Wood-Based Composite Materials—Panel Products, Glued Laminated

Total Page:16

File Type:pdf, Size:1020Kb

Wood-Based Composite Materials—Panel Products, Glued Laminated CHAPTER 11 Wood-Based Composite Materials Panel Products, Glued Laminated Timber, Structural Composite Lumber, and Wood–Nonwood Composites Nicole M. Stark, Research Chemical Engineer Zhiyong Cai, Supervisory Research Materials Engineer Because wood properties vary among species, between Contents trees of the same species, and between pieces from the Conventional Wood-Based Composite Panels 11–2 same tree, solid wood cannot match reconstituted wood Wood Elements 11–3 in the range of properties that can be controlled. Wood Adhesives 11–3 with localized defects (such as knots) can often be utilized effectively in wood-based composites. When wood with Additives 11–6 defects is reduced to wood elements, the influence of these Plywood 11–6 characteristics in the manufactured product is reduced. Oriented Strandboard 11–10 To reinforce sustainable harvesting efforts, wood derived Particleboard 11–11 from small-diameter timber, forest residues, or exotic and invasive species may also be used in wood-based Fiberboard 11–13 composites. Specialty Composite Materials 11–16 Wood-based composite materials can be made up of various Performance and Standards 11–17 wood elements, including fibers, particles, flakes, veneers, Glued Laminated Timber 11–18 or laminates. Properties of such materials can be changed Advantages 11–18 by combining, reorganizing, or stratifying these elements. Types of Glulam Combinations 11–19 When raw material selection is paired with properly selected processing variables, the end result can surpass nature’s best Standards and Specifications 11–19 effort. Manufacture 11–20 The basic element for composite wood products is the fiber, Structural Composite Lumber and Timber with larger particles composed of many fibers (Fig. 11–1). Products 11–21 Elements used in production of wood-based composites can Laminated Veneer Lumber 11–22 be made in a great variety of sizes and geometries and can Parallel Strand Lumber 11–22 be used alone or in combination. The choices are almost unlimited. The control of these characteristics—size and Laminated Strand Lumber and Oriented Strand geometry—provide the chief means by which composite Lumber 11–22 materials can be fabricated with predetermined properties. Advantages and Uses 11–22 Currently, the term composite is being used to describe Standards and Specifications 11–23 any wood material adhesively bonded together. This Wood–Nonwood Composite Materials 11–23 encompasses a range of products from fiberboard to Cement-Bonded Composite Materials 11–24 laminated beams and components. Table 11–1 shows a Ceramic-Bonded Composite Materials 11–26 logical basis for classifying wood composites proposed by Maloney (1986). For this chapter, these classifications Wood–Thermoplastic Composite Materials 11–26 were slightly modified from those in the original version to Cellulose Nanocomposites 11–28 reflect the latest product developments. Composites are used Literature Cited 11–28 for a number of nonstructural and structural applications Additional Reference 11–29 in product lines ranging from panels for interior covering 11–1 General Technical Report FPL–GTR–282 Table 11–1. Classification of wood- based compositesa Veneer based material Plywood Laminated veneer lumber (LVL) Parallel-strand lumber (PSL) Laminates Glue laminated timbers Overlayed materials Laminated wood–nonwood compositesb Multiwood composites (COM-PLYc) Composite material Fiberboard (low-, medium-, or high-density) Cellulosic fiberboard Figure 11–1. Common wood elements used in wood-based Hardboard composites from top left, clockwise: shavings, sawdust, Particleboard fiber, large particles, wafers, and strands. Waferboard Flakeboard Oriented strandboard (OSB) Laminated strand lumber (LSL) Oriented strand lumber (OSL) Wood–nonwood composites Wood fiber–polymer composites Inorganic-bonded composites Cellulose nanocomposites aAdapted from Maloney (1986). bPanels or shaped materials combined with nonwood materials such as metal, plastic, and fiberglass. cRegistered trademark of APA–The Engineered Wood Association. fiberboard. Specialty composites are also discussed. Figure 11–2. Wood-based composites used in the The second section covers structural composite lumber Centennial Research Facility at the Forest Products and timber products, including glued laminated timber, Laboratory. Glulam timbers support composite I-joists and laminated veneer lumber, parallel strand lumber, laminated plywood sheathing. (Photo by Steve Schmieding, Forest Products Laboratory.) strand lumber, and oriented strand lumber. Wood–nonwood composites are discussed in the third section, including purposes to panels for exterior uses and in furniture and inorganic-bonded composites and wood-thermoplastic support structures in many different types of buildings composites. Books have been written about each of these (Fig. 11–2). categories, and the constraints of this chapter necessitate that the discussion be general and brief. References are This chapter describes the general composition of wood- provided for more detailed information. based composite products and the materials and processes used to manufacture them. It describes conventional wood- based composite panels and structural composite materials Conventional Wood-Based intended for general construction, interior use, or both. Composite Panels This chapter also describes wood–nonwood composites. Conventional wood-based composites are used for a number The mechanical properties of these types of composites are of structural and nonstructural applications, including panels presented and discussed in Chapter 12. Because wood-based for exterior uses, panels for interior uses, and furniture. composites come in a variety of forms, we briefly describe Performance standards are in place for many conventional several of the most common commercial products. wood-based composite products (Table 11–2). This chapter is organized into three sections. The first Conventional wood-based composites are manufactured section covers conventional wood-based composite panels. products made primarily from wood with only a few percent Woody material types, adhesives, and additives common resin as the bonding agent. Product types of conventional to conventional wood-based composites are summarized. wood-based composites made from various constituent Specific products addressed include panel products such materials can be sub-categorized based on the physical as plywood, oriented strandboard, particleboard, and 11–2 CHAPTER 11 | Wood-Based Composite Materials Table 11–2. Commercial product or performance standards for conventional wood-based composites Product category Applicable standard Name of standard Source Plywood PS 1–09 Voluntary product standard PS 1–09 APA 2010a structural plywood PS 2–10 Voluntary product standard PS 2–10 APA 2010b performance standard for wood-based structural-use panels HP–1–2016 American national standard for hardwood DHA 2016 and decorative plywood ANSI/HPVA HP-1-2016) Oriented strandboard (OSB) PS 2–10 Voluntary product standard PS 2–10 APA 2010b performance standard for wood-based structural-use panels Particleboard ASTM D7033–14 Standard practice for establishing design ASTM 2014 capacities for oriented strand board (OSB) wood-based structural-use panels ANSI A 208.1–2016 Particleboard standard CPA 2016a Fiberboard ANSI A 208.2–2016 MDF standard for interior applications CPA 2016b ANSI A 135.4–2012 Basic hardboard CPA 2012a ANSI A 135.5–2012 Pre-finished hardboard paneling CPA 2012b ANSI A 135.6–2012 Engineered wood siding CPA 2012c ANSI A135.7-2012 Engineered wood trim CPA 2012d ASTM C208–12(2017) Cellulosic fiber insulating board ASTM 2017a Glued-laminated timber (glulam) ANSI A190.1-2017 Standard for Wood Products—structural APA 2017 glued laminated timber Structural composite lumber ASTM D3737-2018 Standard practice for establishing ASTM 2018 (including laminated veneer allowable properties for structural glued lumber (LVL), laminated strand laminated timber (glulam) lumber (LSL), and parallel strand ASTM D5456–19 Standard specification for evaluation of ASTM 2019a lumber (PSL)) structural composite lumber products configuration of the wood elements used to make these A useful way to classify conventional wood-based products: veneer, particle, strand, or fiber. Morphology of composites based on material characteristics is shown in the wood elements influences the properties of composite Figure 11–4. It presents an overview of the most common materials and can be controlled by selection of the wood types of commercial products discussed in this chapter and raw material and by the processing techniques used to a quick reference to how these composite materials compare generate the wood elements. Composite properties can to solid wood from the standpoint of density and general also be controlled by segregation and stratification of processing considerations. The raw material classifications wood elements having different morphologies in different of fibers, particles, and veneers are shown on the left layers of the composite material. In conventional wood- y-axis. Specific gravity and density are shown on the top based composites, properties can also be controlled by use and bottom horizontal axes (x-axes), respectively. The right of adhesives with different cure rates in different layers. y-axis, wet and dry processes, describes in general terms Varying the physical configuration of the wood element, the processing method used to produce a particular product. adjusting the density of
Recommended publications
  • Properties of Flat-Pressed Wood Plastic Composites As a Function of Particle Size and Mixing Ratio
    Journal of Wood Science (2018) 64:279–286 https://doi.org/10.1007/s10086-018-1702-3 ORIGINAL ARTICLE Properties of flat-pressed wood plastic composites as a function of particle size and mixing ratio Khandkar‑ Siddikur Rahman1 · Md Nazrul Islam1 · Sourav Bagchi Ratul1 · Nabila Hasan Dana1 · Saleh Md. Musa1 · Md. Obaidullah Hannan1 Received: 22 September 2017 / Accepted: 14 January 2018 / Published online: 14 February 2018 © The Japan Wood Research Society 2018 Abstract This paper presents the effects of particle size and mixing ratio on the properties including physical, mechanical, and decay resistance of wood plastic composites (WPCs). In addition, it also presents the effects of immersion temperatures on water absorption (WA) and thickness swelling (TS) of the WPCs. WPCs with a thickness of 6 mm were fabricated from Albizia richardiana King & Prain wood particles and recycled polyethylene terephthalate (PET) by the flat-press method. To prepare the WPCs, two different wood particle sizes (0.5–1.0 and 1.01–2.0 mm) were used along with four different mixing ratios (w/w). Subsequently, the physical properties include density, moisture content, WA, and TS, and mechanical properties include modulus of elasticity (MOE) and modulus of rupture (MOR) of the produced WPCs was evaluated. Furthermore, decay resistance was evaluated by the weight loss percentage method. Moreover, the effects of immersion temperatures on WA and TS of WPCs after 24 h of immersion in water at three different temperatures, i.e., 25, 50, and 75 °C were investigated. Results showed that the wood particle size had impact on WPC’s density (only 6% decreased with the increase of particle size); however, the density decreased by 29% when the wood particle content increased from 40 to 70%.
    [Show full text]
  • Wood Research Manufacture of Medium Density Fiberboard (Mdf) Panels from Agribased Lignocellulosic Biomass
    WOOD RESEARCH 62 (4): 2017 615-624 MANUFACTURE OF MEDIUM DENSITY FIBERBOARD (MDF) PANELS FROM AGRIBASED LIGNOCELLULOSIC BIOMASS Mehmet Akgül Necmettin Erbakan University, Seydisehirahmet Cengiz Faculty of Engineering Department of Materials and Metallurgical Engineering Konya, Turkey Birol Uner Suleyman Demirel University, Faculty of Forestry Department of Forest Products Engineering Isparta Turkey Osman Çamlibel Kirikkale University, Kirikkale Vocational School, Department of Materials and Materials Processing Technology Yahsihan/Kirikkale, Turkey Ümit Ayata Atatürk Üniversity, Oltu Vocational School, Department of Forestry and Forest Products Oltu/Erzurum, Turkey (Received January 2016) ABSTRACTS Lignocellulosics fibers and commercially-manufactured-chip (Pinus sylvestris L., Fagus orientalis and Quercus robur L.) with 11% moisture conten twere used for the experiment. The mixingratios of lignocellulosics fibers was 20% which is from okra and tobaccos talks, hazelnut and walnuts hell, and pinecone for each mixture in preformed panel and commercially- manufactured-chip was 100 % for the control sample. A commercial ureaformaldehyde (UF) adhesive was used as a binder. The physical and mechanical properties such as density, thickness swelling (TS), bending strength (BS), modulus elasticity (MOE), internalbond (IB), screw holding ability (SHA) perpendicular to the plane of panel, Janka hardness perpendicular to the plane of panel properties of MDF were measured.The results indicated that all the panels met the general purpose-use requirements of TS-EN. Thus, our results suggest that biomass from different sources can be an alternative raw material for MDF manufacturing process. KEYWORDS: Lignocellulosic biomass, MDF, physical and mechanical properties. 615 WOOD RESEARCH INTRODUCTION The demand in forest products industry is increasing with population and new product development.
    [Show full text]
  • The Development of Forest-Based Biorefineries: Implications for Market Behavior and Policy
    The Development of Forest-based Biorefineries: Implications for Market Behavior and Policy Patrik Söderholm and Robert Lundmark Abstract and the use of biomass is expected to constitute a major In a forest-based biorefinery, the entire potential of share of the future total use of renewable energy sources forest raw materials and byproducts may be used to pro- in Europe (European Commission 1997, 2006). Essential duce a diverse set of products, including transport fuels, components of national energy policies in Europe, there- chemicals, and pulp and paper products. This paper ana- fore, include not only direct promotion of renewable ener- lyzes the general impact on forest raw material markets gy technologies (e.g., investment and R&D support), but following an increased diffusion of biorefineries and high- also carbon dioxide taxes and emissions trading in carbon lights a number of related public policy issues. The analy- dioxide allowances that discourage the use of fossil fuels. The transition from a fossil fuel-based to a carbon-free sis indicates that the character of forest raw material sup- energy system may have important consequences for the ply, in particular the distinction between main products use of raw materials in society, not the least in cases of and byproducts, will have a major influence on the func- agricultural and forest-based resources. Increases in the tioning and the organization of future forest products mar- relative prices of fossil fuels affect a large number of indus- kets. Moreover, the advent of new uses of forest-based bio- trial and end-use sectors of the economy.
    [Show full text]
  • Glulam Sizes and Shapes Can Help Desigggners Meet Their Most Demanding Architectural and Structural Requirements Using Numerous Innovative Design Examples
    WoodWorks Webinar “The Wood Products Council” is a Registered Provider with The Decem ber 11, 2013 AmericanInstituteofArchitectsContinuingEducationSystems(AIA/CES). Credit(s) earned on completion of this program will be reported to Glued Laminated Timber – An AIA/CES for AIA members. Certificates of Completion for both AIA Innovative and Versatile members and non-AIA members are available upon request. This p rog ra m is r egiste r ed wi th AIA/CES foocotr continu in gpoessoag professional Engineered Wood Composite education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any Product material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Tom Williamson, P.E. Timber Engineering LLC QQp,,uestions related to specific materials, methods, and services will FASCE, FSEI be addressed at the conclusion of this presentation. Retired Vice President, APA FEtiVPAITCFormer Executive VP, AITC Learning Objectives 1. To illustrate how the flexibility of glulam sizes and shapes can help desigggners meet their most demanding architectural and structural requirements using numerous innovative design examples. Copyright Materials 2. To familiarize designers with how to properly select and specify glulam incorporating relevant industry standards and codes. This presentation is protected by US and 3. To provide design professionals with an overview of key design International Copyright laws. Reproduction, considerations that must be considered to ensure both the structural distribution, display and use of the presentation performance and long-term durability of glulam structures. without written permission of the speaker is 4.
    [Show full text]
  • Laval University
    LAVAL UNIVERSITY FACULTY OF FORESTRY AND GEOMATICS Department of Wood and Forest Sciences Sponsored by the International Development Center (IDRC) Ottawa, Canada “The Hidden World that Feeds Us: the Living Soil” Seminars given at the International Institute for Trropical Agriculture (ITA) Univeristy of Ibadan, Nigeria at the International Centre of Research in Agroforestry (ICRAF) Nairobi, Kenya and at the Ukrainian Academy of Agricultural Sciences Kiev, Ukraine by Professor Gilles Lemieux Department of Wood and Forestry Science ORIGINAL FRENCH PUBLICATION Nº 59b http://forestgeomat.ffg.ulaval.ca/brf/ edited by Coordination Group on Ramial Wood Depatment of Wood and Forestry Science Québec G1K 7P4 QUÉBEC CANADA TABLE OF CONTENTS I. A brief history: the evolution of ecosystems and man’s anthropocentric behaviour 1 II. The importance of the forest in tropical climates 2 III. The basic composition of wood 3 1. Lignin and its derivatives and their role in doil dynamic 5 IV. Stem wood and ramial wood 6 1. Stem wood and its lignin 6 2. Ramial wood and its lignin 6 3. Agricultural and forestry trials using ramial wood 7 V. “Organic Matter”, one of the basic principles in agriculture 9 1. Some a posteriori thoughts 10 2. The rationale for chipping 10 3. More like a food than a fertilizer 11 4. The principles behind chipping 11 VI. Lignin 13 1.The nutrients question 14 2.The biological cycling of water in tropical climates 15 3.“Chemical” nutrients 15 4.Nitrogen 15 5.Phosphorus 16 VII. A tentative theory 17 1.Too much or too little water 17 2.The soil-structuring role of lignin 17 3.The role of trophic web 18 4.Living beyond the soil’s chemical constraints 18 5.The major cause of tropical soils degradation.
    [Show full text]
  • The Decomposition of Forest Products in Landfills
    International Biodeterioration & Biodegradation Vol. 39, No. 2–3 (1997) 145–158 Published by Elsevier Science Limited Printed in Great Britain PII:S0964-8305(96)00039-X 0964-8305/97 $17.00 + .00 ELSEVIER The Decomposition of Forest Products in Landfills J. A. Micales & K. E. Skog USDA Forest Service, Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705, USA (Received 3 April 1996; revised version received 25 June 1996; accepted 22 July 1996) Large quantities of forest products are disposed of in landfills annually. The fate of this vast pool of carbon is important since carbon sequestration and the generation of landfill gases have important implications for global warming. Published estimates of methane yields were used to estimate the amount of carbon released into the atmosphere from landfilled forest products. These calculations suggest that maximally only 30%, of the carbon from paper and 0- 3% of the carbon from wood are ever emitted as landfill gas. The remaining carbon, approximately 28 Tg in 1993, remains in the landfill indefinitely. Some of this carbon may be removed during leachate treatment, but a large portion is permanently sequestered where its impact on global warming is negligible. The placement of forest products in landfills serves as a significant carbon sink, and its importance in the global carbon balance should not be overlooked. Published by Elsevier Science Limited INTRODUCTION warming? President Clinton’s Climatic Change Action Plan (Clinton & Gore, 1993) sets a US In 1993, the US Environmental Protection Agency objective of restraining carbon emission growth (EPA) (1994) estimated that 50 Tgl of paper and and increasing sequestration by a total of 100 Tg/ 18.6 Tg of wood were discarded in the United year by the year 2000.
    [Show full text]
  • Influence of Hemicelluloses Content on the Paper Quality Produced with Eucalyptus Globulus Fibres
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Repositório Científico do Instituto Politécnico de Castelo Branco Proceedings of Progress in Paper Physics Seminar 2004, Norway, Trondheim, 21 a 24 de Junho, p. 50-52 Influence of hemicelluloses content on the paper quality produced with Eucalyptus globulus fibres. Ofélia Anjos1, António Santos2, and Rogério Simões2 1Escola Superior de Agrária – 6001-909 Castelo Branco, Portugal, [email protected] 2Universidade da Beira Interior, 6201-001 Covilhã, Portugal, [email protected] Abstract The raw-material composition and the cooking conditions determine the pulp composition and this affect the behaviour of the pulp in the beating process and the papermaking potential. However, at industrial scale the variability of the pulp composition, for a given raw material and a given process, is relatively low and usually it is difficult to quantify the impacts of pulp composition on beating and papermaking. In the present study E. globulus bleached pulps were produced under different cooking conditions by the kraft process in order to obtain pulps with significant different hemicelluloses content (19% versus 14.5%). The behaviour of the pulps in beating and the papermaking potential were investigated under two beating intensities in the PFI mill and at four beating times. The pulp suspensions were characterised in terms of drainability, fibre morphology, wet fibre flexibility and relative bonded area. The paper produced was evaluated in terms of structural, superficial, mechanical and optical properties. The results showed the clear effect of the hemicelluloses content on the beating rate as well as on the paper properties.
    [Show full text]
  • Fortified Mangrove Tannin-Based Plywood Adhesive
    Fortified Mangrove Tannin-Based Plywood Adhesive S. SOWUNMI,1 R. O. EBEWELE,1,* A. H. CONNER,2 AND B. H. RIVER2 1Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria; and 2Forest Products Laboratory, One Gifford Pinchot Drive, Madison, Wisconsin 53705 SYNOPSIS Mangrove bark tannin adhesives are based on a renewable resource. They are potential substitutes or supplements for phenol-formaldehyde (PF) wood-bonding adhesives which are derived from petroleum, a finite natural resource. However, mangrove tannin adhesives exhibit poor adhesive properties including poor wet strength, brittleness, and poor wood penetration. These problems were addressed by treating tannin extract with acetic anhydride and then sodium hydroxide followed by modification with 20% resole-type PF resin. Sig- nificant structural changes occurred after the chemical treatment. Heat of reaction of tannin with formaldehyde was increased while the activation energy was drastically reduced. Pre- mature cure was also reduced. The fortified formulations had good plywood adhesive prop- erties. 1996 John Wiley & Sons, Inc. INTRODUCTION poor wood penetration, and poor wet strength. Rea- sons advanced for these shortcomings inter alia in- 1,2,6,7 There have been several attempts to replace part of clude the following. the petroleum-derived phenolic compounds in wood bonding adhesives with phenolic-type compounds 1. The tannin molecules are big and therefore obtained from renewable sources. Principal among cannot rotate freely about their backbone. these efforts is the development of adhesives from This results in the observed inherent brittle- tannin. 1,2 Tannin-based adhesives have in the past ness. been heavily fortified with urea, urea-formaldehyde 2.
    [Show full text]
  • Use of Fire-Impacted Trees for Oriented Strandboards
    Use of fire-impacted trees for oriented strandboards Laura Moya✳ Jerrold E. Winandy✳ William T. Y. Tze✳ Shri Ramaswamy Abstract This study evaluates the potential use of currently unexploited burnt timber from prescribed burns and wildfires for oriented strandboard (OSB). The research was performed in two phases: in Phase I, the effect of thermal exposure of timber on OSB properties was evaluated. Jack pine (Pinus banksiana) trees variously damaged by a moderately intense prescribed burn in a northern Wisconsin forest were selected. Four fire-damage levels of wood were defined and processed into series of single-layer OSB. The flakes used in Phase I had all char removed. Mechanical and physical properties were evaluated in accordance with ASTM D 1037. Results showed that OSB engineering performance of all four fire-damage levels were similar, and their me­ chanical properties met the CSA 0437 requirements. In Phase II, we assessed OSB properties from fire-killed, fire-affected and virgin red pine (Pinus resinosa) trees from a central Wisconsin forest exposed to an intense wildfire. The effect of various thermal exposures and varying amounts of char on OSB performance were evaluated. Phase II findings indicate that fire-damage level and bark amount had significant effects on the board properties. Addition of 20 percent charred bark had an adverse effect on bending strength; however, OSB mechanical properties still met the CSA requirements for all fire levels. Conversely, bark addition up to 20 percent was found to improve dimension stability of boards. This study suggests that burnt timber is a promising alternative bio-feedstock for commercial OSB production.
    [Show full text]
  • Analysis of Phenolic and Tannin Contents in the Methanol Extract Of
    Journal of Advances in Tropical Biodiversity and Environmental Sciences 3(1): 5-7, February 2019 (p-ISSN: 2549-6980) DOI: 10.24843/atbes.v03.i01.p02 Available online at: https://ojs.unud.ac.id/index.php/ATBES/article/view/48507 5 Analysis of Phenolic and Tannin Contents in the Methanol Extract of Sweet and Sour Star Fruit Plants (Averrhoa carambola L) Leaves Commonly Used as Raw Materials of Lawar (A Balinese Traditional Food) Ni Putu Adriani Astiti1), Sang Ketut Sudirga1), Yan Ramona1,2) 1Biology Department, Faculty of Natural Sciences, Udayana University, Bali-Indonesia 2Integrated Lab. of Biosciences and Biotechnology, Udayana University, Bali-Indonesia E-mail : [email protected] Abstract. Lawar, a special Balinese food made of leaves of star fruit plant, is commonly served in any Balinese traditional events, such as temple festival or wedding parties. The leaves of sweet and sour star fruit plant are used to make this traditional food. In this research, phenolic and tannin content of leaves of these types of plant were analyzed with a view to investigate their potential as antioxidant source. Phenolic compound has been well known to have antioxidant activity by neutralizing free radicals and stabilizing singlet oxygen. This compound has capacity to reduce free radicals by chelating metal ions or inhibiting enzymatic system, such as cyclo-oxygenase, mono-oxygenase or xanthine oxidase that catalyze formation of free radicals. [4] reported that plants with high content of phenolic compounds tend to have high nutritious and antioxidant activities Tannin is a compound belongs to polyphenolic group. Such compound is abundantly found in any plants.
    [Show full text]
  • The Black Wattle in Hawaii and Recommend the Same for Publication As Bulle­ Tin No
    HAWAII AQRICULTVRAL EXPERIMENT STA'I'IO!i. :J. G. SI\IITH, SPECIAJ:, AGENT IN CHARGE. BULLETIN No. 11. ·THE BLACK·WATTLE (Acacia c!eCUt'f,ens) IN HAWAII. BY JARED G. SMITH, SPECIAL AGENT IN CHARGE, HAWAII AGRICULTURAL EXPERIMENT STATION. UNDER THE. _Sl,l'ERVISION .. OJ' OF'F_ICE OF EXPERIMENT STP.TIONS, U.S. !)epartment ofAgriculture. WASHINGTON: :: ·--<: ;,: .. '~. -- .'. GOVERN~IENT PRI)'<TING. OFFICE: 1996. 863 HAWAII AGRICULTURAL EXPERIMENT STATION. J. G. SMITH, SPECIAL AGENT IN CHARGE. BULLETIN No. 11. 'THE BLACK WATTLE (Acacia decurrens) IN HA\VAII. BY JARED G. SMITH, SPECIAL AGENT IN CHARGE, HAWAII AGRICULTURAL EXPERIMENT STATION. UNDER THE SUPERVISION OF OFFICE OF EXPERIMENT STATIONS, U. S. Department ofAgriculture. WASHINGTON: GOVERNMENT PRINTING OFFICE. I 9 06. HAWAII AGRICULTURAL EXPERIMENT STATION, HONOLULU. [Under the supervision of A. C. TRuE; Director of the Office of Experiment Stations, United States Department of Agriculture.] STATION STAFF. JARED G. SMITH, Special, Agent in Charge. D. L. VAN DINE, Entomotogist. EDMUND C. SHOREY, Chemist. J.E. HIGGINS, Horticulturist. F. G. KRAUSS, In Charge of Rice Investigations. Q. Q. BRADFORD, Farm Foreman. C. R; BLACOW; In Charge ofTobacco Experiments (P. 0., Paauilo, Hawaii). \2) LETTER OF TRANSMITl'AL. HONOLULU, HAWAII, January 1, 1906. Sm: I have the honor to transmit herewith a paper on The Black Wattle in Hawaii and recommend the same for publication as Bulle­ tin No. 11 of the Hawaii Agricultural Experiment Station. Very respectfully, JARED G. SMITH, Special Agent in Charge, Hawaii Agricultural Experiment Station. Dr. A. C. TRUE, Director, Office of Experiment Stations, U.S. Department of Agriculture, Washington, D. 0.
    [Show full text]
  • Timber Bridges Design, Construction, Inspection, and Maintenance
    Timber Bridges Design, Construction, Inspection, and Maintenance Michael A. Ritter, Structural Engineer United States Department of Agriculture Forest Service Ritter, Michael A. 1990. Timber Bridges: Design, Construction, Inspection, and Maintenance. Washington, DC: 944 p. ii ACKNOWLEDGMENTS The author acknowledges the following individuals, Agencies, and Associations for the substantial contributions they made to this publication: For contributions to Chapter 1, Fong Ou, Ph.D., Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For contributions to Chapter 3, Jerry Winandy, Research Forest Products Technologist, USDA Forest Service, Forest Products Laboratory. For contributions to Chapter 8, Terry Wipf, P.E., Ph.D., Associate Professor of Structural Engineering, Iowa State University, Ames, Iowa. For administrative overview and support, Clyde Weller, Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For consultation and assistance during preparation and review, USDA Forest Service Bridge Engineers, Steve Bunnell, Frank Muchmore, Sakee Poulakidas, Ron Schmidt, Merv Eriksson, and David Summy; Russ Moody and Alan Freas (retired) of the USDA Forest Service, Forest Products Laboratory; Dave Pollock of the National Forest Products Association; and Lorraine Krahn and James Wacker, former students at the University of Wisconsin at Madison. In addition, special thanks to Mary Jane Baggett and Jim Anderson for editorial consultation, JoAnn Benisch for graphics preparation and layout, and Stephen Schmieding and James Vargo for photographic support. iii iv CONTENTS CHAPTER 1 TIMBER AS A BRIDGE MATERIAL 1.1 Introduction .............................................................................. l- 1 1.2 Historical Development of Timber Bridges ............................. l-2 Prehistory Through the Middle Ages ....................................... l-3 Middle Ages Through the 18th Century ................................... l-5 19th Century ............................................................................
    [Show full text]