Fortified Mangrove Tannin-Based Plywood Adhesive

Total Page:16

File Type:pdf, Size:1020Kb

Fortified Mangrove Tannin-Based Plywood Adhesive Fortified Mangrove Tannin-Based Plywood Adhesive S. SOWUNMI,1 R. O. EBEWELE,1,* A. H. CONNER,2 AND B. H. RIVER2 1Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria; and 2Forest Products Laboratory, One Gifford Pinchot Drive, Madison, Wisconsin 53705 SYNOPSIS Mangrove bark tannin adhesives are based on a renewable resource. They are potential substitutes or supplements for phenol-formaldehyde (PF) wood-bonding adhesives which are derived from petroleum, a finite natural resource. However, mangrove tannin adhesives exhibit poor adhesive properties including poor wet strength, brittleness, and poor wood penetration. These problems were addressed by treating tannin extract with acetic anhydride and then sodium hydroxide followed by modification with 20% resole-type PF resin. Sig- nificant structural changes occurred after the chemical treatment. Heat of reaction of tannin with formaldehyde was increased while the activation energy was drastically reduced. Pre- mature cure was also reduced. The fortified formulations had good plywood adhesive prop- erties. 1996 John Wiley & Sons, Inc. INTRODUCTION poor wood penetration, and poor wet strength. Rea- sons advanced for these shortcomings inter alia in- 1,2,6,7 There have been several attempts to replace part of clude the following. the petroleum-derived phenolic compounds in wood bonding adhesives with phenolic-type compounds 1. The tannin molecules are big and therefore obtained from renewable sources. Principal among cannot rotate freely about their backbone. these efforts is the development of adhesives from This results in the observed inherent brittle- tannin. 1,2 Tannin-based adhesives have in the past ness. been heavily fortified with urea, urea-formaldehyde 2. The high reactivity of tannin molecuies (UF), phenol-formaldehyde (PF), and resorcinol- causes premature cure. Consequently, the re- formaldehyde (RF) with encouraging results.1-5 sidual active centers become too far apart for However, very little work has been done on tropical formaldehyde molecules to bridge.3,5-7 The forest mangrove tannin. In Nigeria, where mangrove resulting incomplete crosslinking enhances forests abound on the south coast, Ohunyon and loss of structural integrity in adverse envi- Ebewele attempted to develop mangrove tannin- ronments. based plywood adhesive.6,7 Their efforts were con- centrated on using metal acetates to induce partic- The aim of this study therefore was to improve the ipation of the “B” ring of the tannin flavonoid adhesive properties of mangrove bark tannin adhesive. molecule in the tannin formaldehyde condensation Specifically, the objective was to reduce the size of the reaction. This B is normally inert except at pH > polyflavonoid molecules to enhance molecular flexi- 8, at which the reactivity of the “A” ring becomes bility and then modify the resulting structure with very high. High level (55%) fortification with meth- resole-type PF resin to reduce the tendency for pre- ylol phenol was still necessary to achieve good ad- mature cure and encourage a higher degree of cross- hesive properties. However, the adhesives developed linking. Nuclear magnetic resonance spectroscopy have a number of shortcomings including brittleness, (13C-NMR) was used to monitor the probable chemical changes while differential scanning calorimetry (DSC) was used to determine the relative cure response and *To whom correspondence should be addressed. Journal of Applied Polymer Science, Vol. 62, 577-.584 (1996) kinetic characteristics of the unmodified and modified 1996 John Wiley & Sons, Inc. CCC 021-8995/96/030577-08 mangrove tannin adhesives. 577 578 SOWUNMI ET AL. Chemistry of Condensed Tannin reactivity of the A ring, are most probably re- sponsible for the poor adhesive properties. In ad- The tannin polyflavonoid molecule essentially dition, the presence of nontannin compounds such consists of five to 11 monoflavonoid units. In the as gums, which are highly branched polysaccha- monoflavonoid unit, two phenolic rings (A and B), rides, affects the properties of tannin-based ad- are joined by a heterocyclic ring (Fig. 1). Tannin, hesive, particularly its moisture resistance. being phenolic, reacts with formaldehyde in a manner similar to that for the reaction of form- aldehyde with phenol. However, unlike most syn- Hydrolysis of Tannin thetic phenolic compounds, on heating tannin de- grades rather than melts. Therefore, during the Caustic hydrolysis of resorcinolic tannin has been condensation reaction of tannin with formalde- reported to cleave the inter flavonoid bond and open hyde, especially at high temperatures, tannin the etherocyclic ring joining the A and B ring of the molecules become immobile due to evaporation of flavonoid unit.8 A proposed mechanism based on this water. The result is that condensation does not go study is shown in Figure 1. far enough to give the required adhesive properties. Acid hydrolysis has been shown to easily open It therefore appears that the size and the non- the etherocyclic ring of polyflavonoids with the for- melting nature of the tannin, and not just the mation of a carbonation, which is capable of reacting TANNIN-BASED PLYWOOD ADHESIVE 579 with another nucleophile present.5 This is repre- pared and later reacted with resorcinol to give a re- sented by Figure 2. sorcinol terminated phenol–resorcinol-formalde- Pizzi and Stephanou9 reported an improvement hyde resole, which was then used as a bridging agent. in the performance of a nonfortified mimosa tan- The use of fortifying agents like PF resoles is there- nin-based adhesive developed by subjecting tannin fore expected to help bridge the reactive sites on the extracts to anhydride and subsequent alkaline large tannin flavonoid molecules. treatment. The following were suggested as prob- able reasons for the improved adhesive perfor- mance. 9 EXPERIMENTAL 1. Cleaving of the tannin interflavonoid bond: Acid and Subsequent Alkaline Hydrolysis of This results in smaller, more mobile tannin Tannin flavonoid compounds. Therefore, the level Modification of mangrove tannin was essentially by of condensation is enhanced with formal- anhydride and sodium hydroxide treatment. Fifty dehyde. parts of mangrove tannin extract were heated with 2. Opening of the heterocyclic ring joining the 95 parts of distilled water, 2.5 parts of acetic an- A and B rings of the tannin flavonoid com- hydride, and 2.5 parts of (6 : 10) phenol : acetic acid pound leads to a more flexible compound and mixture to about 90” C. The reaction mixture was reduces the stiffness of the tannin molecules then held under reflux at 90°C for 1 h. After that, and consequently the brittleness of the ad- the pH of the reaction mixture was brought to 8 by hesive. adding about 22.5 parts of 33% NaOH solution. The 3. Hydrocolloid gums are hydrophilic, and very reaction was allowed to go on for 3 h while moni- viscous, even at moderate concentrations. toring the pH profile of the medium as the reaction The presence of these gums in tannin extract progressed. Acid hydrolysis time, acid concentration, tends to promote high solution viscosity and and alkaline concentration were varied to determine poor moisture resistance of the tannin-based their effect on the degree of modification of the adhesive. On the other hand, their corre- tannin. sponding sugars (of low molecular weight) do not have much effect on the viscosities of so- lutions. The destruction of these gums will PF Resole Preparation therefore improve moisture resistance of the Forty parts of phenol, 60 parts of 37% formalin so- resulting tannin-based adhesive. In addition, lution, and 22 parts of distilled water were charged because of its reduced viscosity, penetration into a reaction vessel. The temperature of the me- of adhesive into wood substrate will be en- dium was raised to 90°C, and three parts of 33% hanced. NaOH solution was gradually added with continuous stirring. This was followed by double addition of Fortification of Tannin-Based Adhesive three parts of 33% NaOH solution at 20-min inter- Some longer crosslinking agents have been tried on vals. The reaction was stopped 1 h after the first wattle (resorcinolic) tannin. These include some addition of NaOH solution by rapidly cooling the phenolic and amino-plastic resins.2,4,5 The relatively reaction product. Reaction time and interval of large molecules were used in part to replace form- NaOH addition were varied to obtain PF resoles of aldehyde, with evident improvement in resulting varying degree of condensation. wattle tannin–formaldehyde adhesive. Resorcinol, resorcinol-formaldehyde, and phe- NMR Analysis nol-resorcinol–formaldehyde resoles of different types have been used2-4 to improve the level of con- NMR (13 C-NMR) was used to study the acid and densation of wattle tannin-formaldehyde-based ad- subsequent alkaline hydrolyzed samples. D2O was hesives. Resorcinol capped resoles were mostly used used as the solvent for the NMR runs. as bridging agents. In one instance, resorcinol capped resorcinol–formaldehyde resole was first DSC prepared. This was then reacted with flavonoid and formaldehyde. In another instance, a methylol DSC was carried out in a Perkin-Elmer 7 Series capped phenol–formaldehyde resole was first pre- Thermal Analysis System. One part of tannin ex- . 580 SOWUNMI ET AL. tract or modified-treated tannin was dissolved in draulic hot press at a press temperature of 1’70° C four parts of water, and paraformaldehyde was added and pressure of 160 psi for 7 min. A glue spread of to the tannin solution. For the first set of runs, which about 5 g/316.14 cmz (0.158 kg/m2) was used, making were intended to determine the optimum amount of sure that glue spread was as even as possible. Bonded paraformaldehyde needed for the condensation re- panels were subjected to dry, VPS tests. An Instron action of tannin with paraformaldehyde, parafor- testing machine (model 1000) was used to determine maldehyde content of each batch was varied. For bond strength of the plywood specimens produced. each run, a sample weight of between 5 and 8 mg A shear rate of 2 mm/s was used.
Recommended publications
  • Use of Fire-Impacted Trees for Oriented Strandboards
    Use of fire-impacted trees for oriented strandboards Laura Moya✳ Jerrold E. Winandy✳ William T. Y. Tze✳ Shri Ramaswamy Abstract This study evaluates the potential use of currently unexploited burnt timber from prescribed burns and wildfires for oriented strandboard (OSB). The research was performed in two phases: in Phase I, the effect of thermal exposure of timber on OSB properties was evaluated. Jack pine (Pinus banksiana) trees variously damaged by a moderately intense prescribed burn in a northern Wisconsin forest were selected. Four fire-damage levels of wood were defined and processed into series of single-layer OSB. The flakes used in Phase I had all char removed. Mechanical and physical properties were evaluated in accordance with ASTM D 1037. Results showed that OSB engineering performance of all four fire-damage levels were similar, and their me­ chanical properties met the CSA 0437 requirements. In Phase II, we assessed OSB properties from fire-killed, fire-affected and virgin red pine (Pinus resinosa) trees from a central Wisconsin forest exposed to an intense wildfire. The effect of various thermal exposures and varying amounts of char on OSB performance were evaluated. Phase II findings indicate that fire-damage level and bark amount had significant effects on the board properties. Addition of 20 percent charred bark had an adverse effect on bending strength; however, OSB mechanical properties still met the CSA requirements for all fire levels. Conversely, bark addition up to 20 percent was found to improve dimension stability of boards. This study suggests that burnt timber is a promising alternative bio-feedstock for commercial OSB production.
    [Show full text]
  • Analysis of Phenolic and Tannin Contents in the Methanol Extract Of
    Journal of Advances in Tropical Biodiversity and Environmental Sciences 3(1): 5-7, February 2019 (p-ISSN: 2549-6980) DOI: 10.24843/atbes.v03.i01.p02 Available online at: https://ojs.unud.ac.id/index.php/ATBES/article/view/48507 5 Analysis of Phenolic and Tannin Contents in the Methanol Extract of Sweet and Sour Star Fruit Plants (Averrhoa carambola L) Leaves Commonly Used as Raw Materials of Lawar (A Balinese Traditional Food) Ni Putu Adriani Astiti1), Sang Ketut Sudirga1), Yan Ramona1,2) 1Biology Department, Faculty of Natural Sciences, Udayana University, Bali-Indonesia 2Integrated Lab. of Biosciences and Biotechnology, Udayana University, Bali-Indonesia E-mail : [email protected] Abstract. Lawar, a special Balinese food made of leaves of star fruit plant, is commonly served in any Balinese traditional events, such as temple festival or wedding parties. The leaves of sweet and sour star fruit plant are used to make this traditional food. In this research, phenolic and tannin content of leaves of these types of plant were analyzed with a view to investigate their potential as antioxidant source. Phenolic compound has been well known to have antioxidant activity by neutralizing free radicals and stabilizing singlet oxygen. This compound has capacity to reduce free radicals by chelating metal ions or inhibiting enzymatic system, such as cyclo-oxygenase, mono-oxygenase or xanthine oxidase that catalyze formation of free radicals. [4] reported that plants with high content of phenolic compounds tend to have high nutritious and antioxidant activities Tannin is a compound belongs to polyphenolic group. Such compound is abundantly found in any plants.
    [Show full text]
  • The Black Wattle in Hawaii and Recommend the Same for Publication As Bulle­ Tin No
    HAWAII AQRICULTVRAL EXPERIMENT STA'I'IO!i. :J. G. SI\IITH, SPECIAJ:, AGENT IN CHARGE. BULLETIN No. 11. ·THE BLACK·WATTLE (Acacia c!eCUt'f,ens) IN HAWAII. BY JARED G. SMITH, SPECIAL AGENT IN CHARGE, HAWAII AGRICULTURAL EXPERIMENT STATION. UNDER THE. _Sl,l'ERVISION .. OJ' OF'F_ICE OF EXPERIMENT STP.TIONS, U.S. !)epartment ofAgriculture. WASHINGTON: :: ·--<: ;,: .. '~. -- .'. GOVERN~IENT PRI)'<TING. OFFICE: 1996. 863 HAWAII AGRICULTURAL EXPERIMENT STATION. J. G. SMITH, SPECIAL AGENT IN CHARGE. BULLETIN No. 11. 'THE BLACK WATTLE (Acacia decurrens) IN HA\VAII. BY JARED G. SMITH, SPECIAL AGENT IN CHARGE, HAWAII AGRICULTURAL EXPERIMENT STATION. UNDER THE SUPERVISION OF OFFICE OF EXPERIMENT STATIONS, U. S. Department ofAgriculture. WASHINGTON: GOVERNMENT PRINTING OFFICE. I 9 06. HAWAII AGRICULTURAL EXPERIMENT STATION, HONOLULU. [Under the supervision of A. C. TRuE; Director of the Office of Experiment Stations, United States Department of Agriculture.] STATION STAFF. JARED G. SMITH, Special, Agent in Charge. D. L. VAN DINE, Entomotogist. EDMUND C. SHOREY, Chemist. J.E. HIGGINS, Horticulturist. F. G. KRAUSS, In Charge of Rice Investigations. Q. Q. BRADFORD, Farm Foreman. C. R; BLACOW; In Charge ofTobacco Experiments (P. 0., Paauilo, Hawaii). \2) LETTER OF TRANSMITl'AL. HONOLULU, HAWAII, January 1, 1906. Sm: I have the honor to transmit herewith a paper on The Black Wattle in Hawaii and recommend the same for publication as Bulle­ tin No. 11 of the Hawaii Agricultural Experiment Station. Very respectfully, JARED G. SMITH, Special Agent in Charge, Hawaii Agricultural Experiment Station. Dr. A. C. TRUE, Director, Office of Experiment Stations, U.S. Department of Agriculture, Washington, D. 0.
    [Show full text]
  • Wood-Based Composite Materials Panel Products, Glued-Laminated Timber, Structural Composite Lumber, and Wood–Nonwood Composite Materials Nicole M
    CHAPTER 11 Wood-Based Composite Materials Panel Products, Glued-Laminated Timber, Structural Composite Lumber, and Wood–Nonwood Composite Materials Nicole M. Stark, Research Chemical Engineer Zhiyong Cai, Supervisory Research Materials Engineer Charles Carll, Research Forest Products Technologist The term composite is being used in this chapter to describe Contents any wood material adhesively bonded together. Wood-based Scope 11–2 composites encompass a range of products, from fiberboard Conventional Wood-Based Composite Panels 11–2 to laminated beams. Wood-based composites are used for a number of nonstructural and structural applications in prod- Elements 11–2 uct lines ranging from panels for interior covering purposes Adhesives 11–3 to panels for exterior uses and in furniture and support struc- Additives 11–5 tures in buildings (Fig. 11–1). Maloney (1986) proposed Plywood 11–5 a classification system to logically categorize the array of wood-based composites. The classification in Table 11-1 Oriented Strandboard 11–7 reflects the latest product developments. Particleboard 11–10 The basic element for wood-based composites is the fiber, Fiberboard 11–12 with larger particles composed of many fibers. Elements Speciality Composite Materials 11–15 used in the production of wood-based composites can be Performance and Standards 11–15 made in a variety of sizes and shapes. Typical elements in- Glulam Timber 11–17 clude fibers, particles, flakes, veneers, laminates, or lumber. Figure 11–2 shows the variation and relative size of wood Advantages 11–17 elements. Element size and geometry largely dictate the Types of Glulam Combinations 11–17 product manufactured and product performance.
    [Show full text]
  • Structure-Activity Relationships in the Hydrophobic Interactions of Polyphenols with Cellulose and Collagen
    H. R. Tang1,2 A. D. Covington3 Structure–Activity Relationships R. A. Hancock1 1 Department of Chemistry, in the Hydrophobic Interactions Royal Holloway, University of London, of Polyphenols with Cellulose Egham Hill, and Collagen Egham, Surrey TW20 0EX, UK 3 British School of Leather 2 School of Chemical Technology, Sciences, University College Shaanxi University of Science Northampton, and Technology, Boughton Green Road, Xianyang, Shaanxi, P.R. China Northampton NN2 7AL, UK Received 29 April 2003; accepted 30 June 2003 Abstract: Polyphenol interactions with both cellulose and collagen in the solid state have been studied by using chromatography on cellulose and by evaluating the hydrothermal stability of the polyphenol treated sheepskin collagen. Twenty-four polyphenolic compounds were studied, includ- ing seven glucose-based gallotannins, five polyalcohol-based gallotannins, and twelve ellagitannins. In the cellulose–polyphenols systems, the polyphenol’s affinity to cellulose is positively correlated with their molecular masses, the number of galloyl groups, and their hydrophobicity (logP). The polyphenol treatment increased the hydrothermal stability of collagen samples, and such effects are also positively correlated with the molecular masses, total number of galloyl groups and the hydrophobicity of polyphenols. Ellagitannins showed much weaker interactions with both biopoly- mers than gallotannins having similar molecular mass, the same number of galloyl groups, and the same number of phenolic hydroxyl groups. It is concluded that, for the polyphenol interactions with both cellulose and collagen, (1) the galloyl group of polyphenols is the functional group; (2) the strength of interactions are positively correlated with molecular size, the number of galloyl groups and the hydrophobicity of polyphenols; (3) the hydrophobic interactions are of great significance; and (4) the interactions are strongly dependent on the flexibility of galloyl groups.
    [Show full text]
  • Tannin Resins for Wood Preservatives: a Review
    Viser Technology Pte. Ltd. Research and Application of Materials Science https://doi.org/10.33142/msra.v1i1.667 Review Article Open Access Tannin Resins for Wood Preservatives: A Review Jinxing Li1, Bin Li1, Jun Zhang1, Xiaojian Zhou1,2,3,* 1 Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, 650224, China 2 Key Lab for Forest Resources Conservation and Utilisation in the Southwest Mountains of China, Southwest Forestry University, Ministry of Education, Kunming 650224, China *Corresponding Author: Xiaojian Zhou, No. 300, Bailongsi, Panlong district, Kunming, 650224, Yunnan Province, China, xiaojianzhou@hotmail. com Abstract: Tannins and wood preservatives, in this article, are briefly introduced at beginning. The research and application progress on tannin resins for wood preservatives at home and abroad are reviewed. The significance and development prospects of research on tannins for wood preservatives are prospected. Keywords: Wood preservatives; Tannin resins; Research progress Citation: J.X. Li et al., Tannin Resins for Wood Preservatives: A Review. Res Appl Mat Sci, 2019,1(1): 45-47. https://doi.org/10.33142/msra.v1i1.667 1. Introduction select suitable wood preservatives, which should take the dam- aging factors and application fields of wood into account. In this Wood is one of the popular building materials at home and paper, the research on tannin resins, a natural and environmen- abroad at all times. In the era of steel and concrete, wood struc- tally protective wood preservative, is reviewed in order to arouse ture has a special charm. However, wood products are vulnera- the mutual encouragement of this industry and realize the devel- ble to microbial damage during storage and use; cause a serious opment of wood preservatives towards renewable raw materials waste of resources, affecting their service life.
    [Show full text]
  • Hardwoods: a Rev Southern Forest Experiment Station New Orleans, Louisiana General Technical Report SO-71 Terry Sellers, Jr., James R
    Department of Forest Service Hardwoods: A Rev Southern Forest Experiment Station New Orleans, Louisiana General Technical Report SO-71 Terry Sellers, Jr., James R. McSween, and William T. Nearn Over a period of years, increasing demand for softwoods in the Eastern United States has led to an increase in the growth of hardwoods on cut-over softwood sites. tinfortunately these hardwood trees are often of a size and shape unsuitable for the production of high-grade lumber and veneer. They do. however. represent a viable. economic source of raw material for plywood, fiberboard, particleboard. and oriented strandboard lor flakeboards), all products that require the successful use of adhesives in their manufacture. The current status of gluing eastern hardwoods is reviewed in this report, with emphasis on hardwoods growing on southern pine sites. The subjects covered include adhesives, wood and wood-surface properties and their interactions with the adhesive, and the quality of the bonds produced when these hardwoods are used in the manufacture of end joints, laminates, plywood, and other composite panels. A variety of adhesives are available that equal or exceed the strength of the hardwoods being bonded. The choice of a particular adhesive is dictated in large measure by the adhesive price and the end-use criteria for the finished product. In discussing the gluing of eastern hardwoods, the approach taken is that the fundamentals that determine the quality of an adhesive bond should remain the same whether the substrate is a softwood or a low-, medium-, or high-density hardwood. To illustrate the differences encountered in gluing the various hardwood species and the best approach for dealing with them in terms of bonding fundamentals, in this report we will concex~trateon: The quality and character of the surface as aflected by wood structure.
    [Show full text]
  • The Commercial Utilization of Tanbark Oak and Western White Oak in Oregon
    The Commercial Utilization of Tanbark Oak and Western White Oak in Oregon by Ralph Dempsey /d\ A Thesis 7 1958 Presented to the Faculty ( of the School of Forestry Ore'on State College In Partial Fulfillment of the Requirements for the Degree Bachelor of Science March 1938 Approved: rofessor 0± forestry INTRODUCTION Tanbark oak, Lithocarpus densiflora (Hooker and Arnott) Rehder, and Oregon white oak (uercus arryana Hooker) are Oreon's most potentially valuable hardwoods. These trees are comparatively well known, but they have received little commercial attention. The people engac'ec9 in the manu- facture cf leather have used the bark of Tanbark oak he- cause it produces a considerable quantity of hirh rad.e tannin. The tree, which has previously been left to rot after the bark had been peeled, could in some way be uti- lized. The Oregon white oak has been used chiefly as fuel. Its uses in other fields has gradually deceased until it is now little used except for firewood. The wood of these species have received little consideration and their possi- bilities are unknown. This study was made for the purpose of reviewing the previous uses of these woods, and with the advent of new methods of kiln drying, to find a solution to a more efficient utilization. The main objections to the use of these woods have been their severe warping sn cheek- ing in seasoning. The results of j:revious studies, and experimental work bein carried on by the Forest Products Laboratory, indicates these woods can be successfully kiln dried. It is hoped that this will give these western oaks a place in the lumber markets of the nation, and there- by lead to a more efficient utilization of these woods.
    [Show full text]
  • Non-Wood Forest Products
    Non-farm income wo from non- od forest prod ucts FAO Diversification booklet 12 FAO Diversification Diversification booklet number 12 Non-farm income wo from non- od forest products Elaine Marshall and Cherukat Chandrasekharan Rural Infrastructure and Agro-Industries Division Food and Agriculture Organization of the United Nations Rome 2009 The views expressed in this publication are those of the author(s) and do not necessarily reflect the views of the Food and Agriculture Organization of the United Nations. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. All rights reserved. Reproduction and dissemination of material in this information product for educational or other non-commercial purposes are authorized without any prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of material in this information product for resale or other commercial purposes is prohibited without written permission of the copyright holders.
    [Show full text]
  • Wood-Based Composite Materials—Panel Products, Glued Laminated
    CHAPTER 11 Wood-Based Composite Materials Panel Products, Glued Laminated Timber, Structural Composite Lumber, and Wood–Nonwood Composites Nicole M. Stark, Research Chemical Engineer Zhiyong Cai, Supervisory Research Materials Engineer Because wood properties vary among species, between Contents trees of the same species, and between pieces from the Conventional Wood-Based Composite Panels 11–2 same tree, solid wood cannot match reconstituted wood Wood Elements 11–3 in the range of properties that can be controlled. Wood Adhesives 11–3 with localized defects (such as knots) can often be utilized effectively in wood-based composites. When wood with Additives 11–6 defects is reduced to wood elements, the influence of these Plywood 11–6 characteristics in the manufactured product is reduced. Oriented Strandboard 11–10 To reinforce sustainable harvesting efforts, wood derived Particleboard 11–11 from small-diameter timber, forest residues, or exotic and invasive species may also be used in wood-based Fiberboard 11–13 composites. Specialty Composite Materials 11–16 Wood-based composite materials can be made up of various Performance and Standards 11–17 wood elements, including fibers, particles, flakes, veneers, Glued Laminated Timber 11–18 or laminates. Properties of such materials can be changed Advantages 11–18 by combining, reorganizing, or stratifying these elements. Types of Glulam Combinations 11–19 When raw material selection is paired with properly selected processing variables, the end result can surpass nature’s best Standards and Specifications 11–19 effort. Manufacture 11–20 The basic element for composite wood products is the fiber, Structural Composite Lumber and Timber with larger particles composed of many fibers (Fig.
    [Show full text]
  • Tannin Management in the Vineyard
    Fact Sheet MaY 2010 tannin Management in the Vineyard Author: Dr Mark Downey Group Leader, Plant Production Sciences, Mildura Senior Research Scientist, Viticulture & Oenology cwrdc GRAPE AND WINE RESEARCH AND DEVELOPMENT CORPORA TION c 210mm tannin ManaGeMent in the VineYaRd Fact Sheet MaY 2010 What is tannin? extension subunits can be any of the flavan-3-ols, but in most studies of grapes, catechin is the common terminal subunit and tannins are bitter and astringent compounds found in most epicatechin is the most common extension subunit. Published plants. they are polyphenolic research suggests that grape compounds that fall into two polymers range in length up to 30- classes, hydrolysable and condensed 40 subunits. tannins. there are many hundreds of There are TWO classes of in grapes, condensed tannins are individual compounds, but they have tannins, HYDROLYSABLE present in high concentration in the a few things in common. all tannins seeds and skins, but are also present bind protein, which is the basis of and CONDENSED tannins in the leaves and stems. tannins are their role in tanning hides for leather also present in wood, but become and gave rise to their name. this bound to cell walls and other phenolics during lignification and property of binding tannin also gives rise to the term astringent are not easily extracted. from the Latin, ad astringere, “to bind”. Roles of tannin Measurement of tannin tannins play two defensive roles, one against micro-organisms there are many methods for measuring tannin. Most methods and the other against herbivores. in both cases tannins bind measure phenolics, rather than tannins.
    [Show full text]
  • Decay Resistance of Laminated Veneer Lumbers from European Oaks
    WOOD RESEARCH 55 (4): 2010 79-90 DECAY RESISTANCE OF LAMINATED VENEER LUMBERS FROM EUROPEAN OAKS Ladislav Reinprecht, Mariana Svoradová, Roman Réh Technical University of Zvolen, Faculty of Wood Sciences and Technology Zvolen, Slovak Republic Rémy Marchal Ensam - Wood Processing Department, Laboratoire Bourguignon des Matériaux et Procédés, Cluny, France Berthrand Charrier University of Pau Adour, Mont de Marsan, France ABSTRACT Natural durability of oaks depends mainly on the concentration of ellagotannins and some other polyphenols. Durability of oak-composite products (plywood, particleboard, laminated veneer lumber, etc.) is influenced also by the characteristics of wooden particles, e.g. their dimensions, hydrothermal pre-treatments, portion and localization of sapwood and heartwood particles in the composite structure, further by the applied glues, waxes and other additives, and by the pressing processes (temperature, time, pressure, etc.). In this work, decay resistance of the hydrothermal treated oaks and the Laminated Veneer Lumbers (LVL-s) prepared under various experimental conditions from European oaks Quercus pedunculata a nd Quercus sessiliflora wa s a na ly sed. Mycolog ica l tests, by modified standard EN 113 using wood-destroying fungiConiophora puteana and Trametes versicolor, shoved that the decay resistance of massive oaks and LVL-s was not influenced by the type of hydrothermal treatments or by the oak species. On the other hand, resistance of LVL-s against rot was significantly influenced by the zone of oak wood (poor from sapwood, better from medium heartwood, and good from young or old heartwood), respectively individually also by the veneer’s thickness (1, 2 or 3 mm) and the type of glue (melamine-urea-formaldehyde, phenol- resorcinol-formaldehyde, polyurethane or PRF-tannin).
    [Show full text]