Recent Progress in Algebra
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Algorithmic Approach to Operator Product Expansions, W-Algebras
Katholieke Universiteit Leuven Faculteit Wetenschappen Instituut voor Theoretische Fysica An Algorithmic Approach to Operator Product Expansions, -Algebras and -Strings W W Promotor: Dr. W. Troost Proefschrift ingediend tot het behalen van de graad van Doctor in de Wetenschappen door Kris Thielemans Leuven, juni 1994. arXiv:hep-th/9506159v1 23 Jun 1995 Jun 23 arXiv:hep-th/9506159v1 Notations ¯ d d Abstract ∂, ∂ : dz , dz¯. δ : infinitesimal transformation with ε(x) an infinitesimal parameter. String theory is currently the most promising theory to explain ε the spectrum of the elementary particles and their interactions. : T1T2 : : normal ordening. One of its most important features is its large symmetry group, which contains the conformal transformations in two dimensions OPA : Operator Product Algebra, subsection 2.3.3. as a subgroup. At quantum level, the symmetry group of a theory OPE : Operator Product Expansions, section 2.3. gives rise to differential equations between correlation functions of observables. We show that these Ward-identities are equiva- [T1(z)T2(z0)] : the complete OPE. lent to Operator Product Expansions (OPEs), which encode the T1(z)T2(z0) : singular part of an OPE. short-distance singularities of correlation functions with symme- try generators. The OPEs allow us to determine algebraically −n [T1T2]n : coefficient of (z z0) in the OPE [T1(z)T2(z0)], eq. (2.3.3). many properties of the theory under study. We analyse the calcu- − << c 0 2T ∂T >> : list of the operators at the singular poles in an OPE. High- lational rules for OPEs, give an algorithm to compute OPEs, and 2 | | | discuss an implementation in Mathematica. -
Mathematical Association of America Ohio Section
Program of Activities For the 90 th Annual Meeting of the Mathematical Association of America Ohio Section Spring 2006 The University of Akron Akron, Ohio March 31-April 1, 2006 MAA Ohio Section Program Friday, March 31, 2006 8:00—Noon NExT Workshop College of Arts and Sciences Building (CAS) Room 134 Noon—4:30 Registration Student Union, Second Floor, Theatre Area Book exhibits Student Union, Second Floor, Atrium Noon—1:20 Student problem-solving team competition CAS 107 12:15—1:15 Committee Meetings CONCUR Student Union, 308 CONSACT Student Union, 310 CONSTUM Student Union, 312 CONTEAL Student Union, 314 Program Committee Student Union, 316 1:30—1:45 Welcome and Announcements Student Union Theatre 1:45—2:45 Invited address: Student Union Theatre “Going Up and Down” Georgia Benkart, University of Wisconsin – Madison 2:45—3:10 Break & refreshments Lobby Area, Student Union 3:10—4:05 Retiring President’s address: Student Union Theatre “Some Thoughts on Rings and Things” Dwight Olson, John Carroll University 4:20—6:15 Contributed p aper sessions College of Arts and Sciences Bldg (CAS) 4:20—6:15 Special session on Applied Mathematics CAS 4:20—6:15 Executive Committee Meeting CAS 124 Conference Room 6:15—6:45 Social Time Martin University Center (Fir Street) 6:45—8:00 Banquet Martin University Center (Fir Street) 6:15—8:00 Student Pizza Party CAS Atrium and nearby rooms 8:00—8:45 After-dinner talk: Martin University Center (Fir Street) “Developing an undergraduate research program” Tom Price, The University of Akron 8:45 Business meeting -
Center and Composition Conditions for Abel Equation
Center and Comp osition conditions for Ab el Equation Thesis for the degree of Do ctor of Philosophy by Michael Blinov Under the Sup ervision of professor Yosef Yomdin Department of Theoretical Mathematics The Weizmann Institute of Science Submitted to the Feinb erg Graduate Scho ol of the Weizmann Institute of Science Rehovot Israel June Acknowledgments I would like to thank my advisor Professor Yosef Yomdin for his great sup ervision constant supp ort and encouragement for guiding and stimulat ing my mathematical work I should also mention that my trips to scien tic meetings were supp orted from Y Yomdins Minerva Science Foundation grant I am grateful to JP Francoise F Pakovich E Shulman S Yakovenko and V Katsnelson for interesting discussions I thank Carla Scapinello Uruguay Jonatan Gutman Israel Michael Kiermaier Germany and Oleg Lavrovsky Canada for their results obtained during summer pro jects that I sup ervised I am also grateful to my mother for her patience supp ort and lo ve I wish to thank my mathematical teacher V Sap ozhnikov who gave the initial push to my mathematical research Finally I wish to thank the following for their friendship and in some cases love Lili Eugene Bom Elad Younghee Ira Rimma Yulia Felix Eduard Lena Dima Oksana Olga Alex and many more Abstract We consider the real vector eld f x y gx y on the real plane IR This vector eld describ es the dynamical system x f x y y g x y A classical CenterFo cus problem whichwas stated byHPoincare in s is nd conditions on f g under which all tra jectories -
Multilinear Algebra and Applications July 15, 2014
Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3. -
PBW Deformations of Artin-Schelter Regular Algebras and Their Omogeh Nizations Jason D
University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 2013 PBW Deformations of Artin-Schelter Regular Algebras and Their omogeH nizations Jason D. Gaddis University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Mathematics Commons Recommended Citation Gaddis, Jason D., "PBW Deformations of Artin-Schelter Regular Algebras and Their omoH genizations" (2013). Theses and Dissertations. 98. https://dc.uwm.edu/etd/98 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. PBW deformations of Artin-Schelter regular algebras and their homogenizations by Jason D. Gaddis A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics at The University of Wisconsin-Milwaukee May 2013 ABSTRACT PBW deformations of Artin-Schelter regular algebras and their homogenizations by Jason D. Gaddis The University of Wisconsin-Milwaukee, 2013 Under the Supervision of Professor Allen Bell A central object in the study of noncommutative projective geometry is the (Artin-Schelter) regular algebra, which may be considered as a noncommutative version of a polynomial ring. We extend these ideas to algebras which are not necessarily graded. In particular, we define an algebra to be essentially regular of dimension d if its homogenization is regular of dimension d + 1. Essentially regular algebras are described and it is shown that that they are equivalent to PBW deformations of regular algebras. -
Multilinear Algebra
Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R. -
Vector Calculus and Differential Forms
Vector Calculus and Differential Forms John Terilla Math 208 Spring 2015 1 Vector fields Definition 1. Let U be an open subest of Rn.A tangent vector in U is a pair (p; v) 2 U × Rn: We think of (p; v) as consisting of a vector v 2 Rn lying at the point p 2 U. Often, we denote a tangent vector by vp instead of (p; v). For p 2 U, the set of all tangent vectors at p is denoted by Tp(U). The set of all tangent vectors in U is denoted T (U) For a fixed point p 2 U, the set Tp(U) is a vector space with addition and scalar multiplication defined by vp + wp = (v + w)p and αvp = (αv)p: Note n that as a vector space, Tp(U) is isomorphic to R . Definition 2. A vector field on U is a function X : U ! T (Rn) satisfying X(p) 2 Tp(U). Remark 1. Notice that any function f : U ! Rn defines a vector field X by the rule X(p) = f(p)p: Denote the set of vector fields on U by Vect(U). Note that Vect(U) is a vector space with addition and scalar multiplication defined pointwise (which makes sense since Tp(U) is a vector space): (X + Y )(p) := X(p) + Y (p) and (αX)(p) = α(X(p)): Definition 3. Denote the set of functions on the set U by Fun(U) = ff : U ! Rg. Let C1(U) be the subset of Fun(U) consisting of functions with continuous derivatives and let C1(U) be the subset of Fun(U) consisting of smooth functions, i.e., infinitely differentiable functions. -
Program of the Sessions San Diego, California, January 9–12, 2013
Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes. -
Ring (Mathematics) 1 Ring (Mathematics)
Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right. -
AMS Council Minutes
American Mathematical Society Council Minutes Chicago, Illinois 24 April 2010 at noon Prepared 13 May 2010 Abstract The Council of the Society met at noon on Saturday, 24 April 2010, in the Chicago Room of the Chicago O’Hare Hilton Hotel, O’Hare International Airport, Chicago, IL, 60666.These are the minutes of that meeting. Although some items were treated in Executive Session, all actions taken are reported in these minutes. Council Minutes 24 April 2010 Page 5 I. MINUTES 1. Call to Order 1.1. Opening of the Meeting and Introductions AMS President George Andrews called the meeting to order promptly at noon, CDT, and presided throughout. He asked those present to introduce themselves. Other Council members present were: Alejandro Adem, Georgia Benkart, Sylvain E. Cappell, Ralph L. Cohen, Robert J. Daverman, John M. Franks, Eric M. Friedlander, Robert Guralnick, Richard Hain, Bryna Kra, William A. Massey, Frank Morgan, Jennifer Schultens, Chi-Wang Shu, Joseph H. Silverman, Ronald M. Solomon, Panagiotis E. Souganidis, Janet Talvacchia, Christophe Thiele, Michelle L. Wachs, Steven H. Weintraub, Sarah J. Witherspoon, and David Wright. Other interested parties and guests were: Sandy Golden (Administrative Assistant, AMS Secretary), Sheldon H. Katz (Chair, AMS Nominating Committee), Ellen Maycock (AMS Associate Executive Director), Donald McClure (AMS Executive Director), and Ronald J. Stern (AMS Board of Trustees). Steven Weintraub was the voting Associate Secretary. 1.2. 2009 Elections and More Newly elected or appointed members of the Council took office on 01 February 2010, and they are: President Elect Eric Friedlander Vice President: Sylvain Cappell Members at Large Alejandro Adem Richard Hain Jennifer Schultens Janet Talvacchia Christophe Thiele Math Reviews Editorial Committee Chair Ronald M. -
Arxiv:1711.00219V2 [Math.OA] 9 Aug 2019 R,Fe Rbblt,Glbr Coefficients
CUMULANTS, SPREADABILITY AND THE CAMPBELL-BAKER-HAUSDORFF SERIES TAKAHIRO HASEBE AND FRANZ LEHNER Abstract. We define spreadability systems as a generalization of exchangeability systems in order to unify various notions of independence and cumulants known in noncommutative probability. In particular, our theory covers monotone independence and monotone cumulants which do not satisfy exchangeability. To this end we study generalized zeta and M¨obius functions in the context of the incidence algebra of the semilattice of ordered set partitions and prove an appropriate variant of Faa di Bruno’s theorem. With the aid of this machinery we show that our cumulants cover most of the previously known cumulants. Due to noncommutativity of independence the behaviour of these cumulants with respect to independent random variables is more complicated than in the exchangeable case and the appearance of Goldberg coefficients exhibits the role of the Campbell-Baker-Hausdorff series in this context. In a final section we exhibit an interpretation of the Campbell-Baker-Hausdorff series as a sum of cumulants in a particular spreadability system, thus providing a new derivation of the Goldberg coefficients. Contents 1. Introduction 2 2. Ordered set partitions 4 2.1. Set partitions 4 2.2. Ordered set partitions 5 2.3. Incidence algebras and multiplicative functions 8 2.4. Special functions in the poset of ordered set partitions 10 3. A generalized notion of independence related to spreadability systems 11 3.1. Notation and terminology 11 3.2. Spreadability systems 13 3.3. Examples from natural products of linear maps 14 3.4. E-independence 15 3.5. -
Algebra & Number Theory
Algebra & Number Theory Volume 4 2010 No. 2 mathematical sciences publishers Algebra & Number Theory www.jant.org EDITORS MANAGING EDITOR EDITORIAL BOARD CHAIR Bjorn Poonen David Eisenbud Massachusetts Institute of Technology University of California Cambridge, USA Berkeley, USA BOARD OF EDITORS Georgia Benkart University of Wisconsin, Madison, USA Susan Montgomery University of Southern California, USA Dave Benson University of Aberdeen, Scotland Shigefumi Mori RIMS, Kyoto University, Japan Richard E. Borcherds University of California, Berkeley, USA Andrei Okounkov Princeton University, USA John H. Coates University of Cambridge, UK Raman Parimala Emory University, USA J-L. Colliot-Thel´ ene` CNRS, Universite´ Paris-Sud, France Victor Reiner University of Minnesota, USA Brian D. Conrad University of Michigan, USA Karl Rubin University of California, Irvine, USA Hel´ ene` Esnault Universitat¨ Duisburg-Essen, Germany Peter Sarnak Princeton University, USA Hubert Flenner Ruhr-Universitat,¨ Germany Michael Singer North Carolina State University, USA Edward Frenkel University of California, Berkeley, USA Ronald Solomon Ohio State University, USA Andrew Granville Universite´ de Montreal,´ Canada Vasudevan Srinivas Tata Inst. of Fund. Research, India Joseph Gubeladze San Francisco State University, USA J. Toby Stafford University of Michigan, USA Ehud Hrushovski Hebrew University, Israel Bernd Sturmfels University of California, Berkeley, USA Craig Huneke University of Kansas, USA Richard Taylor Harvard University, USA Mikhail Kapranov Yale