Topological Vector Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Completeness in Quasi-Pseudometric Spaces—A Survey
mathematics Article Completeness in Quasi-Pseudometric Spaces—A Survey ¸StefanCobzas Faculty of Mathematics and Computer Science, Babe¸s-BolyaiUniversity, 400 084 Cluj-Napoca, Romania; [email protected] Received:17 June 2020; Accepted: 24 July 2020; Published: 3 August 2020 Abstract: The aim of this paper is to discuss the relations between various notions of sequential completeness and the corresponding notions of completeness by nets or by filters in the setting of quasi-metric spaces. We propose a new definition of right K-Cauchy net in a quasi-metric space for which the corresponding completeness is equivalent to the sequential completeness. In this way we complete some results of R. A. Stoltenberg, Proc. London Math. Soc. 17 (1967), 226–240, and V. Gregori and J. Ferrer, Proc. Lond. Math. Soc., III Ser., 49 (1984), 36. A discussion on nets defined over ordered or pre-ordered directed sets is also included. Keywords: metric space; quasi-metric space; uniform space; quasi-uniform space; Cauchy sequence; Cauchy net; Cauchy filter; completeness MSC: 54E15; 54E25; 54E50; 46S99 1. Introduction It is well known that completeness is an essential tool in the study of metric spaces, particularly for fixed points results in such spaces. The study of completeness in quasi-metric spaces is considerably more involved, due to the lack of symmetry of the distance—there are several notions of completeness all agreing with the usual one in the metric case (see [1] or [2]). Again these notions are essential in proving fixed point results in quasi-metric spaces as it is shown by some papers on this topic as, for instance, [3–6] (see also the book [7]). -
On Quasi Norm Attaining Operators Between Banach Spaces
ON QUASI NORM ATTAINING OPERATORS BETWEEN BANACH SPACES GEUNSU CHOI, YUN SUNG CHOI, MINGU JUNG, AND MIGUEL MART´IN Abstract. We provide a characterization of the Radon-Nikod´ymproperty in terms of the denseness of bounded linear operators which attain their norm in a weak sense, which complement the one given by Bourgain and Huff in the 1970's. To this end, we introduce the following notion: an operator T : X ÝÑ Y between the Banach spaces X and Y is quasi norm attaining if there is a sequence pxnq of norm one elements in X such that pT xnq converges to some u P Y with }u}“}T }. Norm attaining operators in the usual (or strong) sense (i.e. operators for which there is a point in the unit ball where the norm of its image equals the norm of the operator) and also compact operators satisfy this definition. We prove that strong Radon-Nikod´ymoperators can be approximated by quasi norm attaining operators, a result which does not hold for norm attaining operators in the strong sense. This shows that this new notion of quasi norm attainment allows to characterize the Radon-Nikod´ymproperty in terms of denseness of quasi norm attaining operators for both domain and range spaces, completing thus a characterization by Bourgain and Huff in terms of norm attaining operators which is only valid for domain spaces and it is actually false for range spaces (due to a celebrated example by Gowers of 1990). A number of other related results are also included in the paper: we give some positive results on the denseness of norm attaining Lipschitz maps, norm attaining multilinear maps and norm attaining polynomials, characterize both finite dimensionality and reflexivity in terms of quasi norm attaining operators, discuss conditions to obtain that quasi norm attaining operators are actually norm attaining, study the relationship with the norm attainment of the adjoint operator and, finally, present some stability results. -
K-THEORY of FUNCTION RINGS Theorem 7.3. If X Is A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 69 (1990) 33-50 33 North-Holland K-THEORY OF FUNCTION RINGS Thomas FISCHER Johannes Gutenberg-Universitit Mainz, Saarstrage 21, D-6500 Mainz, FRG Communicated by C.A. Weibel Received 15 December 1987 Revised 9 November 1989 The ring R of continuous functions on a compact topological space X with values in IR or 0Z is considered. It is shown that the algebraic K-theory of such rings with coefficients in iZ/kH, k any positive integer, agrees with the topological K-theory of the underlying space X with the same coefficient rings. The proof is based on the result that the map from R6 (R with discrete topology) to R (R with compact-open topology) induces a natural isomorphism between the homologies with coefficients in Z/kh of the classifying spaces of the respective infinite general linear groups. Some remarks on the situation with X not compact are added. 0. Introduction For a topological space X, let C(X, C) be the ring of continuous complex valued functions on X, C(X, IR) the ring of continuous real valued functions on X. KU*(X) is the topological complex K-theory of X, KO*(X) the topological real K-theory of X. The main goal of this paper is the following result: Theorem 7.3. If X is a compact space, k any positive integer, then there are natural isomorphisms: K,(C(X, C), Z/kZ) = KU-‘(X, Z’/kZ), K;(C(X, lR), Z/kZ) = KO -‘(X, UkZ) for all i 2 0. -
Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces
Axioms 2013, 2, 224-270; doi:10.3390/axioms2020224 OPEN ACCESS axioms ISSN 2075-1680 www.mdpi.com/journal/axioms Article Quantitative Hahn-Banach Theorems and Isometric Extensions for Wavelet and Other Banach Spaces Sergey Ajiev School of Mathematical Sciences, Faculty of Science, University of Technology-Sydney, P.O. Box 123, Broadway, NSW 2007, Australia; E-Mail: [email protected] Received: 4 March 2013; in revised form: 12 May 2013 / Accepted: 14 May 2013 / Published: 23 May 2013 Abstract: We introduce and study Clarkson, Dol’nikov-Pichugov, Jacobi and mutual diameter constants reflecting the geometry of a Banach space and Clarkson, Jacobi and Pichugov classes of Banach spaces and their relations with James, self-Jung, Kottman and Schaffer¨ constants in order to establish quantitative versions of Hahn-Banach separability theorem and to characterise the isometric extendability of Holder-Lipschitz¨ mappings. Abstract results are further applied to the spaces and pairs from the wide classes IG and IG+ and non-commutative Lp-spaces. The intimate relation between the subspaces and quotients of the IG-spaces on one side and various types of anisotropic Besov, Lizorkin-Triebel and Sobolev spaces of functions on open subsets of an Euclidean space defined in terms of differences, local polynomial approximations, wavelet decompositions and other means (as well as the duals and the lp-sums of all these spaces) on the other side, allows us to present the algorithm of extending the main results of the article to the latter spaces and pairs. Special attention is paid to the matter of sharpness. Our approach is quasi-Euclidean in its nature because it relies on the extrapolation of properties of Hilbert spaces and the study of 1-complemented subspaces of the spaces under consideration. -
Uniform Boundedness Principle for Unbounded Operators
UNIFORM BOUNDEDNESS PRINCIPLE FOR UNBOUNDED OPERATORS C. GANESA MOORTHY and CT. RAMASAMY Abstract. A uniform boundedness principle for unbounded operators is derived. A particular case is: Suppose fTigi2I is a family of linear mappings of a Banach space X into a normed space Y such that fTix : i 2 Ig is bounded for each x 2 X; then there exists a dense subset A of the open unit ball in X such that fTix : i 2 I; x 2 Ag is bounded. A closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings as consequences of this principle. Some applications of this principle are also obtained. 1. Introduction There are many forms for uniform boundedness principle. There is no known evidence for this principle for unbounded operators which generalizes classical uniform boundedness principle for bounded operators. The second section presents a uniform boundedness principle for unbounded operators. An application to derive Hellinger-Toeplitz theorem is also obtained in this section. A JJ J I II closed graph theorem and a bounded inverse theorem are obtained for families of linear mappings in the third section as consequences of this principle. Go back Let us assume the following: Every vector space X is over R or C. An α-seminorm (0 < α ≤ 1) is a mapping p: X ! [0; 1) such that p(x + y) ≤ p(x) + p(y), p(ax) ≤ jajαp(x) for all x; y 2 X Full Screen Close Received November 7, 2013. 2010 Mathematics Subject Classification. Primary 46A32, 47L60. Key words and phrases. -
The Uniform Boundedness Theorem in Asymmetric Normed Spaces
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2012, Article ID 809626, 8 pages doi:10.1155/2012/809626 Research Article The Uniform Boundedness Theorem in Asymmetric Normed Spaces C. Alegre,1 S. Romaguera,1 and P. Veeramani2 1 Instituto Universitario de Matematica´ Pura y Aplicada, Universitat Politecnica` de Valencia,` 46022 Valencia, Spain 2 Department of Mathematics, Indian Institute of Technology Madras, Chennai 6000 36, India Correspondence should be addressed to C. Alegre, [email protected] Received 5 July 2012; Accepted 27 August 2012 Academic Editor: Yong Zhou Copyright q 2012 C. Alegre et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We obtain a uniform boundedness type theorem in the frame of asymmetric normed spaces. The classical result for normed spaces follows as a particular case. 1. Introduction Throughout this paper the letters R and R will denote the set of real numbers and the set of nonnegative real numbers, respectively. The book of Aliprantis and Border 1 provides a good basic reference for functional analysis in our context. Let X be a real vector space. A function p : X → R is said to be an asymmetric norm on X 2, 3 if for all x, y ∈ X,andr ∈ R , i pxp−x0 if and only if x 0; ii prxrpx; iii px y ≤ pxpy. The pair X, p is called an asymmetric normed space. Asymmetric norms are also called quasinorms in 4–6, and nonsymmetric norms in 7. -
Sequential Completeness of Inductive Limits
Internat. J. Math. & Math. Sci. Vol. 24, No. 6 (2000) 419–421 S0161171200003744 © Hindawi Publishing Corp. SEQUENTIAL COMPLETENESS OF INDUCTIVE LIMITS CLAUDIA GÓMEZ and JAN KUCERAˇ (Received 28 July 1999) Abstract. A regular inductive limit of sequentially complete spaces is sequentially com- plete. For the converse of this theorem we have a weaker result: if indEn is sequentially complete inductive limit, and each constituent space En is closed in indEn, then indEn is α-regular. Keywords and phrases. Regularity, α-regularity, sequential completeness of locally convex inductive limits. 2000 Mathematics Subject Classification. Primary 46A13; Secondary 46A30. 1. Introduction. In [2] Kuˇcera proves that an LF-space is regular if and only if it is sequentially complete. In [1] Bosch and Kuˇcera prove the equivalence of regularity and sequential completeness for bornivorously webbed spaces. It is natural to ask: can this result be extended to arbitrary sequentially complete spaces? We give a partial answer to this question in this paper. 2. Definitions. Throughout the paper {(En,τn)}n∈N is an increasing sequence of Hausdorff locally convex spaces with continuous identity maps id : En → En+1 and E = indEn its inductive limit. A topological vector space E is sequentially complete if every Cauchy sequence {xn}⊂E is convergent to an element x ∈ E. An inductive limit indEn is regular, resp. α-regular, if each of its bounded sets is bounded, resp. contained, in some constituent space En. 3. Main results Theorem 3.1. Let each space (En,τn) be sequentially complete and indEn regular. Then indEn is sequentially complete. Proof. Let {xk} be a Cauchy sequence in indEn. -
On the Second Dual of the Space of Continuous Functions
ON THE SECOND DUAL OF THE SPACE OF CONTINUOUS FUNCTIONS BY SAMUEL KAPLAN Introduction. By "the space of continuous functions" we mean the Banach space C of real continuous functions on a compact Hausdorff space X. C, its first dual, and its second dual are not only Banach spaces, but also vector lattices, and this aspect of them plays a central role in our treatment. In §§1-3, we collect the properties of vector lattices which we need in the paper. In §4 we add some properties of the first dual of C—the space of Radon measures on X—denoted by L in the present paper. In §5 we imbed C in its second dual, denoted by M, and then identify the space of all bounded real functions on X with a quotient space of M, in fact with a topological direct summand. Thus each bounded function on X represents an entire class of elements of M. The value of an element/ of M on an element p. of L is denoted as usual by/(p.)- If/lies in C then of course f(u) =p(f) (usually written J fdp), and thus the multiplication between Afand P is an extension of the multiplication between L and C. Now in integration theory, for each pEL, there is a stand- ard "extension" of ffdu to certain of the bounded functions on X (we confine ourselves to bounded functions in this paper), which are consequently called u-integrable. The question arises: how is this "extension" related to the multi- plication between M and L. -
Topological Vector Spaces and Algebras
Joseph Muscat 2015 1 Topological Vector Spaces and Algebras [email protected] 1 June 2016 1 Topological Vector Spaces over R or C Recall that a topological vector space is a vector space with a T0 topology such that addition and the field action are continuous. When the field is F := R or C, the field action is called scalar multiplication. Examples: A N • R , such as sequences R , with pointwise convergence. p • Sequence spaces ℓ (real or complex) with topology generated by Br = (a ): p a p < r , where p> 0. { n n | n| } p p p p • LebesgueP spaces L (A) with Br = f : A F, measurable, f < r (p> 0). { → | | } R p • Products and quotients by closed subspaces are again topological vector spaces. If π : Y X are linear maps, then the vector space Y with the ini- i → i tial topology is a topological vector space, which is T0 when the πi are collectively 1-1. The set of (continuous linear) morphisms is denoted by B(X, Y ). The mor- phisms B(X, F) are called ‘functionals’. +, , Finitely- Locally Bounded First ∗ → Generated Separable countable Top. Vec. Spaces ///// Lp 0 <p< 1 ℓp[0, 1] (ℓp)N (ℓp)R p ∞ N n R 2 Locally Convex ///// L p > 1 L R , C(R ) R pointwise, ℓweak Inner Product ///// L2 ℓ2[0, 1] ///// ///// Locally Compact Rn ///// ///// ///// ///// 1. A set is balanced when λ 6 1 λA A. | | ⇒ ⊆ (a) The image and pre-image of balanced sets are balanced. ◦ (b) The closure and interior are again balanced (if A 0; since λA = (λA)◦ A◦); as are the union, intersection, sum,∈ scaling, T and prod- uct A ⊆B of balanced sets. -
Generalized Inverse Limits and Topological Entropy
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of Faculty of Science, University of Zagreb FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Zagreb, 2016. FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS Goran Erceg GENERALIZED INVERSE LIMITS AND TOPOLOGICAL ENTROPY DOCTORAL THESIS Supervisors: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016 PRIRODOSLOVNO - MATEMATICKIˇ FAKULTET MATEMATICKIˇ ODSJEK Goran Erceg GENERALIZIRANI INVERZNI LIMESI I TOPOLOŠKA ENTROPIJA DOKTORSKI RAD Mentori: prof. Judy Kennedy prof. dr. sc. Vlasta Matijevic´ Zagreb, 2016. Acknowledgements First of all, i want to thank my supervisor professor Judy Kennedy for accept- ing a big responsibility of guiding a transatlantic student. Her enthusiasm and love for mathematics are contagious. I thank professor Vlasta Matijevi´c, not only my supervisor but also my role model as a professor of mathematics. It was privilege to be guided by her for master's and doctoral thesis. I want to thank all my math teachers, from elementary school onwards, who helped that my love for math rises more and more with each year. Special thanks to Jurica Cudina´ who showed me a glimpse of math theory already in the high school. I thank all members of the Topology seminar in Split who always knew to ask right questions at the right moment and to guide me in the right direction. I also thank Iztok Baniˇcand the rest of the Topology seminar in Maribor who welcomed me as their member and showed me the beauty of a teamwork. -
View of This, the Following Observation Should Be of Some Interest to Vector Space Pathologists
Can. J. Math., Vol. XXV, No. 3, 1973, pp. 511-524 INCLUSION THEOREMS FOR Z-SPACES G. BENNETT AND N. J. KALTON 1. Notation and preliminary ideas. A sequence space is a vector subspace of the space co of all real (or complex) sequences. A sequence space E with a locally convex topology r is called a K- space if the inclusion map E —* co is continuous, when co is endowed with the product topology (co = II^Li (R)*). A i£-space E with a Frechet (i.e., complete, metrizable and locally convex) topology is called an FK-space; if the topology is a Banach topology, then E is called a BK-space. The following familiar BK-spaces will be important in the sequel: ni, the space of all bounded sequences; c, the space of all convergent sequences; Co, the space of all null sequences; lp, 1 ^ p < °°, the space of all absolutely ^-summable sequences. We shall also consider the space <j> of all finite sequences and the linear span, Wo, of all sequences of zeros and ones; these provide examples of spaces having no FK-topology. A sequence space is solid (respectively monotone) provided that xy £ E whenever x 6 m (respectively m0) and y £ E. For x £ co, we denote by Pn(x) the sequence (xi, x2, . xn, 0, . .) ; if a i£-space (E, r) has the property that Pn(x) —» x in r for each x G E, then we say that (£, r) is an AK-space. We also write WE = \x Ç £: P„.(x) —>x weakly} and ^ = jx Ç E: Pn{x) —>x in r}. -
Functional Analysis Lecture Notes Chapter 3. Banach
FUNCTIONAL ANALYSIS LECTURE NOTES CHAPTER 3. BANACH SPACES CHRISTOPHER HEIL 1. Elementary Properties and Examples Notation 1.1. Throughout, F will denote either the real line R or the complex plane C. All vector spaces are assumed to be over the field F. Definition 1.2. Let X be a vector space over the field F. Then a semi-norm on X is a function k · k: X ! R such that (a) kxk ≥ 0 for all x 2 X, (b) kαxk = jαj kxk for all x 2 X and α 2 F, (c) Triangle Inequality: kx + yk ≤ kxk + kyk for all x, y 2 X. A norm on X is a semi-norm which also satisfies: (d) kxk = 0 =) x = 0. A vector space X together with a norm k · k is called a normed linear space, a normed vector space, or simply a normed space. Definition 1.3. Let I be a finite or countable index set (for example, I = f1; : : : ; Ng if finite, or I = N or Z if infinite). Let w : I ! [0; 1). Given a sequence of scalars x = (xi)i2I , set 1=p jx jp w(i)p ; 0 < p < 1; 8 i kxkp;w = > Xi2I <> sup jxij w(i); p = 1; i2I > where these quantities could be infinite.:> Then we set p `w(I) = x = (xi)i2I : kxkp < 1 : n o p p p We call `w(I) a weighted ` space, and often denote it just by `w (especially if I = N). If p p w(i) = 1 for all i, then we simply call this space ` (I) or ` and write k · kp instead of k · kp;w.