"Mathematics for Computer Science" (MCS)

Total Page:16

File Type:pdf, Size:1020Kb

“mcs” — 2016/9/28 — 23:07 — page i — #1 Mathematics for Computer Science revised Wednesday 28th September, 2016, 23:07 Eric Lehman Google Inc. F Thomson Leighton Department of Mathematics and the Computer Science and AI Laboratory, Massachussetts Institute of Technology; Akamai Technologies Albert R Meyer Department of Electrical Engineering and Computer Science and the Computer Science and AI Laboratory, Massachussetts Institute of Technology 2016, Eric Lehman, F Tom Leighton, Albert R Meyer. This work is available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license. “mcs” — 2016/9/28 — 23:07 — page ii — #2 “mcs” — 2016/9/28 — 23:07 — page iii — #3 Contents I Proofs Introduction 3 0.1 References4 1 What is a Proof? 5 1.1 Propositions5 1.2 Predicates8 1.3 The Axiomatic Method8 1.4 Our Axioms9 1.5 Proving an Implication 11 1.6 Proving an “If and Only If” 13 1.7 Proof by Cases 15 1.8 Proof by Contradiction 16 1.9 Good Proofs in Practice 17 1.10 References 19 2 The Well Ordering Principle 29 2.1 Well Ordering Proofs 29 2.2 Template for Well Ordering Proofs 30 2.3 Factoring into Primes 32 2.4 Well Ordered Sets 33 3 Logical Formulas 47 3.1 Propositions from Propositions 48 3.2 Propositional Logic in Computer Programs 51 3.3 Equivalence and Validity 54 3.4 The Algebra of Propositions 56 3.5 The SAT Problem 61 3.6 Predicate Formulas 62 3.7 References 67 4 Mathematical Data Types 93 4.1 Sets 93 4.2 Sequences 98 4.3 Functions 99 4.4 Binary Relations 101 4.5 Finite Cardinality 105 “mcs” — 2016/9/28 — 23:07 — page iv — #4 Contentsiv 5 Induction 125 5.1 Ordinary Induction 125 5.2 Strong Induction 134 5.3 Strong Induction vs. Induction vs. Well Ordering 139 6 State Machines 157 6.1 States and Transitions 157 6.2 The Invariant Principle 158 6.3 Partial Correctness & Termination 166 6.4 The Stable Marriage Problem 171 7 Recursive Data Types 199 7.1 Recursive Definitions and Structural Induction 199 7.2 Strings of Matched Brackets 203 7.3 Recursive Functions on Nonnegative Integers 207 7.4 Arithmetic Expressions 210 7.5 Induction in Computer Science 215 8 Infinite Sets 243 8.1 Infinite Cardinality 244 8.2 The Halting Problem 253 8.3 The Logic of Sets 257 8.4 Does All This Really Work? 260 II Structures Introduction 283 9 Number Theory 285 9.1 Divisibility 285 9.2 The Greatest Common Divisor 290 9.3 Prime Mysteries 296 9.4 The Fundamental Theorem of Arithmetic 298 9.5 Alan Turing 302 9.6 Modular Arithmetic 306 9.7 Remainder Arithmetic 308 9.8 Turing’s Code (Version 2.0) 311 9.9 Multiplicative Inverses and Cancelling 313 9.10 Euler’s Theorem 317 9.11 RSA Public Key Encryption 322 9.12 What has SAT got to do with it? 324 “mcs” — 2016/9/28 — 23:07 — page v — #5 Contentsv 9.13 References 325 10 Directed graphs & Partial Orders 363 10.1 Vertex Degrees 365 10.2 Walks and Paths 366 10.3 Adjacency Matrices 369 10.4 Walk Relations 372 10.5 Directed Acyclic Graphs & Scheduling 373 10.6 Partial Orders 381 10.7 Representing Partial Orders by Set Containment 385 10.8 Linear Orders 386 10.9 Product Orders 386 10.10 Equivalence Relations 387 10.11 Summary of Relational Properties 389 11 Communication Networks 423 11.1 Complete Binary Tree 423 11.2 Routing Problems 423 11.3 Network Diameter 424 11.4 Switch Count 425 11.5 Network Latency 426 11.6 Congestion 426 11.7 2-D Array 427 11.8 Butterfly 429 11.9 Benesˇ Network 431 12 Simple Graphs 443 12.1 Vertex Adjacency and Degrees 443 12.2 Sexual Demographics in America 445 12.3 Some Common Graphs 447 12.4 Isomorphism 449 12.5 Bipartite Graphs & Matchings 451 12.6 Coloring 456 12.7 Simple Walks 461 12.8 Connectivity 463 12.9 Forests & Trees 468 12.10 References 476 13 Planar Graphs 515 13.1 Drawing Graphs in the Plane 515 13.2 Definitions of Planar Graphs 515 13.3 Euler’s Formula 526 “mcs” — 2016/9/28 — 23:07 — page vi — #6 Contentsvi 13.4 Bounding the Number of Edges in a Planar Graph 527 13.5 Returning to K5 and K3;3 528 13.6 Coloring Planar Graphs 529 13.7 Classifying Polyhedra 531 13.8 Another Characterization for Planar Graphs 534 III Counting Introduction 543 14 Sums and Asymptotics 545 14.1 The Value of an Annuity 546 14.2 Sums of Powers 552 14.3 Approximating Sums 554 14.4 Hanging Out Over the Edge 558 14.5 Products 564 14.6 Double Trouble 567 14.7 Asymptotic Notation 570 15 Cardinality Rules 595 15.1 Counting One Thing by Counting Another 595 15.2 Counting Sequences 596 15.3 The Generalized Product Rule 599 15.4 The Division Rule 603 15.5 Counting Subsets 606 15.6 Sequences with Repetitions 608 15.7 Counting Practice: Poker Hands 611 15.8 The Pigeonhole Principle 616 15.9 Inclusion-Exclusion 625 15.10 Combinatorial Proofs 631 15.11 References 635 16 Generating Functions 673 16.1 Infinite Series 673 16.2 Counting with Generating Functions 675 16.3 Partial Fractions 681 16.4 Solving Linear Recurrences 684 16.5 Formal Power Series 689 16.6 References 692 “mcs” — 2016/9/28 — 23:07 — page vii — #7 Contentsvii IV Probability Introduction 709 17 Events and Probability Spaces 711 17.1 Let’s Make a Deal 711 17.2 The Four Step Method 712 17.3 Strange Dice 721 17.4 The Birthday Principle 728 17.5 Set Theory and Probability 730 17.6 References 734 18 Conditional Probability 741 18.1 Monty Hall Confusion 741 18.2 Definition and Notation 742 18.3 The Four-Step Method for Conditional Probability 744 18.4 Why Tree Diagrams Work 746 18.5 The Law of Total Probability 754 18.6 Simpson’s Paradox 756 18.7 Independence 758 18.8 Mutual Independence 760 18.9 Probability versus Confidence 764 19 Random Variables 793 19.1 Random Variable Examples 793 19.2 Independence 795 19.3 Distribution Functions 796 19.4 Great Expectations 805 19.5 Linearity of Expectation 816 20 Deviation from the Mean 847 20.1 Markov’s Theorem 847 20.2 Chebyshev’s Theorem 850 20.3 Properties of Variance 854 20.4 Estimation by Random Sampling 860 20.5 Confidence in an Estimation 863 20.6 Sums of Random Variables 865 20.7 Really Great Expectations 874 21 Random Walks 899 21.1 Gambler’s Ruin 899 “mcs” — 2016/9/28 — 23:07 — page viii — #8 Contentsviii 21.2 Random Walks on Graphs 909 V Recurrences Introduction 927 22 Recurrences 929 22.1 The Towers of Hanoi 929 22.2 Merge Sort 932 22.3 Linear Recurrences 936 22.4 Divide-and-Conquer Recurrences 943 22.5 A Feel for Recurrences 950 Bibliography 957 Bibliography 957 Glossary of Symbols 961 Index 964 “mcs” — 2016/9/28 — 23:07 — page 1 — #9 I Proofs “mcs” — 2016/9/28 — 23:07 — page 2 — #10 “mcs” — 2016/9/28 — 23:07 — page 3 — #11 Introduction This text explains how to use mathematical models and methods to analyze prob- lems that arise in computer science. Proofs play a central role in this work because the authors share a belief with most mathematicians that proofs are essential for genuine understanding. Proofs also play a growing role in computer science; they are used to certify that software and hardware will always behave correctly, some- thing that no amount of testing can do. Simply put, a proof is a method of establishing truth. Like beauty, “truth” some- times depends on the eye of the beholder, and it should not be surprising that what constitutes a proof differs among fields. For example, in the judicial system, legal truth is decided by a jury based on the allowable evidence presented at trial. In the business world, authoritative truth is specified by a trusted person or organization, or maybe just your boss. In fields such as physics or biology, scientific truth is confirmed by experiment.1 In statistics, probable truth is established by statistical analysis of sample data. Philosophical proof involves careful exposition and persuasion typically based on a series of small, plausible arguments. The best example begins with “Cogito ergo sum,” a Latin sentence that translates as “I think, therefore I am.” This phrase comes from the beginning of a 17th century essay by the mathematician/philosopher, Rene´ Descartes, and it is one of the most famous quotes in the world: do a web search for it, and you will be flooded with hits. Deducing your existence from the fact that you’re thinking about your existence is a pretty cool and persuasive-sounding idea. However, with just a few more lines 1Actually, only scientific falsehood can be demonstrated by an experiment—when the experiment fails to behave as predicted. But no amount of experiment can confirm that the next experiment won’t fail. For this reason, scientists rarely speak of truth, but rather of theories that accurately predict past, and anticipated future, experiments. “mcs” — 2016/9/28 — 23:07 — page 4 — #12 0.1. References4 of argument in this vein, Descartes goes on to conclude that there is an infinitely beneficent God. Whether or not you believe in an infinitely beneficent God, you’ll probably agree that any very short “proof” of God’s infinite beneficence is bound to be far-fetched.
Recommended publications
  • Completeness in Quasi-Pseudometric Spaces—A Survey
    mathematics Article Completeness in Quasi-Pseudometric Spaces—A Survey ¸StefanCobzas Faculty of Mathematics and Computer Science, Babe¸s-BolyaiUniversity, 400 084 Cluj-Napoca, Romania; [email protected] Received:17 June 2020; Accepted: 24 July 2020; Published: 3 August 2020 Abstract: The aim of this paper is to discuss the relations between various notions of sequential completeness and the corresponding notions of completeness by nets or by filters in the setting of quasi-metric spaces. We propose a new definition of right K-Cauchy net in a quasi-metric space for which the corresponding completeness is equivalent to the sequential completeness. In this way we complete some results of R. A. Stoltenberg, Proc. London Math. Soc. 17 (1967), 226–240, and V. Gregori and J. Ferrer, Proc. Lond. Math. Soc., III Ser., 49 (1984), 36. A discussion on nets defined over ordered or pre-ordered directed sets is also included. Keywords: metric space; quasi-metric space; uniform space; quasi-uniform space; Cauchy sequence; Cauchy net; Cauchy filter; completeness MSC: 54E15; 54E25; 54E50; 46S99 1. Introduction It is well known that completeness is an essential tool in the study of metric spaces, particularly for fixed points results in such spaces. The study of completeness in quasi-metric spaces is considerably more involved, due to the lack of symmetry of the distance—there are several notions of completeness all agreing with the usual one in the metric case (see [1] or [2]). Again these notions are essential in proving fixed point results in quasi-metric spaces as it is shown by some papers on this topic as, for instance, [3–6] (see also the book [7]).
    [Show full text]
  • MTH 304: General Topology Semester 2, 2017-2018
    MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds..........................
    [Show full text]
  • General Topology
    General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry).
    [Show full text]
  • Continuity Properties and Sensitivity Analysis of Parameterized Fixed
    Continuity properties and sensitivity analysis of parameterized fixed points and approximate fixed points Zachary Feinsteina Washington University in St. Louis August 2, 2016 Abstract In this paper we consider continuity of the set of fixed points and approximate fixed points for parameterized set-valued mappings. Continuity properties are provided for the fixed points of general multivalued mappings, with additional results shown for contraction mappings. Further analysis is provided for the continuity of the approxi- mate fixed points of set-valued functions. Additional results are provided on sensitivity of the fixed points via set-valued derivatives related to tangent cones. Key words: fixed point problems; approximate fixed point problems; set-valued continuity; data dependence; generalized differentiation MSC: 54H25; 54C60; 26E25; 47H04; 47H14 1 Introduction Fixed points are utilized in many applications. Often the parameters of such models are estimated from data. As such it is important to understand how the set of fixed points aZachary Feinstein, ESE, Washington University, St. Louis, MO 63130, USA, [email protected]. 1 changes with respect to the parameters. We motivate our general approach by consider applications from economics and finance. In particular, the solution set of a parameterized game (i.e., Nash equilibria) fall under this setting. Thus if the parameters of the individuals playing the game are not perfectly known, sensitivity analysis can be done in a general way even without unique equilibrium. For the author, the immediate motivation was from financial systemic risk models such as those in [10, 8, 4, 12] where methodology to estimate system parameters are studied in, e.g., [15].
    [Show full text]
  • Inspector's Handbook: Subbase Construction
    INSPECTOR'S HANDBOOK SUBBASE CONSTRUCTION IOWA STATE HIGHWAY COMMISSION AMES, IOWA 1969 r 17:_:H53 s~sl4 1969 \------ -- "- SUBBASE CONSTRUCTION Walter Schneider Jerry Rodibaugh INTRODUCTION This handbook is an inspector's aid. It was written by two inspectors to bring together a 11 of the most­ of ten-needed information involved in their work. Much care has been taken to detai I each phase of construction, with particular attention to the r.equire­ ments and limitations of specifications. All applicable specification interpretations in Instructions to Resident Engineers have been included. The beginning inspector should look to the hand­ book as a reference for standards of good practice. The Standard.Specifications and Special Provisions should not, however, be overlooked as the basic sources of information on requirements and restrictions concerning workmanship and materials. I . CONTENTS SUBBASE CONSTRUCTION Page 1 Definition 1 Types 1 Figure 1 - Typical Section 1 INSPECTION 1 Plans, Proposals, and Specifications · 1 Preconstruction Detai Is 2 I l. STAKING 2 Purpose 2 Techniques 2 -- SUBGRADE CORRECTION 3 Application 3 Profile and Cross-Section Requirements 4 Figure 2 - Flexible Base Construction 5 INSPECTING DIFFERENT TYPES OF ROLLERS USED IN SUBBASE CONSTRUCTION 5 Tamping Rollers . s· Self-Propelled, Steel-Tired Rollers 5 Self-Propelled and Pull-Type Pneumatic Tire Roi lers 6 Figure 3 - Pneumatic-Tired Roller 6 SPREAD RA TES AND PLAN QUANTITIES 6 Spread Chart 6 Fig.ure 4 - Typical Spr~ad chart 7 Figure 5 - scale Ti ck 8 et -- Granular
    [Show full text]
  • Sufficient Generalities About Topological Vector Spaces
    (November 28, 2016) Topological vector spaces Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/fun/notes 2016-17/tvss.pdf] 1. Banach spaces Ck[a; b] 2. Non-Banach limit C1[a; b] of Banach spaces Ck[a; b] 3. Sufficient notion of topological vector space 4. Unique vectorspace topology on Cn 5. Non-Fr´echet colimit C1 of Cn, quasi-completeness 6. Seminorms and locally convex topologies 7. Quasi-completeness theorem 1. Banach spaces Ck[a; b] We give the vector space Ck[a; b] of k-times continuously differentiable functions on an interval [a; b] a metric which makes it complete. Mere pointwise limits of continuous functions easily fail to be continuous. First recall the standard [1.1] Claim: The set Co(K) of complex-valued continuous functions on a compact set K is complete with o the metric jf − gjCo , with the C -norm jfjCo = supx2K jf(x)j. Proof: This is a typical three-epsilon argument. To show that a Cauchy sequence ffig of continuous functions has a pointwise limit which is a continuous function, first argue that fi has a pointwise limit at every x 2 K. Given " > 0, choose N large enough such that jfi − fjj < " for all i; j ≥ N. Then jfi(x) − fj(x)j < " for any x in K. Thus, the sequence of values fi(x) is a Cauchy sequence of complex numbers, so has a limit 0 0 f(x). Further, given " > 0 choose j ≥ N sufficiently large such that jfj(x) − f(x)j < " .
    [Show full text]
  • Seqgan: Sequence Generative Adversarial Nets with Policy Gradient
    Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17) SeqGAN: Sequence Generative Adversarial Nets with Policy Gradient Lantao Yu,† Weinan Zhang,†∗ Jun Wang,‡ Yong Yu† †Shanghai Jiao Tong University, ‡University College London {yulantao,wnzhang,yyu}@apex.sjtu.edu.cn, [email protected] Abstract of sequence increases. To address this problem, (Bengio et al. 2015) proposed a training strategy called scheduled sampling As a new way of training generative models, Generative Ad- (SS), where the generative model is partially fed with its own versarial Net (GAN) that uses a discriminative model to guide synthetic data as prefix (observed tokens) rather than the true the training of the generative model has enjoyed considerable success in generating real-valued data. However, it has limi- data when deciding the next token in the training stage. Nev- tations when the goal is for generating sequences of discrete ertheless, (Huszar´ 2015) showed that SS is an inconsistent tokens. A major reason lies in that the discrete outputs from the training strategy and fails to address the problem fundamen- generative model make it difficult to pass the gradient update tally. Another possible solution of the training/inference dis- from the discriminative model to the generative model. Also, crepancy problem is to build the loss function on the entire the discriminative model can only assess a complete sequence, generated sequence instead of each transition. For instance, while for a partially generated sequence, it is non-trivial to in the application of machine translation, a task specific se- balance its current score and the future one once the entire quence score/loss, bilingual evaluation understudy (BLEU) sequence has been generated.
    [Show full text]
  • Topological Vector Spaces
    An introduction to some aspects of functional analysis, 3: Topological vector spaces Stephen Semmes Rice University Abstract In these notes, we give an overview of some aspects of topological vector spaces, including the use of nets and filters. Contents 1 Basic notions 3 2 Translations and dilations 4 3 Separation conditions 4 4 Bounded sets 6 5 Norms 7 6 Lp Spaces 8 7 Balanced sets 10 8 The absorbing property 11 9 Seminorms 11 10 An example 13 11 Local convexity 13 12 Metrizability 14 13 Continuous linear functionals 16 14 The Hahn–Banach theorem 17 15 Weak topologies 18 1 16 The weak∗ topology 19 17 Weak∗ compactness 21 18 Uniform boundedness 22 19 Totally bounded sets 23 20 Another example 25 21 Variations 27 22 Continuous functions 28 23 Nets 29 24 Cauchy nets 30 25 Completeness 32 26 Filters 34 27 Cauchy filters 35 28 Compactness 37 29 Ultrafilters 38 30 A technical point 40 31 Dual spaces 42 32 Bounded linear mappings 43 33 Bounded linear functionals 44 34 The dual norm 45 35 The second dual 46 36 Bounded sequences 47 37 Continuous extensions 48 38 Sublinear functions 49 39 Hahn–Banach, revisited 50 40 Convex cones 51 2 References 52 1 Basic notions Let V be a vector space over the real or complex numbers, and suppose that V is also equipped with a topological structure. In order for V to be a topological vector space, we ask that the topological and vector spaces structures on V be compatible with each other, in the sense that the vector space operations be continuous mappings.
    [Show full text]
  • NETS There Are a Number of Footnotes, Which Can Safely Be Ignored
    NETS There are a number of footnotes, which can safely be ignored, especially on the first reading. 1. Nets, convergence, continuity Nets are generalization of sequences needed to deal with convergence in general topological spaces, where convergent sequences are not enough to describe the topology. The idea is to replace the set of natural numbers, which is used to index elements of sequences, by arbitrary sets such that it makes sense to talk about \large" elements. Recall that a partial order on a set I is a binary relation ≺ such that (a) i ≺ i; (b) if i ≺ j and j ≺ i; then i = j; (c) if i ≺ j and j ≺ k; then i ≺ k: Definition 1.1. A set I with a partial order1 ≺ is called directed if for any i; j 2 I there exists k 2 I such that i ≺ k and j ≺ k. The following example will be our main source of directed sets. Example 1.2. Let X be a set and I be a collection of subsets of X closed under finite intersections, so if A; B 2 I then A \ B 2 I. Define a partial order on I by A ≺ B iff B ⊂ A: Then I is a directed set: for any A; B 2 I, we have A ≺ A \ B and B ≺ A \ B. Definition 1.3. A net in a set X is a collection (xi)i2I of elements of X indexed by a nonempty directed set I, or in other words, it is a map I ! X. Definition 1.4.
    [Show full text]
  • Well-Order As a Construction Principle for Physical Theories
    Eur. Phys. J. C (2019) 79:937 https://doi.org/10.1140/epjc/s10052-019-7456-2 Regular Article - Theoretical Physics Well-order as a construction principle for physical theories Peter Schusta Sebastian-Bauer-Str. 37a, 81737 Munich, Germany Received: 19 August 2019 / Accepted: 4 November 2019 / Published online: 18 November 2019 © The Author(s) 2019 Abstract Physics has up to now missed to express in math- together with a binary order relation R that is itself a subset ematical terms the fundamental idea of events of a path in of the set of all ordered pairs A × A of A;see[1, p 10, p 17], time and space uniquely succeeding one another. An appro- [2, p 64, p 80]. priate mathematical concept that reflects this idea is a well- A densely ordered set is an ordered set in which between ordered set. In such a set every subset has a least element. any two elements of the set exists another element of the set; Thus every element of a well-ordered set has as its definite see [2, p 205]. Well known examples for this are the rational successor the least element of the subset of all elements larger numbers or the real numbers together with the natural order than itself. This is apparently contradictory to the densely of numbers; see [2, p 213]. By employing the real number ordered real number lines which conventionally constitute line as coordinate axes this is transferred into the resulting the coordinate axes in any representation of time and space Rn. The open balls as the base of the Euclidean topology are and in which between any two numbers exists always another a reflection of this.
    [Show full text]
  • Nets, the Axiom of Choice, and the Tychonoff Theorem
    Dean Katsaros 12/10/15 Nets, The Axiom of Choice, and the Tychonoff Theorem 1 A Brief History of the Tychonoff Theorem and The Axiom of Choice It turns out that the Axiom of Choice has direct implications for point-set topology. This might not be that interesting at first mention, nor should it be surprising given the intimate role that set theoretical methods play in proving the many results of point-set topology. Also un-surprising is that the following form of Axiom of Choice: Theorem 1.1 (Axiom of Choice). For every family (Xα)α2J of non-empty sets Xα, the product set Q α2J Xα is non-empty. Can be proven using the Tychonoff Theorem: Theorem 1.2 (Tychonoff Theorem). Let fXαgα2J such that each Xα is compact. Then, X = Q α2J Xα is compact in the product topology. This shouldn't be surprising because of the relative similarity of the statements - no matter one's mathematical background, the similarly of the statements is immediate. What is interesting is the role played by certain topologically motivated objects called nets in proving that the Axiom of Choice is in fact equivalent to the Tychonoff Theorem. The Tychonoff Theorem was stated in full generality in 1930 by Andrey Nikolayevich Tikhonov (Ty- chonoff), and was proven in 1937 by Eduard Cech. The Axiom of Choice and its equivalent statements became conjectures around the same time. The history of the AoC takes us back to Cantor, who spent 1 much time during his mathematical career considering the following two conjectures, the first of which he originally thought to be self evident (i.e., that it didn't need to be proven).
    [Show full text]
  • Topological Vector Spaces and Continuous Linear Functionals
    CHAPTER III TOPOLOGICAL VECTOR SPACES AND CONTINUOUS LINEAR FUNCTIONALS The marvelous interaction between linearity and topology is introduced in this chapter. Although the most familiar examples of this interaction may be normed linear spaces, we have in mind here the more subtle, and perhaps more important, topological vector spaces whose topologies are defined as the weakest topologies making certain collections of functions continuous. See the examples in Exercises 3.8 and 3.9, and particularly the Schwartz space S discussed in Exercise 3.10. DEFINITION. A topological vector space is a real (or complex) vector space X on which there is a Hausdorff topology such that: (1) The map (x, y) → x+y is continuous from X×X into X. (Addition is continuous.) and (2) The map (t, x) → tx is continuous from R × X into X (or C × X into X). (Scalar multiplication is continuous.) We say that a topological vector space X is a real or complex topolog- ical vector space according to which field of scalars we are considering. A complex topological vector space is obviously also a real topological vector space. A metric d on a vector space X is called translation-invariant if d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X. If the topology on a topological vector space X is determined by a translation-invariant metric d, we call X (or (X, d)) a metrizable vector space. If x is an element of a metrizable vector space (X, d), we denote by B(x) the ball of radius 43 44 CHAPTER III around x; i.e., B(x) = {y : d(x, y) < }.
    [Show full text]