Space Weather Monitoring
GLONASS System as a tool for space weather monitoring V.V. Alpatov, S.N. Karutin, А.Yu. Repin Institute of Applied Geophysics, Roshydromet TSNIIMASH, Roscosmos BAKU-2018 PLAN OF PRESENTATION General information about GLONASS Goals Organization and Management Technical information about GLONASS Space Weather Effects On Space Systems On Ground based Systems Possible Opportunities of GLONASS for Monitoring Space Weather Effects Russian Monitoring System for Monitoring Space Weather Effects with Use Opportunities of GLONASS 2 GENERAL INFORMATION ABOUT GLONASS NATIONAL SATELLITE NAVIGATION POLICY AND ORGANIZATION Presidential Decree of May 17, 2007 No. 638 On Use of GLONASS (Global Navigation Satellite System) for the Benefit of Social and Economic Development of the Russian Federation Federal Program on GLONASS Sustainment, Development and Use for 2012-2020 – planning and budgeting instrument for GLONASS development and use Budget planning for the forthcoming decade – up to 2030 GLONASS Program governance: Roscosmos State Space Corporation Government Contracting Authority – Program Coordinator Government Contracting Authorities Program Scientific and Coordination Board GLONASS Program Goals: Improving GLONASS performance – its accuracy and integrity Ensuring positioning, navigation and timing solutions in restricted visibility of satellites, interference and jamming conditions Enhancing current application efficiency and broadening application domains 3 CHARACTERISTICS IMPROVEMENT PLAN Accuracy Improvement by means of: . Ground Segment -
Tianwen-1: China's Mars Mission
Tianwen-1: China's Mars Mission drishtiias.com/printpdf/tianwen-1-china-s-mars-mission Why In News China will launch its first Mars Mission - Tianwen-1- in July, 2020. China's previous ‘Yinghuo-1’ Mars mission, which was supported by a Russian spacecraft, had failed after it did not leave the earth's orbit and disintegrated over the Pacific Ocean in 2012. The National Aeronautics and Space Administration (NASA) is also going to launch its own Mars mission in July, the Perseverance which aims to collect Martian samples. Key Points The Tianwen-1 Mission: It will lift off on a Long March 5 rocket, from the Wenchang launch centre. It will carry 13 payloads (seven orbiters and six rovers) that will explore the planet. It is an all-in-one orbiter, lander and rover system. Orbiter: It is a spacecraft designed to orbit a celestial body (astronomical body) without landing on its surface. Lander: It is a strong, lightweight spacecraft structure, consisting of a base and three sides "petals" in the shape of a tetrahedron (pyramid- shaped). It is a protective "shell" that houses the rover and protects it, along with the airbags, from the forces of impact. Rover: It is a planetary surface exploration device designed to move across the solid surface on a planet or other planetary mass celestial bodies. 1/3 Objectives: The mission will be the first to place a ground-penetrating radar on the Martian surface, which will be able to study local geology, as well as rock, ice, and dirt distribution. It will search the martian surface for water, investigate soil characteristics, and study the atmosphere. -
INPE) MCTI Çp ' Acordo Operação Técnica COPERNICUS Entre ESA,AEB E INPE (0026237) SEI 01350.001611/2018-03 / Pg
ORIGINAL N° 1 Copernicus Space Component Technical Operating Arrangement ESA - Brazilian Space Agency and INPE (INPE) MCTI çp ' Acordo Operação Técnica COPERNICUS entre ESA,AEB E INPE (0026237) SEI 01350.001611/2018-03 / pg. 1 Table of Contents 1 INTRODUCTION....................................................................................... 4 1.1 Background....................................................................................................................... 4 1.2 Purpose and objectives ..................................................................................................... 4 1.3 Scope................................................................................................................................. 6 1.4 References......................................................................................................................... 6 2 EUROPEAN ACCESS TO BRAZILIAN EO MISSIONS AND CALIBRATION DATA AND PARTNER IN-SITU DATA ............................................................. 7 3 ARRANGEMENT OF TECHNICAL INTERFACES ....................................... 8 3.1 Technical Arrangement Types.......................................................................................... 8 4 INTERNATIONALARCHIVING AND DISSEMINATION CENTRES, MIRRORSITE ................................................................................................ 9 4.1 Invohred Entities............................................................................................................... 9 4.2 INPE Activity -
AVL Systems for Bus Transit
T R A N S I T C O O P E R A T I V E R E S E A R C H P R O G R A M SPONSORED BY The Federal Transit Administration TCRP Synthesis 24 AVL Systems for Bus Transit A Synthesis of Transit Practice Transportation Research Board National Research Council TCRP OVERSIGHT AND PROJECT TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 1997 SELECTION COMMITTEE CHAIRMAN OFFICERS MICHAEL S. TOWNES Peninsula Transportation District Chair: DAVID N. WORMLEY, Dean of Engineering, Pennsylvania State University Commission Vice Chair: SHARON D. BANKS, General Manager, AC Transit Executive Director: ROBERT E. SKINNER, JR., Transportation Research Board, National Research Council MEMBERS SHARON D. BANKS MEMBERS AC Transit LEE BARNES BRIAN J. L. BERRY, Lloyd Viel Berkner Regental Professor, Bruton Center for Development Studies, Barwood, Inc University of Texas at Dallas GERALD L. BLAIR LILLIAN C. BORRONE, Director, Port Department, The Port Authority of New York and New Jersey (Past Indiana County Transit Authority Chair, 1995) SHIRLEY A. DELIBERO DAVID BURWELL, President, Rails-to-Trails Conservancy New Jersey Transit Corporation E. DEAN CARLSON, Secretary, Kansas Department of Transportation ROD J. DIRIDON JAMES N. DENN, Commissioner, Minnesota Department of Transportation International Institute for Surface JOHN W. FISHER, Director, ATLSS Engineering Research Center, Lehigh University Transportation Policy Study DENNIS J. FITZGERALD, Executive Director, Capital District Transportation Authority SANDRA DRAGGOO DAVID R. GOODE, Chairman, President, and CEO, Norfolk Southern Corporation CATA DELON HAMPTON, Chairman & CEO, Delon Hampton & Associates LOUIS J. GAMBACCINI LESTER A. HOEL, Hamilton Professor, University of Virginia. Department of Civil Engineering SEPTA JAMES L. -
Exploration of Mars by the European Space Agency 1
Exploration of Mars by the European Space Agency Alejandro Cardesín ESA Science Operations Mars Express, ExoMars 2016 IAC Winter School, November 20161 Credit: MEX/HRSC History of Missions to Mars Mars Exploration nowadays… 2000‐2010 2011 2013/14 2016 2018 2020 future … Mars Express MAVEN (ESA) TGO Future ESA (ESA- Studies… RUSSIA) Odyssey MRO Mars Phobos- Sample Grunt Return? (RUSSIA) MOM Schiaparelli ExoMars 2020 Phoenix (ESA-RUSSIA) Opportunity MSL Curiosity Mars Insight 2020 Spirit The data/information contained herein has been reviewed and approved for release by JPL Export Administration on the basis that this document contains no export‐controlled information. Mars Express 2003-2016 … First European Mission to orbit another Planet! First mission of the “Rosetta family” Up and running since 2003 Credit: MEX/HRSC First European Mission to orbit another Planet First European attempt to land on another Planet Original mission concept Credit: MEX/HRSC December 2003: Mars Express Lander Release and Orbit Insertion Collission trajectory Bye bye Beagle 2! Last picture Lander after release, release taken by VMC camera Insertion 19/12/2003 8:33 trajectory Credit: MEX/HRSC Beagle 2 was found in January 2015 ! Only 6km away from landing site OK Open petals indicate soft landing OK Antenna remained covered Lessons learned: comms at all time! Credit: MEX/HRSC Mars Express: so many missions at once Mars Mission Phobos Mission Relay Mission Credit: MEX/HRSC Mars Express science investigations Martian Moons: Phobos & Deimos: Ionosphere, surface, -
European Astronaut Selection ESA Prepares for the Missions of the 21 St Century
European Astronaut Selection ESA prepares for the missions of the 21 st century With the selection of its first astronauts ESA’s human spaceflight activities in 1978 and the first Spacelab mission are now entering a new era, with ESA in 1983, the European Space Agency astronauts working aboard the (ESA) took its first steps into human International Space Station (ISS), spaceflight. The advent of the Columbus Columbus starting operations, and orbital laboratory project required a the new ‘ATV’ cargo ship delivering second selection of astronauts in 1992. fresh supplies to the Station. The exploration of the Solar System will be one of humanity’s most exciting adventures in the near future. All of the world’s spacefaring nations are preparing for this huge enterprise, and an astronaut corps is essential for Europe, thanks to ESA, to take part in this endeavour. Now is the time for ESA to seek new talents to reinforce its astronaut team, to prepare for missions to the ISS, the Moon and beyond. T The Selection | How? When? Where? h e S e l e c t i o n How can I apply? You can apply online via the ESA web portal (www.esa.int/ astronautselection). Registration is in two steps: • pre-registration: provide identity information and a JAR-FCL 3, Class 2 medi- cal examination certificate, from an Aviation Medical Examiner who has been certified by his/her national Aviation Medical Authority; • a password then allows you to access the application form. T The Selection | How? When? Where? h e S e l e • initial selection according to basic criteria; c t i What are the o • psychological tests for selected candidates; n • second round of psychological tests and interviews; steps in the • medical tests; selection • job interview. -
The Navy Navigation Satellite System (Transit)
ROBERT J. DANCHIK THE NAVY NAVIGATION SATELLITE SYSTEM (TRANSIT) This article provides an update on the status of the Navy Navigation Satellite System (TRANSIT). Some insights are provided on the evolution of the system into its current configuration, as well as a discussion of future plans. BACKGROUND sign goal was never achieved for long in those early In 1958, research scientists at APL solved the orbit days because the satellites had short operational life of the first Russian satellite, Sputnik-I, by analysis of times. The failures largely resulted from inadequate the observed Doppler shift of its transmitted signal. component quality and the large number of wiring in This led immediately to the concept of satellite navi terconnections. However, after OSCAR 2 10 and OS gation and the development of the U.S. Navy Navi CAR 12 were launched in 1966 and 1967, respectively, gation Satellite System (TRANSIT) by APL, under the enough data on the failure mechanisms became avail sponsorship of the Navy's Special Projects Office, to able to APL to achieve the desired advances in reli provide position fixes for the Fleet Ballistic Missile ability. The integrated circuit introduced in OSCAR Weapon System submarines. (The articles in Ref. 1, 10 significantly extended the satellite lifetime by im a previous issue of the fohns Hopkins APL Techni proving component reliability and reducing the num cal Digest devoted to TRANSIT, give the principles ber of interconnections. Subsequently, the last major of operation and early history of the system.) Now, design change made to the solar cell interconnections, 26 years after its conception, the system is mature. -
First Galileo Satellites Galileo In-Orbit Validation Element
BR-251cover 7/8/06 13:28 Page 1 BR-251 Galileo Joint Undertaking Rue du Luxembourg 3 B-1000 Brussels, Belgium Tel: +32 2 507 80 00 The First Fax: +32 2 507 80 01 Email: [email protected] http://www.galileoju.com European Space Agency Directorate of European Union and Industrial Programmes Galileo Satellites 8-10 rue Mario Nikis F-75738 Paris Cedex 15, France Tel: +33 1 53 69 77 26 Fax: +33 1 53 69 72 86 Email: [email protected] http://www.esa.int/navigation/ European Commission Galileo In-Orbit Validation Element Directorate General for Energy and Transport Unit E.4 Satellite Navigation System (Galileo), Intelligent Transport, DM28 1/64 B-1049 Brussels, Belgium GIOVE Tel: +32 2 29 56040 Fax: +32 2 296 5372 Email: [email protected] http://europa.eu.int/comm/dgs/energy_transport/galileo/ BR-251cover 7/8/06 13:28 Page 2 BR-251 (2nd imprint, August 2006) Published by: ESA Publications Division ESTEC, PO Box 299 2200 AG Noordwijk The Netherlands Editor: Andrew Wilson Design/Layout: Eva Ekstrand Text coordination: Dominique Detain Copyright: ©2006 European Space Agency ISSN: 0250-1589 ISBN: 92-9092-497-7 Photo/image credits: Royal Astronomical Society Library (p.18), C. Beetles/Bridgeman-Giraudon (p.18), Galileo Price: 10 Euros Industries (pp. 7, 11); ESA: P.Carril (front cover, pp. 4, 5, 6, 7), S. Corvaja (front cover, pp. 6, 12), D. Detain (p. 13), J. Huart (pp. 3, 8, 9), A. Le Floch (pp. 4, 10, 16), E. Pedoussaut (p. 13), P.Sebirot (front cover),Trimaran (p. -
ABAS), Satellite-Based Augmentation System (SBAS), Or Ground-Based Augmentation System (GBAS
Current Status and Future Navigation Requirements for Mexico City New Airport New Mexico City Airport in figures: • 120 million passengers per year; • 1.2 million tons of shipping cargo per year; • 4,430 Ha. (6 times bigger tan the current airport); • 6 runways operating simultaneously; • 1st airport outside Europe with a neutral carbon footprint; • Largest airport in Latin America; • 11.3 billion USD investment (aprox.); • Operational in 2020 (expected). “State-of-the-art navigation systems are as important –or more- than having world class civil engineering and a stunning arquitecture” Air Navigation Systems: A. In-land deployed systems - Are the most common, based on ground stations emitting radiofrequency signals received by on-board equipments to calculate flight position. B. Satellite navigation systems – First stablished by U.S. in 1959 called TRANSIT (by the time Russia developed TSIKADA); in 1967 was open to civil navigation; 1973 GPS was developed by U.S., then GLONASS, then GALILEO. C. Inertial navigation systems – Autonomous navigation systems based on inertial forces, providing constant information on the position of the flight and parameters of speed and direction (e.g. when flying above the ocean and there are no ground segments to provide support). Requirements for performance of Navigation Systems: According to the International Civil Aviation Organization (ICAO) there are four main requirements: • The accuracy means the level of concordance between the estimated position of an aircraft and its real position. • The availability is the portion of time during which the system complies with the performance requirements under certain conditions. • The integrity is the function of a system that warns the users in an opportune way when the system should not be used. -
Supporting the Sustainable Development Goals
UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Cover photo: ©ESA/ATG medialab. Adapted by the European GNSS Agency, contains modified Copernicus Sentinel data (2017), processed by ESA, CC BY-SA 3.0 IGO OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA European Global Navigation Satellite System and Copernicus: Supporting the Sustainable Development Goals BUILDING BLOCKS TOWARDS THE 2030 AGENDA UNITED NATIONS Vienna, 2018 ST/SPACE/71 © United Nations, January 2018. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concern- ing the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Information on uniform resource locators and links to Internet sites contained in the present pub- lication are provided for the convenience of the reader and are correct at the time of issue. The United Nations takes no responsibility for the continued accuracy of that information or for the content of any external website. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Foreword by the Director of the Office for Outer Space Affairs The 2030 Agenda for Sustainable Development came into effect on 1 January 2016. The Agenda is anchored around 17 Sustainable Development Goals (SDGs), which set the targets to be fulfilled by all governments by 2030. -
The Mars 500 Mission
MINISTÈRE DES AFFAIRES ÉTRANGÈRES ET EUROPEENNES No. 23 – July 2011 The Mars 500 mission No sooner did they set foot on the virtual red planet, live from Moscow, than the members of the Mars 500 experiment, including Frenchman Romain Charles, joined their simulated spaceship. They will finally re- emerge in early November, after a stationary voyage of 520 days! Romain Charles, a 31-year-old engineer and quality manager at a firm in Saint- Malo, a coastal town in western France, is the only Frenchman selected by the European Space Agency (ESA) to join the international crew of six (three Russians, one Chinese and one colleague who is half Italian and half Colombian) taking part in the Mars 500 mission Mars 500 miss ion participants © European Space Agency organised by the Russian Institute for Biomedical Problems (IBMP), working in conjunction with the ESA. The aim is to simulate a 520-day mission to the red planet, principally to study the consequences of confinement on the psychology and behaviour of the crew members but also any medical repercussions on the human body. The Mars 500 mission began on 3 June 2010. An initial 105-day preparatory mission ran from April to July 2009. It takes around 250 days to travel from Earth to Mars when its orbit brings it closest to our planet, i.e. a distance of about 56 million kilometres (145 times the distance between Earth and the moon). The mission is due to end on 5 November 2011. Supplies of fresh vegetables The simulators have been designed to be as realistic as possible. -
The Latest Progress, Future Planning and International Cooperation of China’S Human Space Program
The Latest Progress, Future Planning and International Cooperation of China’s Human Space Program Mr. LIN Xiqiang Deputy Director System Technology Division China Manned Space Agency June 2017 The 60th Session of COPUOS, Vienna China Manned Space Agency (CMSA) Page 1 Contents • Recent Progress of Space Laboratory Missions • Future Planning of Chinese Space Station • International Cooperation • Cooperation with UNOOSA • Conclusion China Manned Space Agency (CMSA) Page 2 Part I. Recent Progress of Space Laboratory Missions In September 2010, Chinese government approved China Space Station project. Space Lab Space Station Two phases for implementation China Manned Space Agency (CMSA) Page 3 Objectives of Phase “Space Lab” Verify key technologies in cargo transportation accommodation of mid-term stay of astronauts on-orbit propellant re-supply ground-based mission long-term support Carry out space experiments and applications Accumulate experience for constructing Space Station. TG-1 Space Lab TG-2 Space Lab China Manned Space Agency (CMSA) Page 4 Conducted Missions for Phase “Space Lab” Maiden flight of LM-7 rocket in June 2016 Launch of Tiangong-2 Space Lab in September 2016 Launch of Shenzhou-11 manned spacecraft in October 2016 Launch of Tianzhou-1 cargo spacecraft in April 2017 China Manned Space Agency (CMSA) Page 5 1. The Maiden Flight of Long March-7 Rocket • On 25 June 2016, China conducted the maiden launch of the Long March 7 (CZ-7) rocket; • The launch also involved the inauguration of the newly built Launch Site. China Manned Space Agency (CMSA) Page 6 Medium-lift launch vehicle. Two stages and four boosters. Engines running kerosene and liquid oxygen.