Hyperheuristics in Logistics Kassem Danach

Total Page:16

File Type:pdf, Size:1020Kb

Hyperheuristics in Logistics Kassem Danach Hyperheuristics in Logistics Kassem Danach To cite this version: Kassem Danach. Hyperheuristics in Logistics. Combinatorics [math.CO]. Ecole Centrale de Lille, 2016. English. NNT : 2016ECLI0025. tel-01485160 HAL Id: tel-01485160 https://tel.archives-ouvertes.fr/tel-01485160 Submitted on 8 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre: 315 Centrale Lille THÈSE présentée en vue d’obtenir le grade de DOCTEUR en Automatique, Génie Informatique, Traitement du Signal et des Images par Kassem Danach DOCTORAT DELIVRE PAR CENTRALE LILLE Hyperheuristiques pour des problèmes d’optimisation en logistique Hyperheuristics in Logistics Soutenue le 21 decembre 2016 devant le jury d’examen: President: Pr. Laetitia Jourdan Université de Lille 1, France Rapporteurs: Pr. Adnan Yassine Université du Havre, France Dr. Reza Abdi University of Bradford, United Kingdom Examinateurs: Pr. Saïd Hanafi Université de Valenciennes, France Dr. Abbas Tarhini Lebanese American University, Lebanon Dr. Rahimeh Neamatian Monemin University Road, United Kingdom Directeur de thèse: Pr. Frédéric Semet Ecole Centrale de Lille, France Co-encadrant: Dr. Shahin Gelareh Université de l’ Artois, France Invited Professor: Dr. Wissam Khalil Université Libanais, Lebanon Thèse préparée dans le Laboratoire CRYStAL École Doctorale SPI 072 (EC Lille) 2 Acknowledgements Firstly, I would like to express my sincere gratitude to my advisor Prof. Frédéric Semet, Dr. Shahin Gelareh and Dr. Wissam Khalil for their continuous support of my Ph.D study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis. I would also like to thank my parents for their wise counsel and sympathetic ear. I would like express appreciation to my beloved wife Jomana Al-haj Hasan who spent sleepless nights with and was always my support in the moments when there was no one to answer my queries. Finally, there are my children, who have given me much happiness and keep me hopping. My son, Mahdi, has grown up watching me study and juggle with family and work. Abbass, the little one, who always try to do everything to make his presence felt. I hope I have been a good father and that I have not lost too much during the tenure of my study. 3 Resumé Le succès dans l’utilisation de méthodes exactes dans l’optimisation combinatoire à grande échelle est encore limité à certains problèmes, et peut-être des classes spécifiques d’instances de problèmes. Le moyen alternatif consiste soit à utiliser des métaheuristiques ou des mathématiques qui utilisent des méthodes exactes à certains égards. Le concept d’hyperheuristique (HH) est une généralisation de celle des métaheuristiques. Dans le contexte de l’optimisation combinatoire, nous nous intéressons à l’heuristique pour choisir l’heuristique. Les deux catégories hyperheuristiques principales de la classification précédente sont: 1) la sélection heuristique, qui considère une méthode pour sélectionner des heuristiques à partir d’un ensemble d’heuristiques existantes, et 2) la génération heuristique qui consiste à générer de nouvelles heuristiques à partir des composantes des heuristiques existantes. Dans cette thèse, nous nous concentrons sur l’optimisation hyperheuristique des problèmes logistiques. Nous présentons une revue de littérature détaillée sur les termes origine, concept, domaine d’application, etc. Ensuite, deux problèmes logistiques ont été choisis pour lesquels nous avons proposé HH. Sur la base de la structure générale d’une solution réalisable et en exploitant les informations cachées dans les données d’entrée, nous définissons un ensemble d’heuristiques possibles pour chaque problème. Nous nous concentrons ensuite sur la propos- ition d’un cadre hyperheuristique qui effectue une recherche dans l’espace des algorithmes heuristiques et apprend comment changer l’heuristique en place d’une manière systématique le long du processus de telle sorte qu’une bonne séquence 4 d’heuristiques produit des solutions de haute qualité. Notre cadre hyperheuristique est équipé d’un mécanisme d’apprentissage qui apprend l’environnement et guide la transition d’une heuristique historique à une autre jusqu’à ce que l’algorithme global se termine. Le premier problème abordé est le problème d’ordonnancement de la plate- forme de workover (WRSP), qui consiste à trouver le meilleur horaire pour un certain nombre de plates-formes de workover pour minimiser la perte de production, associée à un grand nombre de puits en attente de maintenance. Un algorithme d’hyperheuristique de sélection est proposé, qui est guidé par un mécanisme d’apprentissage conduisant à un choix approprié de mouvements dans l’espace des heuristiques qui sont appliquées pour résoudre le problème. Nos expériences numériques sont menées sur des exemples d’une étude de cas de Petrobras, la Société nationale brésilienne du pétrole, et ont été comparées avec une méthode exacte prouvant son efficacité. Le deuxième problème est une variante du problème de routage d’emplacement de concentrateur, qui cherche à diviser les nœuds en moyeux et rayons. Deux HH différentes ont été appliquées à deux variantes de ce problème, qui sont dérivées d’un problème d’acheminement de localisation de concentrateur de capa- cité d’allocation unique et diffèrent principalement dans la définition de la capacité. Dans le premier, le nombre de rayons pouvant être attribué à chaque hub est limité; Tandis que dans la seconde, c’est le volume de l’écoulement circulant sur la voie du rayon-niveau. De plus, cinq relaxations lagrangiennes (LR) ont été proposées pour le premier problème afin d’utiliser certains résultats pendant le processus de 5 HH. Les résultats de calcul prouvent l’efficacité de HH et la pertinence d’inclure l’information LR. Enfin, nous comparons les performances de plusieurs HH pro- posées dans la littérature pour le problème précédemment abordé, avec différentes méthodes de sélection heuristique telles que la sélection aléatoire, la fonction de choix, Q-Learning et la colonie de fourmis. 6 Contents Acknowledgements2 Contents6 List of Tables 11 List of Figures 13 1 Hyperheuristic: A General Overview 15 1.1 Introduction............................. 15 1.2 Heuristics, Metaheuristics and Matheuristics............ 18 1.3 Hyperheuristics........................... 22 1.3.1 Hyperheuristic Classification................ 25 1.3.2 Move Acceptance Criteria................. 29 1.3.3 Termination Criteria.................... 34 1.4 State of the art............................ 35 1.5 Existing and the Proposed Framework............... 39 1.6 Contributions and Overview.................... 42 8 CONTENTS 2 Workover Rig Problem 45 2.1 Introduction............................. 45 2.2 Literature review.......................... 47 2.2.1 Objective and contribution................. 49 2.3 Problem Description........................ 51 2.4 Mathematical Model........................ 51 2.4.1 Workover Rig Scheduling (WRS) Problem........ 52 2.4.2 Valid inequalities...................... 55 2.4.3 Preprocessing........................ 57 2.4.4 Illustrative example..................... 58 2.5 Hyperheuristic for WRS Problem.................. 58 2.5.1 Reinforcement learning................... 63 2.6 Numerical experiments....................... 66 2.7 Summary, conclusion and outlook to future work......... 74 3 Capacitated Single Allocation p-Hub Location Routing Problem 77 3.1 Introduction............................. 77 3.2 Mathematical Formulation..................... 87 3.2.1 (CSApHLRP-1-F1)..................... 88 3.2.2 (CSApHLRP-1-F2)..................... 91 3.2.3 (CSApHLRP-2)....................... 94 3.3 Solution algorithm......................... 97 3.3.1 Lagrangian relaxation................... 98 CONTENTS 9 3.3.2 Hyperheuristic for CSApHLRP-1 and CSApHLRP-2... 104 3.4 Computational experiments..................... 117 3.4.1 CSApHLRP-1 Computational experiments........ 118 3.4.2 CSApHLRP-2 Computational experiments........ 129 3.5 Conclusion and future work..................... 129 4 Selection Methods 137 4.1 Introduction............................. 137 4.2 The Proposed Selection Methods.................. 139 4.2.1 Random Selection Based Hyperheuristic.......... 140 4.2.2 Greedy Based Hyperheuristic............... 142 4.2.3 Peckish Based Hyperheuristic............... 142 4.2.4 Choice Function Based Hyperheuristic.......... 143 4.2.5 Reinforcement Learning.................. 145 4.2.6 Metaheuristics Based Hyperheuristic........... 148 4.3 Numerical Results.......................... 156 4.4 Conclusion............................. 157 5 General Conclusion 161 Bibliography 167 10 List of Tables 2.1 Model Parameters and variables................... 52 2.2 Best solution and execution time results of the two methods.... 68 2.3 Computational results of our branch, price and cut......... 73 3.1 A summary of main elements of the relevant contributions in liter- ature................................. 84 3.2 CSApHLRP-1-F1 and CSApHLRP-1-F2 Models Parameters...
Recommended publications
  • Non-Liner Great Deluge Algorithm for Handling Nurse Rostering Problem
    International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 15 (2017) pp. 4959-4966 © Research India Publications. http://www.ripublication.com Non-liner Great Deluge Algorithm for Handling Nurse Rostering Problem Yahya Z. Arajy*, Salwani Abdullah and Saif Kifah Data Mining and Optimisation Research Group (DMO), Centre for Artificial Intelligence Technology, Universiti Kebangsaan Malaysia, 43600 Bangi Selangor, Malaysia. Abstract which it has a variant of requirements and real world constraints, gives the researchers a great scientific challenge to The optimisation of the nurse rostering problem is chosen in solve. The nurse restring problem is one of the most this work due to its importance as an optimisation challenge intensively exploring topics. Further reviewing of the literature with an availability to improve the organisation in hospitals can show that over the last 45 years a range of researchers duties, also due to its relevance to elevate the health care studied the effect of different techniques and approaches on through an enhancement of the quality in a decision making NRP. To understand and efficiently solve the problem, we process. Nurse rostering in the real world is naturally difficult refer to the comprehensive literate reviews, which a great and complex problem. It consists on the large number of collection of papers and summaries regarding this rostering demands and requirements that conflicts the hospital workload problem can be found in [1], [2], and [3]. constraints with the employees work regulations and personal preferences. In this paper, we proposed a modified version of One of the first methods implemented to solve NRP is integer great deluge algorithm (GDA).
    [Show full text]
  • Developing Novel Meta-Heuristic, Hyper-Heuristic and Cooperative Search for Course Timetabling Problems
    Developing Novel Meta-heuristic, Hyper-heuristic and Cooperative Search for Course Timetabling Problems by Joe Henry Obit, MSc GEORGE GREEN uBRARY O~ SCIENCE AND ENGINEERING A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Doctor of Philosophy School of Computer Science University of Nottingham November 2010 Abstract The research presented in this PhD thesis focuses on the problem of university course timetabling, and examines the various ways in which metaheuristics, hyper- heuristics and cooperative heuristic search techniques might be applied to this sort of problem. The university course timetabling problem is an NP-hard and also highly constrained combinatorial problem. Various techniques have been developed in the literature to tackle this problem. The research work presented in this thesis ap- proaches this problem in two stages. For the first stage, the construction of initial solutions or timetables, we propose four hybrid heuristics that combine graph colour- ing techniques with a well-known local search method, tabu search, to generate initial feasible solutions. Then, in the second stage of the solution process, we explore dif- ferent methods to improve upon the initial solutions. We investigate techniques such as single-solution metaheuristics, evolutionary algorithms, hyper-heuristics with rein- forcement learning, cooperative low-level heuristics and cooperative hyper-heuristics. In the experiments throughout this thesis, we mainly use a popular set of bench- mark instances of the university course timetabling problem, proposed by Socha et al. [152], to assess the performance of the methods proposed in this thesis. Then, this research work proposes algorithms for each of the two stages, construction of ini- tial solutions and solution improvement, and analyses the proposed methods in detail.
    [Show full text]
  • Hybrid Genetic Algorithms with Great Deluge for Course Timetabling
    IJCSNS International Journal of Computer Science and Network Security, VOL.10 No.4, April 2010 283 Hybrid Genetic Algorithms with Great Deluge For Course Timetabling Nabeel R. AL-Milli Financial and Business Administration and Computer Science Department Zarqa University College Al-Balqa' Applied University time slots in such a way that no constraints are Summary violated for each timeslot [7]. The Course Timetabling problem deals with the assignment of 2) Constraint Based Methods, according to which a course (or lecture events) to a limited set of specific timeslots and timetabling problem is modeled as a set of rooms, subject to a variety of hard and soft constraints. All hard variables (events) to which values (resources such constraints must be satisfied, obtaining a feasible solution. In this as teachers and rooms) have to be assigned in paper we establish a new hybrid algorithm to solve course timetabling problem based on Genetic Algorithm and Great order to satisfy a number of hard and soft Deluge algorithm. We perform a hybrdised method on standard constraints [8]. benchmark course timetable problems and able to produce 3) Cluster Methods, in which the problem is divided promising results. into a number of events sets. Each set is defined Key words: so that it satisfies all hard constraints. Then, the Course timetabling, Genetic algorithms, Great deluge sets are assigned to real time slots to satisfy the soft constraints as well [9]. 4) Meta-heuristic methods, such as genetic 1. Introduction algorithms (GAs), simulated annealing, tabu search, and other heuristic approaches, that are University Course Timetabling Problems (UCTPs) is an mostly inspired from nature, and apply nature-like NPhard problem, which is very difficult to solve by processes to solutions or populations of solutions, conventional methods and the amount of computation in order to evolve them towards optimality [1], required to find optimal solution increases exponentially [3], [4], [10], [11], [13],[14].
    [Show full text]
  • Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms
    Actuators 2013, 2, 111-128; doi: 10.3390/act2040111 OPEN ACCESS actuators ISSN 2076−0825 www.mdpi.com/journal/actuators Article Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms Georgia A. Foutsitzi 1,*, Christos G. Gogos 1, Evangelos P. Hadjigeorgiou 2 and Georgios E. Stavroulakis 3 1 Department of Accounting and Finance, Technological Educational Institution of Epirus, TEI Campus−Psathaki, GR-48100 Preveza, Greece; E−Mail: [email protected] 2 Department of Materials Science and Engineering, University of Ioannina, GR−45110 Ioannina, Greece; E−Mail: [email protected] 3 Department of Production Engineering and Management, Technical University of Crete, Institute of Computational Mechanics and Optimization University Campus, GR−73100 Chania, Greece; E−Mail: [email protected] * Author to whom correspondence should be addressed; E−Mail: [email protected]; Tel.: +30−697-295-2173; Fax: +30−268-205-0631. Received: 28 August 2013; in revised form: 23 September 2013 / Accepted: 12 October 2013 / Published: 22 October 2013 Abstract: This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape.
    [Show full text]
  • A Reinforcement Learning – Great-Deluge Hyper-Heuristic for Examination Timetabling
    A Reinforcement Learning – Great-Deluge Hyper-heuristic for Examination Timetabling Ender Ozcan University of Nottingham, United Kingdom Mustafa Mısır Yeditepe University, Turkey Gabriela Ochoa University of Nottingham, United Kingdom Edmund K. Burke University of Nottingham, United Kingdom ABSTRACT Hyper-heuristics are identified as the methodologies that search the space generated by a finite set of low level heuristics for solving difficult problems. One of the iterative hyper-heuristic frameworks requires a single candidate solution and multiple perturbative low level heuristics. An initially generated complete solution goes through two successive processes; heuristic selection and move acceptance until a set of termination criteria is satisfied. A goal of the hyper-heuristic research is to create automated techniques that are applicable to wide range of problems with different characteristics. Some previous studies show that different combinations of heuristic selection and move acceptance as hyper-heuristic components might yield different performances. This study investigates whether learning heuristic selection can improve the performance of a great deluge based hyper-heuristic using an examination timetabling problem as a case study. Keywords: hyper-heuristics, reinforcement learning, great deluge, meta-heuristics, Exam timetabling INTRODUCTION Meta-heuristics have been widely and successfully applied to many different problems. However, significant development effort is often needed to produce fine tuned techniques for the particular problem or even instance at hand. A more recent research trend in search and optimisation, hyper-heuristics (Burke et al., 2003a; Ross, 2005; Chakhlevitch et al., 2008; Ozcan et al., 2008; Burke et al. 2009a, 2009b), aims at producing more general problem solving techniques, which can potentially be applied to different problems or instances with little development effort.
    [Show full text]
  • Iterated Great Deluge for the Dynamic Facility Layout Problem
    _____________________________ Iterated Great Deluge for the Dynamic Facility Layout Problem Nabil Nahas Mustapha Nourelfath Daoud Aït-Kadi May 2010 CIRRELT-2010-20 Bureaux de Montréal : Bureaux de Québec : Université de Montréal Université Laval C.P. 6128, succ. Centre-ville 2325, de la Terrasse, bureau 2642 Montréal (Québec) Québec (Québec) Canada H3C 3J7 Canada G1VG1V 0A6 0A6 Téléphone : 514 343-7575 Téléphone : 418 656-2073 Télécopie : 514 343-7121 Télécopie : 418 656-2624 www.cirrelt.ca Iterated Great Deluge for the Dynamic Facility Layout Problem Nabil Nahas*, Mustapha Nourelfath, Daoud Aït-Kadi Interuniversity Research Centre on Enterprise Networks, Logistics and Transportation (CIRRELT) and Mechanical Engineering Department, Pavillon Adrien-Pouliot, Université Laval, Québec, Canada G1K 7P4 Abstract This paper introduces an iterated great deluge (IGD) heuristic for the dynamic facility layout problem (DFLP). This problem involves the arrangement of manufacturing facilities over time to minimize the sum of the material handling and rearrangement costs. The IGD heuristic combines a great deluge algorithm with a perturbation operator that helps escape from local optima. Our implantation of the IGD heuristic relies on two main steps: (i) we first generate a local optimum solution by running an extended great deluge (EGD) algorithm for N1 iterations; (ii) the second step consists in a loop that perturbs the best current solution, and restarts an improvement by running the EGD algorithm for N2 < N1 iterations. Numerical results for 48 test problems from previous research are reported and compared. The solutions found by our approach are very competitive and a great set of the obtained results are better than or are in part with the well-known best solutions.
    [Show full text]
  • Cocircuits of Vector Matroids
    RICE UNIVERSITY Cocircuits of Vector Matroids by John David Arellano A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE Master of Arts APPROVED, THESIS COMMITTEE: ?~ Ill::f;Cks, Chair Associate Professor of Computational and Applied Mathematics ~~~~ Richard A. Tapia Maxfield-Oshman Professor of Engineering University Professor of Computational and Applied Mathematics Wotao Yin Assistant Professor of Computational and Applied Mathematics Houston, Texas August, 2011 ABSTRACT Cocircuits of Vector Matroids by John David Arellano In this thesis, I present a set covering problem (SCP) formulation of the matroid cogirth problem, finding the cardinality of the smallest cocircuit of a matroid. Ad­ dressing the matroid cogirth problem can lead to significantly enhancing the design process of sensor networks. The solution to the matroid cogirth problem provides the degree of redundancy of the corresponding sensor network, and allows for the evalu­ ation of the quality of the network. I provide an introduction to matroids, and their relation to the degree of redundancy problem. I also discuss existing methods devel­ oped to solve the matroid cogirth problem and the SCP. Computational results are provided to validate a branch-and-cut algorithm that addresses the SCP formulation. Acknowledgments I would like to thank my parents and family for the love and support throughout my graduate career. I would like to thank my advisor, Dr. Illya Hicks, and the rest of my committee for their guidance and support. I would also like to thank Dr. Maria Cristina Villalobos for her guidance and support during my undergraduate career. A thanks also goes to Nabor Reyna, Dr.
    [Show full text]
  • Generic Branch-Cut-And-Price
    Generic Branch-Cut-and-Price Diplomarbeit bei PD Dr. M. L¨ubbecke vorgelegt von Gerald Gamrath 1 Fachbereich Mathematik der Technischen Universit¨atBerlin Berlin, 16. M¨arz2010 1Konrad-Zuse-Zentrum f¨urInformationstechnik Berlin, [email protected] 2 Contents Acknowledgments iii 1 Introduction 1 1.1 Definitions . .3 1.2 A Brief History of Branch-and-Price . .6 2 Dantzig-Wolfe Decomposition for MIPs 9 2.1 The Convexification Approach . 11 2.2 The Discretization Approach . 13 2.3 Quality of the Relaxation . 21 3 Extending SCIP to a Generic Branch-Cut-and-Price Solver 25 3.1 SCIP|a MIP Solver . 25 3.2 GCG|a Generic Branch-Cut-and-Price Solver . 27 3.3 Computational Environment . 35 4 Solving the Master Problem 39 4.1 Basics in Column Generation . 39 4.1.1 Reduced Cost Pricing . 42 4.1.2 Farkas Pricing . 43 4.1.3 Finiteness and Correctness . 44 4.2 Solving the Dantzig-Wolfe Master Problem . 45 4.3 Implementation Details . 48 4.3.1 Farkas Pricing . 49 4.3.2 Reduced Cost Pricing . 52 4.3.3 Making Use of Bounds . 54 4.4 Computational Results . 58 4.4.1 Farkas Pricing . 59 4.4.2 Reduced Cost Pricing . 65 5 Branching 71 5.1 Branching on Original Variables . 73 5.2 Branching on Variables of the Extended Problem . 77 5.3 Branching on Aggregated Variables . 78 5.4 Ryan and Foster Branching . 79 i ii Contents 5.5 Other Branching Rules . 82 5.6 Implementation Details . 85 5.6.1 Branching on Original Variables . 87 5.6.2 Ryan and Foster Branching .
    [Show full text]
  • Jorge Lusi Oyola Mendoza Essays on Stochastic and Multi-Objective
    Jorge Lusi Oyola Mendoza Essays on stochastic and multi-objective capacitated vehicle routing problems PhD theses in Logistics 2016:2 Essays on stochastic and multi-objective capacitated vehicle routing problems Jorge Luis Oyola Mendoza A dissertation submitted to Molde University College - Specialized University in Logistics for the degree of Philosophiae Doctor PhD theses in Logistics 2016:2 Molde University College - Specialized University in Logistics Molde, Norway 2016 Jorge Luis Oyola Mendoza Essays on stochastic and multi-objective capacitated vehicle routing problems © Jorge Luis Oyola Mendoza 2016 PhD theses in Logistics 2016:2 Molde University College - Specialized University in Logistics P.O.Box 2110 NO-6402 Molde, Norway www.himolde.no This dissertation can be ordered from Molde University College Library [email protected] Printing Molde University College ISBN: 978-82-7962-209-3 ISSN: 0809-9588 Preface This document is submitted as partial fulfillment of the requirements for the degree of Philosophiae Doctor (PhD) in Logistics at Molde University College - Specialized University in Logistics, Molde, Norway. This work was conducted from September 2010 until February 2016. Late Professor Arne Løkketangen from Molde University College was the main supervisor until June 2013. Associate Professor Halvard Arntzen from Molde University College was co-supervisor during this period. In June 2013 Professor Arntzen was appointed as main supervisor and Professor David L. Woodruff from University of California, Davis was appointed as co-supervisor. The main subject of this thesis is multi-objective vehicle routing problems. Both deterministic and stochastic versions of such problems have been studied. Routing planning is considered to be a multi-criteria process, therefore optimizing several meaningful objectives simultaneously may provide decision makers with better evidence to support their choices.
    [Show full text]
  • Some NP-Complete Problems
    Appendix A Some NP-Complete Problems To ask the hard question is simple. But what does it mean? What are we going to do? W.H. Auden In this appendix we present a brief list of NP-complete problems; we restrict ourselves to problems which either were mentioned before or are closely re- lated to subjects treated in the book. A much more extensive list can be found in Garey and Johnson [GarJo79]. Chinese postman (cf. Sect. 14.5) Let G =(V,A,E) be a mixed graph, where A is the set of directed edges and E the set of undirected edges of G. Moreover, let w be a nonnegative length function on A ∪ E,andc be a positive number. Does there exist a cycle of length at most c in G which contains each edge at least once and which uses the edges in A according to their given orientation? This problem was shown to be NP-complete by Papadimitriou [Pap76], even when G is a planar graph with maximal degree 3 and w(e) = 1 for all edges e. However, it is polynomial for graphs and digraphs; that is, if either A = ∅ or E = ∅. See Theorem 14.5.4 and Exercise 14.5.6. Chromatic index (cf. Sect. 9.3) Let G be a graph. Is it possible to color the edges of G with k colors, that is, does χ(G) ≤ k hold? Holyer [Hol81] proved that this problem is NP-complete for each k ≥ 3; this holds even for the special case where k =3 and G is 3-regular.
    [Show full text]
  • Model Specification Search Using Genetic Algorithm for Factor Analysis
    Model specification search using genetic algorithm for factor analysis model 因子分析モデルにおける 遺伝的アルゴリズムを用いたモデル探索 Hiroto Murohashi 室橋 弘人 Contents 1 The necessity of model specification search in structural equa- tion modeling 1 1.1 What is structural equation modeling? Origin and features . 1 1.2OutlineofthemajorresearchareasrelatingtoSEM...... 9 1.3 How to define and finda“good”modelinSEM?........ 17 2 Model specification search as a combinational optimization problem 24 2.1 Combinational optimization problem and its solution method . 24 2.2 Metaheuristics and its applicability to the model searching task 32 2.3Basicmechanismofthegeneticalgorithm............ 39 3 Model specification search using a genetic algorithm with factor reordering for a simple structure factor analysis model 49 3.1 Basic idea to apply the GA to the model specification search inSEM.............................. 49 3.2 Search algorithm for a simple structure factor analysis model withfactorreordering....................... 53 3.3Simulationstudy......................... 58 3.4 Example analysis 1: Analysis of the data from psychological tests................................ 62 3.5 Example analysis 2: Analysis of the data from a cognitive ability test ............................. 67 4 Model specification search using a genetic algorithm with factor reordering for a general factor analysis model 71 4.1 Search algorithm for a general factor analysis model with fac- tor reordering ........................... 71 i 4.2 Example analysis 1: Analysis of the data from a cognitive ability
    [Show full text]
  • Cutting Plane and Subgradient Methods
    Cutting Plane and Subgradient Methods John E. Mitchell Department of Mathematical Sciences RPI, Troy, NY 12180 USA October 12, 2009 Collaborators: Luc Basescu, Brian Borchers, Mohammad Oskoorouchi, Srini Ramaswamy, Kartik Sivaramakrishnan, Mike Todd Mitchell (RPI) Cutting Planes, Subgradients INFORMS TutORial 1 / 72 Outline 1 Interior Point Cutting Plane and Column Generation Methods Introduction MaxCut Interior point cutting plane methods Warm starting Theoretical results Stabilization 2 Cutting Surfaces for Semidefinite Programming Semidefinite Programming Relaxations of dual SDP Computational experience Theoretical results with conic cuts Condition number 3 Smoothing techniques and subgradient methods 4 Conclusions Mitchell (RPI) Cutting Planes, Subgradients INFORMS TutORial 2 / 72 Interior Point Cutting Plane and Column Generation Methods Outline 1 Interior Point Cutting Plane and Column Generation Methods Introduction MaxCut Interior point cutting plane methods Warm starting Theoretical results Stabilization 2 Cutting Surfaces for Semidefinite Programming Semidefinite Programming Relaxations of dual SDP Computational experience Theoretical results with conic cuts Condition number 3 Smoothing techniques and subgradient methods 4 Conclusions Mitchell (RPI) Cutting Planes, Subgradients INFORMS TutORial 3 / 72 Interior Point Cutting Plane and Column Generation Methods Introduction Outline 1 Interior Point Cutting Plane and Column Generation Methods Introduction MaxCut Interior point cutting plane methods Warm starting Theoretical results
    [Show full text]