An Evaluation of the Great Deluge Algorithm in Course Timetabling

Total Page:16

File Type:pdf, Size:1020Kb

An Evaluation of the Great Deluge Algorithm in Course Timetabling DEGREE PROJECT IN TECHNOLOGY, FIRST CYCLE, 15 CREDITS STOCKHOLM, SWEDEN 2019 An Evaluation of the Great Deluge Algorithm in Course Timetabling As Applied to the KTH-Inspired University Course Timetabling Problem SIMON SIRAK KRISTOFFER CHAMMAS KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE En utvärdering av The Great Deluge på KTH-inspirerade University Course Timetabling Problem SIMON SIRAK KRISTOFFER CHAMMAS Degree Project in Computer Science, DD142X Date: June 5, 2019 Supervisor: Alexander Kozlov Examiner: Örjan Ekeberg KTH Royal Institute of Technology School of Electrical Engineering and Computer Science iii Abstract The University Course Timetabling Problem (UCTP) can be loosely described as assigning events (e.g lectures) to rooms and timeslots in a way that results in a feasible timetable that is optimal according to some custom criteria. The problem has become increasingly relevant as more programs become available in universities. Due to the complexity of UCTP, the problem is usually solved approximately using heuristics. The KTH-inspired UCTP is a variant of the UCTP that is adapted to KTH Royal Institute of Technology. However, few heuristics have been implemented for this variant of UCTP. Therefore, this study introduces an implementation of The Great Deluge heuristic to the KTH-inspired UCTP, and compares it to a state-of-the-art solver for KTH-inspired UCTP. The Great Deluge implementation was compared against the state-of-the- art KTH-inspired UCTP solver for different time limits. For each time limit, the output timetable quality was recorded over several executions. The com- parison was done on two problem instances of varying complexity. The results suggest a behavior that varies over time. For larger time limits, GD produced better timetables than the state-of-the-art and the overall quality of timetables was consistent over several executions. For smaller time limits, GD produced worse timetables than the state-of-the-art and the overall quality of timetables was inconsistent over several executions. A few potential causes for the improved performance during the later stages of execution were found through further analysis of the results. Perhaps the biggest potential cause was utilizing the greedy behavior obtained during the mid to late stages of execution. iv Sammanfattning ”The University Course Timetabling Problem” (UCTP) handlar i grova drag om att, baserat på ett antal kriterier, schemalägga föreläsningar, övningar och laborationer på ett optimalt sätt. Problemets relevans har ökat allt eftersom universitet utökar sina programutbud. På grund av komplexiteten hos UCTP löses problemet vanligtvis approximativt med hjälp av heuristiker. ”KTH-inspired UCTP” är en KTH-anpassad variant av UCTP för vilken endast ett fåtal heuristiker har implementerats. Denna variant har exempelvis inte lösts av en vanlig heuristik inom UCTP, ”The Great Deluge” (GD). Denna studie fokuserar därför på att applicera GD på ”KTH-inspired UCTP” och jäm- föra denna med äldre implementationer, med fokus på den bästa tillgängliga implementationen. GD-implementationen jämförs med den bästa tillgängliga implementatio- nen för ”KTH-inspired UCTP” för olika tidsgränser. Kvaliteten hos de resulte- rande schemana evalueras och sparas sedan över flera körningar. Jämförelsen gjordes på två probleminstanser av olika komplexitet. Resultatet av jämförelsen föreslår att GD producerade bättre scheman för högre tidsgränser men sämre scheman för lägre tidsgränser. Vidare analys fö- reslår att denna förbättring beror på utnyttjandet av det giriga beteendet som vår GD-implementation uppvisar vid senare delar av exekvering. v Acknowledgements We would like to thank our supervisor for his guidance and support throughout this study. Abbreviations GD The Great Deluge. SA Simulated Annealing. UCTP University Course Timetabling Problem. vi Contents 1 Introduction 1 1.1 Problem Statement . .2 1.2 Scope . .2 2 Background 3 2.1 Local Search Heuristics . .3 2.2 The Great Deluge . .3 2.3 KTH-inspired UCTP . .4 2.4 Neighborhoods Used in UCTP . .5 2.5 Previous Efforts in UCTP . .6 2.5.1 General Efforts . .6 2.5.2 Efforts in KTH-inspired UCTP . .7 3 Methodology 9 3.1 The Algorithm . .9 3.2 The Fitness Function . 10 3.3 The Neighborhoods . 10 3.3.1 Choice of Neighborhoods . 10 3.3.2 Choice of Combination . 11 3.4 The Problem Instances . 11 3.5 The Comparison . 12 4 Results 14 5 Discussion 17 5.1 Results . 17 5.1.1 Fitness . 17 5.1.2 Consistency . 18 5.1.3 Reliability of Results . 19 5.2 Proposal for Further Research . 20 vii viii CONTENTS 5.3 Relation to Research Questions . 21 6 Conclusions 22 Bibliography 23 A KTH-inspired UCTP instances 25 A.1 Medium Problem Instance . 25 A.2 Large Problem Instance . 27 Chapter 1 Introduction The University Course Timetabling Problem (UCTP) can be loosely described as assigning events (e.g lectures) to rooms and timeslots in a way that results in a feasible timetable that is optimal. A feasible solution is defined by the hard constraints of the specific problem, and the quality of a solution is derived from the soft constraints. A hard constraint could be to disallow a student to have more than one lecture simultaneously, and a soft constraint could be preference-based, such as not having several lectures in succession. UCTP is becoming an increasingly important topic as more programs be- come available in universities. This variety has led to an increased complexity in scheduling lectures and other activities for the students of a specific program [1]. In order to accommodate for this complexity, it is appropriate to automate the scheduling process using algorithms. UCTP is an NP-hard combinatorial optimization problem [2], meaning the task of finding an optimal solution is computationally intractable for large in- put sizes. Therefore, tremendous effort has been put into constructing heuristic algorithms with the intent to construct a feasible timetable that is not neces- sarily optimal, in a reasonable amount of time. One heuristic that is commonly used for solving variants of UCTP is the Great Deluge algorithm [3, 4, 5, 6]. It is a heuristic that is considered easy to configure, only having one parameter. This makes it a strong candidate for use by individuals with no domain-knowledge. However, there is a lack of experimentation with The Great Deluge algo- rithm in research related to UCTP for Royal Institute of Technology. Yamazaki and Pertoft [7] constructed the KTH-inspired UCTP with a number of problem instances and applied a Genetic Algorithm heuristic to them, only taking hard constraints into consideration. Norgren and Jonasson [8] constructed a hybrid 1 2 CHAPTER 1. INTRODUCTION algorithm by combining Yamazaki’s Genetic Algorithm with their own imple- mentation of Simulated Annealing, taking some soft constraints into consid- eration as well. We will build upon the current research by introducing the Great Deluge algorithm into the KTH-inspired UCTP. 1.1 Problem Statement The aim of this study is to investigate the performance of the Great Deluge algorithm in KTH-inspired UCTP. In particular, we would like to answer the following research question: • For the KTH-inspired UCTP, how does our implementation of the Great Deluge algorithm compare to other heuristic implementations with re- spect to: – the number of soft constraint violations; – the consistency between resulting timetables over several execu- tions? 1.2 Scope We will mainly compare against the results of Norgren and Jonasson [8], due to their implementation being available online. They are also (as of the publi- cation of this study) one of very few that include both soft and hard constraints in their KTH-inspired UCTP solver. Furthermore, the implementation of Nor- gren and Jonasson [8] can be considered the state-of-the-art for KTH-inspired UCTP (see section 2.5.2 for further motivation), which makes it a good refer- ence solver for this problem. Chapter 2 Background The chapter is divided into five sections. The first section describes the pre- requisites in Local Search Heuristics needed to understand the components of the Great Deluge algorithm. The second describes the Great Deluge algo- rithm. The third section defines the KTH-inspired UCTP. The fourth section describes common and relevant neighborhoods used in various UCTP solvers. Finally, the fifth section presents relevant previous efforts in UCTP. 2.1 Local Search Heuristics For a given problem, a Local Search Heuristic operates by making perturba- tions to a current solution of that problem, in order to find an improved solution according to some acceptance criteria. The set of modified solutions (neigh- bors) are defined by a number of neighborhoods combined according to some structure (examples of neighborhoods can be found in section 2.4). The qual- ity of a solution is defined by a fitness function, which calculates an overall quality measure (“fitness”) given a solution. The acceptance criteria defines which neighbors can be accepted to replace the current solution. 2.2 The Great Deluge The Great Deluge algorithm (GD) is based on the notion of escaping a deluge by staying above the water level without drowning. In the context of GD, this water level represents a fitness threshold, and is used to define the acceptance criteria of GD. In particular, GD accepts any modified solution that has a better fitness than the water level or the current solution. Throughout the execution of GD, the water level rises towards the expected optimum fitness. 3 4 CHAPTER 2. BACKGROUND The rate at which the water level rises is determined by a decay function. In the original GD algorithm, the decay function is a simple linear decay function with no other modifications to the boundary. However, many GD implemen- tations use variations of the standard algorithm by applying non-linear decay functions or decay functions that reconfigure the boundary whenever it is ap- propriate.
Recommended publications
  • Non-Liner Great Deluge Algorithm for Handling Nurse Rostering Problem
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 4959-4966 © Research India Publications. http://www.ripublication.com Non-liner Great Deluge Algorithm for Handling Nurse Rostering Problem Yahya Z. Arajy*, Salwani Abdullah and Saif Kifah Data Mining and Optimisation Research Group (DMO), Centre for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia. Abstract which it has a variant of requirements and real world constraints, gives the researchers a great scientific challenge to The optimisation of the nurse rostering problem is chosen in solve. The nurse restring problem is one of the most this work due to its importance as an optimisation challenge intensively exploring topics. Further reviewing of the literature with an availability to improve the organisation in hospitals can show that over the last 45 years a range of researchers duties, also due to its relevance to elevate the health care studied the effect of different techniques and approaches on through an enhancement of the quality in a decision making NRP. To understand and efficiently solve the problem, we process. Nurse rostering in the real world is naturally difficult refer to the comprehensive literate reviews, which a great and complex problem. It consists on the large number of collection of papers and summaries regarding this rostering demands and requirements that conflicts the hospital workload problem can be found in [1], [2], and [3]. constraints with the employees work regulations and personal preferences. In this paper, we proposed a modified version of One of the first methods implemented to solve NRP is integer great deluge algorithm (GDA).
    [Show full text]
  • Developing Novel Meta-Heuristic, Hyper-Heuristic and Cooperative Search for Course Timetabling Problems
    Developing Novel Meta-heuristic, Hyper-heuristic and Cooperative Search for Course Timetabling Problems by Joe Henry Obit, MSc GEORGE GREEN uBRARY O~ SCIENCE AND ENGINEERING A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Computer Science University of Nottingham November 2010 Abstract The research presented in this PhD thesis focuses on the problem of university course timetabling, and examines the various ways in which metaheuristics, hyper- heuristics and cooperative heuristic search techniques might be applied to this sort of problem. The university course timetabling problem is an NP-hard and also highly constrained combinatorial problem. Various techniques have been developed in the literature to tackle this problem. The research work presented in this thesis ap- proaches this problem in two stages. For the first stage, the construction of initial solutions or timetables, we propose four hybrid heuristics that combine graph colour- ing techniques with a well-known local search method, tabu search, to generate initial feasible solutions. Then, in the second stage of the solution process, we explore dif- ferent methods to improve upon the initial solutions. We investigate techniques such as single-solution metaheuristics, evolutionary algorithms, hyper-heuristics with rein- forcement learning, cooperative low-level heuristics and cooperative hyper-heuristics. In the experiments throughout this thesis, we mainly use a popular set of bench- mark instances of the university course timetabling problem, proposed by Socha et al. [152], to assess the performance of the methods proposed in this thesis. Then, this research work proposes algorithms for each of the two stages, construction of ini- tial solutions and solution improvement, and analyses the proposed methods in detail.
    [Show full text]
  • Hyperheuristics in Logistics Kassem Danach
    Hyperheuristics in Logistics Kassem Danach To cite this version: Kassem Danach. Hyperheuristics in Logistics. Combinatorics [math.CO]. Ecole Centrale de Lille, 2016. English. NNT : 2016ECLI0025. tel-01485160 HAL Id: tel-01485160 https://tel.archives-ouvertes.fr/tel-01485160 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre: 315 Centrale Lille THÈSE présentée en vue d’obtenir le grade de DOCTEUR en Automatique, Génie Informatique, Traitement du Signal et des Images par Kassem Danach DOCTORAT DELIVRE PAR CENTRALE LILLE Hyperheuristiques pour des problèmes d’optimisation en logistique Hyperheuristics in Logistics Soutenue le 21 decembre 2016 devant le jury d’examen: President: Pr. Laetitia Jourdan Université de Lille 1, France Rapporteurs: Pr. Adnan Yassine Université du Havre, France Dr. Reza Abdi University of Bradford, United Kingdom Examinateurs: Pr. Saïd Hanafi Université de Valenciennes, France Dr. Abbas Tarhini Lebanese American University, Lebanon Dr. Rahimeh Neamatian Monemin University Road, United Kingdom Directeur de thèse: Pr. Frédéric Semet Ecole Centrale de Lille, France Co-encadrant: Dr. Shahin Gelareh Université de l’ Artois, France Invited Professor: Dr. Wissam Khalil Université Libanais, Lebanon Thèse préparée dans le Laboratoire CRYStAL École Doctorale SPI 072 (EC Lille) 2 Acknowledgements Firstly, I would like to express my sincere gratitude to my advisor Prof.
    [Show full text]
  • Hybrid Genetic Algorithms with Great Deluge for Course Timetabling
    IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 283 Hybrid Genetic Algorithms with Great Deluge For Course Timetabling Nabeel R. AL-Milli Financial and Business Administration and Computer Science Department Zarqa University College Al-Balqa' Applied University time slots in such a way that no constraints are Summary violated for each timeslot [7]. The Course Timetabling problem deals with the assignment of 2) Constraint Based Methods, according to which a course (or lecture events) to a limited set of specific timeslots and timetabling problem is modeled as a set of rooms, subject to a variety of hard and soft constraints. All hard variables (events) to which values (resources such constraints must be satisfied, obtaining a feasible solution. In this as teachers and rooms) have to be assigned in paper we establish a new hybrid algorithm to solve course timetabling problem based on Genetic Algorithm and Great order to satisfy a number of hard and soft Deluge algorithm. We perform a hybrdised method on standard constraints [8]. benchmark course timetable problems and able to produce 3) Cluster Methods, in which the problem is divided promising results. into a number of events sets. Each set is defined Key words: so that it satisfies all hard constraints. Then, the Course timetabling, Genetic algorithms, Great deluge sets are assigned to real time slots to satisfy the soft constraints as well [9]. 4) Meta-heuristic methods, such as genetic 1. Introduction algorithms (GAs), simulated annealing, tabu search, and other heuristic approaches, that are University Course Timetabling Problems (UCTPs) is an mostly inspired from nature, and apply nature-like NPhard problem, which is very difficult to solve by processes to solutions or populations of solutions, conventional methods and the amount of computation in order to evolve them towards optimality [1], required to find optimal solution increases exponentially [3], [4], [10], [11], [13],[14].
    [Show full text]
  • Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms
    Actuators 2013, 2, 111-128; doi: 10.3390/act2040111 OPEN ACCESS actuators ISSN 2076−0825 www.mdpi.com/journal/actuators Article Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms Georgia A. Foutsitzi 1,*, Christos G. Gogos 1, Evangelos P. Hadjigeorgiou 2 and Georgios E. Stavroulakis 3 1 Department of Accounting and Finance, Technological Educational Institution of Epirus, TEI Campus−Psathaki, GR-48100 Preveza, Greece; E−Mail: [email protected] 2 Department of Materials Science and Engineering, University of Ioannina, GR−45110 Ioannina, Greece; E−Mail: [email protected] 3 Department of Production Engineering and Management, Technical University of Crete, Institute of Computational Mechanics and Optimization University Campus, GR−73100 Chania, Greece; E−Mail: [email protected] * Author to whom correspondence should be addressed; E−Mail: [email protected]; Tel.: +30−697-295-2173; Fax: +30−268-205-0631. Received: 28 August 2013; in revised form: 23 September 2013 / Accepted: 12 October 2013 / Published: 22 October 2013 Abstract: This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape.
    [Show full text]
  • A Reinforcement Learning – Great-Deluge Hyper-Heuristic for Examination Timetabling
    A Reinforcement Learning – Great-Deluge Hyper-heuristic for Examination Timetabling Ender Ozcan University of Nottingham, United Kingdom Mustafa Mısır Yeditepe University, Turkey Gabriela Ochoa University of Nottingham, United Kingdom Edmund K. Burke University of Nottingham, United Kingdom ABSTRACT Hyper-heuristics are identified as the methodologies that search the space generated by a finite set of low level heuristics for solving difficult problems. One of the iterative hyper-heuristic frameworks requires a single candidate solution and multiple perturbative low level heuristics. An initially generated complete solution goes through two successive processes; heuristic selection and move acceptance until a set of termination criteria is satisfied. A goal of the hyper-heuristic research is to create automated techniques that are applicable to wide range of problems with different characteristics. Some previous studies show that different combinations of heuristic selection and move acceptance as hyper-heuristic components might yield different performances. This study investigates whether learning heuristic selection can improve the performance of a great deluge based hyper-heuristic using an examination timetabling problem as a case study. Keywords: hyper-heuristics, reinforcement learning, great deluge, meta-heuristics, Exam timetabling INTRODUCTION Meta-heuristics have been widely and successfully applied to many different problems. However, significant development effort is often needed to produce fine tuned techniques for the particular problem or even instance at hand. A more recent research trend in search and optimisation, hyper-heuristics (Burke et al., 2003a; Ross, 2005; Chakhlevitch et al., 2008; Ozcan et al., 2008; Burke et al. 2009a, 2009b), aims at producing more general problem solving techniques, which can potentially be applied to different problems or instances with little development effort.
    [Show full text]
  • Iterated Great Deluge for the Dynamic Facility Layout Problem
    _____________________________ Iterated Great Deluge for the Dynamic Facility Layout Problem Nabil Nahas Mustapha Nourelfath Daoud Aït-Kadi May 2010 CIRRELT-2010-20 Bureaux de Montréal : Bureaux de Québec : Université de Montréal Université Laval C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642 Montréal (Québec) Québec (Québec) Canada H3C 3J7 Canada G1VG1V 0A6 0A6 Téléphone : 514 343-7575 Téléphone : 418 656-2073 Télécopie : 514 343-7121 Télécopie : 418 656-2624 www.cirrelt.ca Iterated Great Deluge for the Dynamic Facility Layout Problem Nabil Nahas*, Mustapha Nourelfath, Daoud Aït-Kadi Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) and Mechanical Engineering Department, Pavillon Adrien-Pouliot, Université Laval, Québec, Canada G1K 7P4 Abstract This paper introduces an iterated great deluge (IGD) heuristic for the dynamic facility layout problem (DFLP). This problem involves the arrangement of manufacturing facilities over time to minimize the sum of the material handling and rearrangement costs. The IGD heuristic combines a great deluge algorithm with a perturbation operator that helps escape from local optima. Our implantation of the IGD heuristic relies on two main steps: (i) we first generate a local optimum solution by running an extended great deluge (EGD) algorithm for N1 iterations; (ii) the second step consists in a loop that perturbs the best current solution, and restarts an improvement by running the EGD algorithm for N2 < N1 iterations. Numerical results for 48 test problems from previous research are reported and compared. The solutions found by our approach are very competitive and a great set of the obtained results are better than or are in part with the well-known best solutions.
    [Show full text]
  • Jorge Lusi Oyola Mendoza Essays on Stochastic and Multi-Objective
    Jorge Lusi Oyola Mendoza Essays on stochastic and multi-objective capacitated vehicle routing problems PhD theses in Logistics 2016:2 Essays on stochastic and multi-objective capacitated vehicle routing problems Jorge Luis Oyola Mendoza A dissertation submitted to Molde University College - Specialized University in Logistics for the degree of Philosophiae Doctor PhD theses in Logistics 2016:2 Molde University College - Specialized University in Logistics Molde, Norway 2016 Jorge Luis Oyola Mendoza Essays on stochastic and multi-objective capacitated vehicle routing problems © Jorge Luis Oyola Mendoza 2016 PhD theses in Logistics 2016:2 Molde University College - Specialized University in Logistics P.O.Box 2110 NO-6402 Molde, Norway www.himolde.no This dissertation can be ordered from Molde University College Library [email protected] Printing Molde University College ISBN: 978-82-7962-209-3 ISSN: 0809-9588 Preface This document is submitted as partial fulfillment of the requirements for the degree of Philosophiae Doctor (PhD) in Logistics at Molde University College - Specialized University in Logistics, Molde, Norway. This work was conducted from September 2010 until February 2016. Late Professor Arne Løkketangen from Molde University College was the main supervisor until June 2013. Associate Professor Halvard Arntzen from Molde University College was co-supervisor during this period. In June 2013 Professor Arntzen was appointed as main supervisor and Professor David L. Woodruff from University of California, Davis was appointed as co-supervisor. The main subject of this thesis is multi-objective vehicle routing problems. Both deterministic and stochastic versions of such problems have been studied. Routing planning is considered to be a multi-criteria process, therefore optimizing several meaningful objectives simultaneously may provide decision makers with better evidence to support their choices.
    [Show full text]
  • Some NP-Complete Problems
    Appendix A Some NP-Complete Problems To ask the hard question is simple. But what does it mean? What are we going to do? W.H. Auden In this appendix we present a brief list of NP-complete problems; we restrict ourselves to problems which either were mentioned before or are closely re- lated to subjects treated in the book. A much more extensive list can be found in Garey and Johnson [GarJo79]. Chinese postman (cf. Sect. 14.5) Let G =(V,A,E) be a mixed graph, where A is the set of directed edges and E the set of undirected edges of G. Moreover, let w be a nonnegative length function on A ∪ E,andc be a positive number. Does there exist a cycle of length at most c in G which contains each edge at least once and which uses the edges in A according to their given orientation? This problem was shown to be NP-complete by Papadimitriou [Pap76], even when G is a planar graph with maximal degree 3 and w(e) = 1 for all edges e. However, it is polynomial for graphs and digraphs; that is, if either A = ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6. Chromatic index (cf. Sect. 9.3) Let G be a graph. Is it possible to color the edges of G with k colors, that is, does χ(G) ≤ k hold? Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3; this holds even for the special case where k =3 and G is 3-regular.
    [Show full text]
  • Model Specification Search Using Genetic Algorithm for Factor Analysis
    Model specification search using genetic algorithm for factor analysis model 因子分析モデルにおける 遺伝的アルゴリズムを用いたモデル探索 Hiroto Murohashi 室橋 弘人 Contents 1 The necessity of model specification search in structural equa- tion modeling 1 1.1 What is structural equation modeling? Origin and features . 1 1.2OutlineofthemajorresearchareasrelatingtoSEM...... 9 1.3 How to define and finda“good”modelinSEM?........ 17 2 Model specification search as a combinational optimization problem 24 2.1 Combinational optimization problem and its solution method . 24 2.2 Metaheuristics and its applicability to the model searching task 32 2.3Basicmechanismofthegeneticalgorithm............ 39 3 Model specification search using a genetic algorithm with factor reordering for a simple structure factor analysis model 49 3.1 Basic idea to apply the GA to the model specification search inSEM.............................. 49 3.2 Search algorithm for a simple structure factor analysis model withfactorreordering....................... 53 3.3Simulationstudy......................... 58 3.4 Example analysis 1: Analysis of the data from psychological tests................................ 62 3.5 Example analysis 2: Analysis of the data from a cognitive ability test ............................. 67 4 Model specification search using a genetic algorithm with factor reordering for a general factor analysis model 71 4.1 Search algorithm for a general factor analysis model with fac- tor reordering ........................... 71 i 4.2 Example analysis 1: Analysis of the data from a cognitive ability
    [Show full text]
  • IEEE Paper Template in A4 (V1)
    I.J. Information Technology and Computer Science, 2015, 07, 28-34 Published Online June 2015 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2015.07.04 Great Deluge Algorithm for the Linear Ordering Problem: The Case of Tanzanian Input-Output Table Amos Mathias Department of Science Mathematics and Technology Education, University of Dodoma, Box 523, Dodoma, Tanzania Email: [email protected] Allen R. Mushi Department of Mathematics, University of Dar es salaam, Box 35062, DSM, Tanzania Email: [email protected] Abstract—Given a weighted complete digraph, the Linear Since then, it has received considerable attention by Ordering Problem (LOP) consists of finding and acyclic many researchers and hence becoming a problem of tournament with maximum weight. It is sometimes referred to interest to date. LOP is found in a number of applications, as triangulation problem or permutation problem depending on such as Triangulation of Input-Output matrices in the context of its application. This study introduces an economics, Archaeological seriation, Minimizing total algorithm for LOP and applied for triangulation of Tanzanian Input-Output tables. The algorithm development process uses weighted completion time in one-machine scheduling, Great Deluge heuristic method. It is implemented using C++ Aggregation of Individual preferences, Grötschel, Junger programming language and tested on a personal computer with and Reinelt [5], ordering of teams in sports tournaments, 2.40GHZ speed processor. The algorithm has been able to Mushi [1] as well as Machine translation, Tromble [6]. triangulate the Tanzanian input-output tables of size 79×79 A number of algorithms for the LOP solution have within a reasonable time (1.17 seconds).
    [Show full text]
  • Metaheuristics and Scheduling
    Chapter 3 Metaheuristics and scheduling 3.1. Introduction Scheduling involves taking decisions regarding the allocation of available capacity or resources (equipment, labour and space) to jobs, activities, tasks or customers over time. Scheduling thus results in a time-phased plan, or schedule of activities. The schedule indicates what is to be done, when, by whom and with what equipment. Although the statement of a manufacturing organizational problem such as scheduling may seem simple, we must never underestimate the effort necessary to find its solution [WID 98]. Scheduling problems can be modeled as assignment problems, which represent a large class of combinatorial optimization problems. In most of these cases, finding the optimal solution is very difficult. In fact, except for a few exceptions, the only known method to solve the problem to optimality would be to enumerate an exponential number of possible solutions! Specialists in this case speak of NP-complete problems [CAR 88, GAR 79]. In these conditions, it is necessary to find a solution method providing solutions of good quality in a reasonable amount of time: this is what heuristic methods are all about. This chapter focuses on describing the three main heuristic classes, constructive methods, local search methods and evolutionary algorithms [COS 95c]. Since these methods are general enough to be applied to a multitude of combinatorial optimization problems, they are called metaheuristics . This chapter is organized as follows: the next two sections indicate how to model scheduling problems in terms of combinatorial optimization and briefly describe the Chapter written by Marino WIDMER, Alain HERTZ and Daniel COSTA.
    [Show full text]