Antibiotic Research Tools
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cytosolic Selection Systems to Study Protein Stability
Cytosolic Selection Systems To Study Protein Stability Ajamaluddin Malik,* Antje Mueller-Schickert, James C. A. Bardwell Howard Hughes Medical Institute, Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA Here we describe biosensors that provide readouts for protein stability in the cytosolic compartment of prokaryotes. These bio- sensors consist of tripartite sandwich fusions that link the in vitro stability or aggregation susceptibility of guest proteins to the in vivo resistance of host cells to the antibiotics kanamycin, spectinomycin, and nourseothricin. These selectable markers confer Downloaded from antibiotic resistance in a wide range of hosts and are easily quantifiable. We show that mutations within guest proteins that af- fect their stability alter the antibiotic resistances of the cells expressing the biosensors in a manner that is related to the in vitro stabilities of the mutant guest proteins. In addition, we find that polyglutamine tracts of increasing length are associated with an increased tendency to form amyloids in vivo and, in our sandwich fusion system, with decreased resistance to aminoglycoside antibiotics. We demonstrate that our approach allows the in vivo analysis of protein stability in the cytosolic compartment with- out the need for prior structural and functional knowledge. http://jb.asm.org/ rotein folding has been intensely studied in vitro, providing us sion number WP_004614937). To eliminate expression of the toxic CcdB Pwith a detailed understanding of this process. However, the product present on this plasmid, we introduced a stop codon (TAA) by simplified conditions typically used in vitro (i.e., the use of single mutating the tyrosine at amino acid position 5 of the ccdB gene. -
Dead Bugs Don't Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance
PERSPECTIVES Dead Bugs Don’t Mutate: Susceptibility Issues in the Emergence of Bacterial Resistance Charles W. Stratton*1 The global emergence of antibacterial resistance among and macrolides (the antibacterial agents used most frequently common and atypical respiratory pathogens in the last decade for pneumococcal infections) have become prevalent through- necessitates the strategic application of antibacterial agents. out the world. Indeed, rates of S. pneumoniae resistance to The use of bactericidal rather than bacteriostatic agents as penicillin now exceed 40% in many regions, and a high pro- first-line therapy is recommended because the eradication of portion of these strains are also resistant to macrolides. More- microorganisms serves to curtail, although not avoid, the devel- over, the trend is growing rapidly. Whereas 10.4% of all S. opment of bacterial resistance. Bactericidal activity is achieved with specific classes of antimicrobial agents as well as by com- pneumoniae isolates were resistant to penicillin and 16.5% bination therapy. Newer classes of antibacterial agents, such resistant to macrolides in 1996, these proportions rose to as the fluoroquinolones and certain members of the macrolide/ 14.1% and 21.9%, respectively, in 1997 (9). A more recent lincosamine/streptogramin class have increased bactericidal susceptibility study conducted in 2000–2001 showed that activity compared with traditional agents. More recently, the 51.5% of all S. pneumoniae isolates were resistant to penicillin ketolides (novel, semisynthetic, erythromycin-A derivatives) and 30.0% to macrolides (10). have demonstrated potent bactericidal activity against key res- The urgent need to curtail proliferation of antibacterial- piratory pathogens, including Streptococcus pneumoniae, Hae- resistant bacteria has refocused attention on the proper use of mophilus influenzae, Chlamydia pneumoniae, and Moraxella antibacterial agents. -
55 - Fao Fnp 41/16
PIRLIMYCIN First draft prepared by Lynn G. Friedlander, Rockville, MD, United States Gérard Moulin, Fougères, France IDENTITY Chemical Names: (2S-cis)-Methyl 7-chloro-6,7,8-trideoxy-6-[[(4-ethyl-2- piperidinyl)carbonyl]amino]-1-thio-L-threo-alpha-D-galactooctopyranoside monohydrochloride, hydrate Synonyms: Pirlimycin hydrochloride PIRSUE® Sterile Solution PNU-57930E Structural formula: Molecular formula: C17H31O5N2ClS • HCl • xH2O Molecular weight: 447.42 (without the water of hydration) OTHER INFORMATION ON IDENTITY AND PROPERTIES Pure active ingredient: Pirlimycin Appearance: White crystalline powder Melting point: 210.5 – 212.5°C with decomposition Solubility (g/L) of pH dependent aqueous: 70 at pH 4.5 Pirlimycin: 3 at pH 13 Protic organic solvents: ≥ 100 Other organic solvents: ≤ 10 Optical rotation: +170° to +190° UVmax: >220 nm - 55 - FAO FNP 41/16 RESIDUES IN FOOD AND THEIR EVALUATION Conditions of use General Pirlimycin hydrochloride is a lincosamide antibiotic with activity against the Gram-positive organisms. Pirlimycin has been shown to be efficacious for the treatment of mastitis in lactating dairy cattle caused by sensitive organisms such as Staphylococcus aureus, Streptococcus agalactiae, S. uberis and S. dysgalactiae. The general mechanism of action of the lincosamides (lincomycin, clindamycin and pirlimycin) is inhibition of protein synthesis in the bacterial cell, specifically by binding to the 50s ribosomal subunit and inhibiting the peptidyl transferase, with subsequent interference with protein synthesis. Dosage The optimum dose rate for pirlimycin has been established as 50 mg of free base equivalents per quarter administered twice at a 24-hour interval by intramammary infusion of a sterile aqueous solution formulation. For extended therapy, daily treatment may be repeated for up to 8 consecutive days. -
Belgian Veterinary Surveillance of Antibacterial Consumption National
Belgian Veterinary Surveillance of Antibacterial Consumption National consumption report 2020 Publication : 22 June 2021 1 SUMMARY This annual BelVet-SAC report is now published for the 12th time and describes the antimicrobial use (AMU) in animals in Belgium in 2020 and the evolution since 2011. For the third year this report combines sales data (collected at the level of the wholesalers-distributors and the compound feed producers) and usage data (collected at farm level). This allows to dig deeper into AMU at species and farm level in Belgium. With a consumption of 87,6 mg antibacterial compounds/kg biomass an increase of +0.2% is seen in 2020 in comparison to 2019. The increase seen in 2020 is spread over both pharmaceuticals (+0.2%) and antibacterial premixes (+4.0%). This unfortunately marks the end of a successful reduction in antibacterial product sales that was seen over the last 6 years resulting in a cumulative reduction of -40,2% since 2011. The gap seen in the coverage of the sales data with the Sanitel-Med collected usage data increased substantially compared to 2019, meaning continuous efforts need to be taken to ensure completeness of the collected usage data. When looking at the evolution in the number of treatment days (BD100) at the species level, as calculated from the SANITEL- MED use data, use increased in poultry (+5,0%) and veal calves (+1,9%), while it decreased in pigs (-3,1%). However, the numerator data for this indicator remain to be updated for 2020, potentially influencing the reliability of the result. -
Gatifloxacin for Treating Enteric Fever Submission to the 18Th Expert
Gatifloxacin for enteric fever Gatifloxacin for treating enteric fever Submission to the 18th Expert Committee on the Selection and Use of Essential Medicines 1 Gatifloxacin for enteric fever Table of contents Gatifloxacin for treating enteric fever....................................................................................... 1 Submission to the 18th Expert Committee on the Selection and Use of Essential Medicines . 1 1 Summary statement of the proposal for inclusion........................................................... 4 1.1 Rationale for this submission................................................................................... 4 2 Focal point in WHO submitting the application ............................................................... 4 3 Organizations consulted and supporting the application ................................................ 5 4 International Nonproprietary Name (INN, generic name) of the medicine..................... 5 5 Formulation proposed for inclusion ................................................................................. 5 5.1 Prospective formulation improvements.................................................................. 6 6 International availability................................................................................................... 6 6.1 Patent status ............................................................................................................ 6 6.2 Production............................................................................................................... -
353 Part 556—Tolerances for Resi- Dues Of
Food and Drug Administration, HHS Pt. 556 (4) Dimetridazole; 556.70 Bacitracin. (5) Ipronidazole; 556.100 Carbadox. (6) Other nitroimidazoles; 556.110 Carbomycin. (7) Furazolidone. 556.113 Ceftiofur. 556.115 Cephapirin. (8) Nitrofurazone. 556.118 Chloramine-T. (9) Sulfonamide drugs in lactating 556.120 Chlorhexidine. dairy cattle (except approved use of 556.150 Chlortetracycline. sulfadimethoxine, 556.160 Clopidol. sulfabromomethazine, and 556.163 Clorsulon. sulfaethoxypyridazine); 556.165 Cloxacillin. (10) Fluoroquinolones; and 556.167 Colistimethate. (11) Glycopeptides. 556.169 Danofloxacin. 556.170 Decoquinate. (12) Phenylbutazone in female dairy 556.180 Dichlorvos. cattle 20 months of age or older. 556.185 Diclazuril. (13) Cephalosporins (not including 556.200 Dihydrostreptomycin. cephapirin) in cattle, swine, chickens, 556.225 Doramectin. or turkeys: 556.226 Enrofloxacin. (i) For disease prevention purposes; 556.227 Eprinomectin. (ii) At unapproved doses, frequencies, 556.230 Erythromycin. durations, or routes of administration; 556.240 Estradiol and related esters. 556.260 Ethopabate. or 556.273 Famphur. (iii) If the drug is not approved for 556.275 Fenbendazole. that species and production class. 556.277 Fenprostalene. (b) The following drugs, families of 556.283 Florfenicol. drugs, and substances are prohibited 556.286 Flunixin. for extralabel animal and human drug 556.292 Gamithromycin. uses in nonfood-producing animals: 556.300 Gentamicin sulfate. 556.304 Gonadotropin. [Reserved] 556.308 Halofuginone hydrobromide. (c) [Reserved] 556.310 Haloxon. (d) The following drugs, or classes of 556.330 Hygromycin B. drugs, that are approved for treating or 556.344 Ivermectin. preventing influenza A, are prohibited 556.346 Laidlomycin. from extralabel use in chickens, tur- 556.347 Lasalocid. keys, and ducks: 556.350 Levamisole hydrochloride. -
WHO Report on Surveillance of Antibiotic Consumption: 2016-2018 Early Implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some Rights Reserved
WHO Report on Surveillance of Antibiotic Consumption 2016-2018 Early implementation WHO Report on Surveillance of Antibiotic Consumption 2016 - 2018 Early implementation WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation ISBN 978-92-4-151488-0 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution- NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons. org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non- commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. WHO report on surveillance of antibiotic consumption: 2016-2018 early implementation. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data. -
Anew Drug Design Strategy in the Liht of Molecular Hybridization Concept
www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 “Drug Design strategy and chemical process maximization in the light of Molecular Hybridization Concept.” Subhasis Basu, Ph D Registration No: VB 1198 of 2018-2019. Department Of Chemistry, Visva-Bharati University A Draft Thesis is submitted for the partial fulfilment of PhD in Chemistry Thesis/Degree proceeding. DECLARATION I Certify that a. The Work contained in this thesis is original and has been done by me under the guidance of my supervisor. b. The work has not been submitted to any other Institute for any degree or diploma. c. I have followed the guidelines provided by the Institute in preparing the thesis. d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute. e. Whenever I have used materials (data, theoretical analysis, figures and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references. Further, I have taken permission from the copyright owners of the sources, whenever necessary. IJCRT2012039 International Journal of Creative Research Thoughts (IJCRT) www.ijcrt.org 284 www.ijcrt.org © 2020 IJCRT | Volume 8, Issue 12 December 2020 | ISSN: 2320-2882 f. Whenever I have quoted written materials from other sources I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references. (Subhasis Basu) ACKNOWLEDGEMENT This preface is to extend an appreciation to all those individuals who with their generous co- operation guided us in every aspect to make this design and drawing successful. -
Third ESVAC Report
Sales of veterinary antimicrobial agents in 25 EU/EEA countries in 2011 Third ESVAC report An agency of the European Union The mission of the European Medicines Agency is to foster scientific excellence in the evaluation and supervision of medicines, for the benefit of public and animal health. Legal role Guiding principles The European Medicines Agency is the European Union • We are strongly committed to public and animal (EU) body responsible for coordinating the existing health. scientific resources put at its disposal by Member States • We make independent recommendations based on for the evaluation, supervision and pharmacovigilance scientific evidence, using state-of-the-art knowledge of medicinal products. and expertise in our field. • We support research and innovation to stimulate the The Agency provides the Member States and the development of better medicines. institutions of the EU the best-possible scientific advice on any question relating to the evaluation of the quality, • We value the contribution of our partners and stake- safety and efficacy of medicinal products for human or holders to our work. veterinary use referred to it in accordance with the • We assure continual improvement of our processes provisions of EU legislation relating to medicinal prod- and procedures, in accordance with recognised quality ucts. standards. • We adhere to high standards of professional and Principal activities personal integrity. Working with the Member States and the European • We communicate in an open, transparent manner Commission as partners in a European medicines with all of our partners, stakeholders and colleagues. network, the European Medicines Agency: • We promote the well-being, motivation and ongoing professional development of every member of the • provides independent, science-based recommenda- Agency. -
The Grohe Method and Quinolone Antibiotics
The Grohe method and quinolone antibiotics Antibiotics are medicines that are used to treat bacterial for modern fluoroquinolones. The Grohe process and the infections. They contain active ingredients belonging to var- synthesis of ciprofloxacin sparked Bayer AG’s extensive ious substance classes, with modern fluoroquinolones one research on fluoroquinolones and the global competition of the most important and an indispensable part of both that produced additional potent antibiotics. human and veterinary medicine. It is largely thanks to Klaus Grohe – the “father of Bayer quinolones” – that this entirely In chemical terms, the antibiotics referred to for simplicity synthetic class of antibiotics now plays such a vital role for as quinolones are derived from 1,4-dihydro-4-oxo-3-quin- medical practitioners. From 1965 to 1997, Grohe worked oline carboxylic acid (1) substituted in position 1. as a chemist, carrying out basic research at Bayer AG’s Fluoroquinolones possess a fluorine atom in position 6. In main research laboratory (WHL) in Leverkusen. During this addition, ciprofloxacin (2) has a cyclopropyl group in posi- period, in 1975, he developed the Grohe process – a new tion 1 and also a piperazine group in position 7 (Figure A). multi-stage synthesis method for quinolones. It was this This substituent pattern plays a key role in its excellent achievement that first enabled him to synthesize active an- antibacterial efficacy. tibacterial substances such as ciprofloxacin – the prototype O 5 O 4 3 6 COOH F COOH 7 2 N N N 8 1 H N R (1) (2) Figure A: Basic structure of quinolone (1) (R = various substituents) and ciprofloxacin (2) Quinolones owe their antibacterial efficacy to their inhibition This unique mode of action also makes fluoroquinolones of essential bacterial enzymes – DNA gyrase (topoisomer- highly effective against a large number of pathogenic ase II) and topoisomerase IV. -
Trend Analysis of Antibiotics Consumption Using WHO Aware Classification in Tertiary Care Hospital
International Journal of Basic & Clinical Pharmacology Bhardwaj A et al. Int J Basic Clin Pharmacol. 2020 Nov;9(11):1675-1680 http:// www.ijbcp.com pISSN 2319-2003 | eISSN 2279-0780 DOI: https://dx.doi.org/10.18203/2319-2003.ijbcp20204493 Original Research Article Trend analysis of antibiotics consumption using WHO AWaRe classification in tertiary care hospital Ankit Bhardwaj*, Kaveri Kapoor, Vivek Singh Saraswathi institute of Medical Sciences, Pilakhuwa, Hapur, Uttar Pradesh, India Received: 21 August 2020 Accepted: 21 September 2020 *Correspondence: Dr. Ankit Bhardwaj, Email: [email protected] Copyright: © the author(s), publisher and licensee Medip Academy. This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT Background: Aim of the study was to assess trend in antibiotics consumption pattern from 2016 to 2019 using AWaRe classification, ATC and Defined daily dose methodology (DDD) in a tertiary care hospital. Antibiotics are crucial for treating infectious diseases and have significantly improved the prognosis of patients with infectious diseases, reducing morbidity and mortality. The aim of the study is to classify the antibiotic based on WHO AWaRe classification and compare their four-year consumption trends. The study was conducted at a tertiary care center, Pilakhuwa, Hapur. Antibiotic procurement data for a period of 4 years (2016-2019) was collected from the Central medical store. Methods: This is a retrospective time series analysis of systemic antibiotics with no intervention at patient level. Antibiotic procurement was taken as proxy for consumption assuming that same has been used. -
Customs Tariff - Schedule
CUSTOMS TARIFF - SCHEDULE 99 - i Chapter 99 SPECIAL CLASSIFICATION PROVISIONS - COMMERCIAL Notes. 1. The provisions of this Chapter are not subject to the rule of specificity in General Interpretative Rule 3 (a). 2. Goods which may be classified under the provisions of Chapter 99, if also eligible for classification under the provisions of Chapter 98, shall be classified in Chapter 98. 3. Goods may be classified under a tariff item in this Chapter and be entitled to the Most-Favoured-Nation Tariff or a preferential tariff rate of customs duty under this Chapter that applies to those goods according to the tariff treatment applicable to their country of origin only after classification under a tariff item in Chapters 1 to 97 has been determined and the conditions of any Chapter 99 provision and any applicable regulations or orders in relation thereto have been met. 4. The words and expressions used in this Chapter have the same meaning as in Chapters 1 to 97. Issued January 1, 2019 99 - 1 CUSTOMS TARIFF - SCHEDULE Tariff Unit of MFN Applicable SS Description of Goods Item Meas. Tariff Preferential Tariffs 9901.00.00 Articles and materials for use in the manufacture or repair of the Free CCCT, LDCT, GPT, UST, following to be employed in commercial fishing or the commercial MT, MUST, CIAT, CT, harvesting of marine plants: CRT, IT, NT, SLT, PT, COLT, JT, PAT, HNT, Artificial bait; KRT, CEUT, UAT, CPTPT: Free Carapace measures; Cordage, fishing lines (including marlines), rope and twine, of a circumference not exceeding 38 mm; Devices for keeping nets open; Fish hooks; Fishing nets and netting; Jiggers; Line floats; Lobster traps; Lures; Marker buoys of any material excluding wood; Net floats; Scallop drag nets; Spat collectors and collector holders; Swivels.