Formulation and Evaluation of Modified Liposome for Transdermal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transdermal Absorption Preparation
Europäisches Patentamt *EP001522316A1* (19) European Patent Office Office européen des brevets (11) EP 1 522 316 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 158(3) EPC (43) Date of publication: (51) Int Cl.7: A61K 47/34, A61K 47/10, 13.04.2005 Bulletin 2005/15 A61K 47/14, A61K 9/06, A61K 9/08, A61K 9/12, (21) Application number: 03764126.3 A61K 9/70 (22) Date of filing: 02.07.2003 (86) International application number: PCT/JP2003/008400 (87) International publication number: WO 2004/006960 (22.01.2004 Gazette 2004/04) (84) Designated Contracting States: • OMICHI, Katsuhiro AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Saitama-shi, Saitama 338-0832 (JP) HU IE IT LI LU MC NL PT RO SE SI SK TR • OKADA, Minoru Designated Extension States: Inzai-shi, Chiba 270-1323 (JP) AL LT LV MK • KURAZUMI, Toshiaki Narita-shi, Chiba 286-0011 (JP) (30) Priority: 16.07.2002 JP 2002206565 (74) Representative: Hartz, Nikolai F., Dr. (71) Applicant: SSP Co., Ltd. Wächtershäuser & Hartz Chuo-ku, Tokyo 103-8481 (JP) Patentanwälte Weinstrasse 8 (72) Inventors: 80333 München (DE) • NARUI, Takashi Sakura-shi, Chiba 285-0817 (JP) (54) TRANSDERMAL ABSORPTION PREPARATION (57) A transdermal absorption promotion composi- and transdermal absorption preparation not only exhibit tion comprising the following components (a), (b), and an excellent transdermal absorption promotion effect, (c) and a transdermal absorption preparation compris- but also exhibit superior skin-permeability, even if a drug ing the following components (a), (b), (c), and (d) are having a relatively high lipophilic property and poor disclosed. -
Effect of Liposome Composition and Other Factors on the Targeting of Liposomes to Experimental Tumors: Biodistribution and Imaging Studies1
(CANCER RESEARCH SO.6371-6378. October I. 1990] Effect of Liposome Composition and Other Factors on the Targeting of Liposomes to Experimental Tumors: Biodistribution and Imaging Studies1 Alberto Gabizon,2 David C. Price, John Huberty, Robert S. Bresalier, and Demetrios Papahadjopoulos Cancer Research Institute ¡A.(j., I). P.] and Department of Radiology, [D. C. P., J. H.J, L'nirersity of California, San Francisco, California 9414}; (iastroinlestinal Research Laboratories, I eteram Administration Medical Center, and Department of Medicine, I 'nirersity of California, San Francisco, California 94121 [R. S. B.J; and Liposome Technology Inc., Mento Park, California 94025 ¡A.CiJ ABSTRACT temperature, cholesterol, and careful size control result in in hibition of RES uptake with concomitant enhancement of We have examined the distribution of radiolabeled liposomes in tumor- tumor uptake (5). bearing mice after i.v. injection. Two mouse tumors (B16 melanoma, In this report, we describe tissue distribution and imaging J6456 lymphoma) and a human tumor (LS174T colon carcinoma) inoc ulated i.m., S.C.,or in the hind footpad were used in these studies. When studies with transplantable mouse and human tumor models various liposome compositions with a mean vesicle diameter of ~ 100 nm using 3 different radiolabels of liposomes. The findings here were compared using a radiolabel of gallium-67-deferoxamine, optimal indicate that the concentration of liposome-encapsulated radio- tumor localization was obtained with liposomes containing a phosphati- labels in tumors is well above that of most other tissues and dylcholine of high phase-transition temperature and a small molar frac approximates the values obtained in the liver. -
Liposome-Based Drug Delivery Systems in Cancer Immunotherapy
pharmaceutics Review Liposome-Based Drug Delivery Systems in Cancer Immunotherapy Zili Gu 1 , Candido G. Da Silva 1 , Koen van der Maaden 2,3, Ferry Ossendorp 2 and Luis J. Cruz 1,* 1 Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 2 Tumor Immunology Group, Department of Immunology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 3 TECOdevelopment GmbH, 53359 Rheinbach, Germany Received: 1 October 2020; Accepted: 2 November 2020; Published: 4 November 2020 Abstract: Cancer immunotherapy has shown remarkable progress in recent years. Nanocarriers, such as liposomes, have favorable advantages with the potential to further improve cancer immunotherapy and even stronger immune responses by improving cell type-specific delivery and enhancing drug efficacy. Liposomes can offer solutions to common problems faced by several cancer immunotherapies, including the following: (1) Vaccination: Liposomes can improve the delivery of antigens and other stimulatory molecules to antigen-presenting cells or T cells; (2) Tumor normalization: Liposomes can deliver drugs selectively to the tumor microenvironment to overcome the immune-suppressive state; (3) Rewiring of tumor signaling: Liposomes can be used for the delivery of specific drugs to specific cell types to correct or modulate pathways to facilitate better anti-tumor immune responses; (4) Combinational therapy: Liposomes are ideal vehicles for the simultaneous delivery of drugs to be combined with other therapies, including chemotherapy, radiotherapy, and phototherapy. In this review, different liposomal systems specifically developed for immunomodulation in cancer are summarized and discussed. Keywords: liposome; drug delivery; cancer immunotherapy; immunomodulation 1. The Potential of Immunotherapy for the Treatment of Cancer Cancer immunotherapy has been widely explored because of its durable and robust effects [1]. -
The Role of Deformable Liposome Characteristics on Skin Permeability of Meloxicam: Optimal Transfersome As Transdermal Delivery Carriers
Send Orders for Reprints to [email protected] The Open Conference Proceedings Journal, 2013, 4, 87-92 87 Open Access The Role of Deformable Liposome Characteristics on Skin Permeability of Meloxicam: Optimal Transfersome as Transdermal Delivery Carriers Sureewan Duangjit1,2, Praneet Opanasopit1, Theerasak Rojarata1, Yasuko Obata2, Yoshinori Oniki2, Kozo Takayama2 and Tanasait Ngawhirunpat1,* 1Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand 2Department of Pharmaceutics, Hoshi University, Ebara 2-4-41, Shinagawa-ku, Tokyo 142-8501, Japan Abstract: The role of deformable liposomes characteristics on skin permeability has evoked considerable interest, since the articles reporting the effectiveness of transfersomes for skin delivery were increasingly published. Several reports focus on the effect of formulation factor which directly affected the transfersome’s skin permeability. However, the effect of formulation factors was not fully understood as the contradictory results. To clarify this problem, the reliable statistical techniques, excellent experimental design and systematical variation were used in this study. Transfersomes loaded meloxicam containing controlled amount of phosphatidylcholine (PC), cholesterol (Chol), type of surfactant (hydrophilic part, lipophilic part ) were prepared and investigated for the physicochemical characteristics (e.g., size, size distribution, charge, elasticity, drug content, morphology) and skin permeability. The results indicated -
Entrapment of Citrus Limon Var. Pompia Essential Oil Or Pure Citral in Liposomes Tailored As Mouthwash for the Treatment of Oral Cavity Diseases
pharmaceuticals Article Entrapment of Citrus limon var. pompia Essential Oil or Pure Citral in Liposomes Tailored as Mouthwash for the Treatment of Oral Cavity Diseases 1, 1, 2 3 Lucia Palmas y , Matteo Aroffu y, Giacomo L. Petretto , Elvira Escribano-Ferrer , Octavio Díez-Sales 4, Iris Usach 4, José-Esteban Peris 2, Francesca Marongiu 1, Mansureh Ghavam 5, Sara Fais 6, Germano Orrù 6, Rita Abi Rached 7, Maria Letizia Manca 1,* and Maria Manconi 1 1 Department of Scienze della Vita e dell’Ambiente, Drug Science Division, University of Cagliari, 09124 Cagliari, Italy; [email protected] (L.P.); matteo.aroff[email protected] (M.A.); [email protected] (F.M.); [email protected] (M.M.) 2 Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy; [email protected] (G.L.P.); [email protected] (J.-E.P.) 3 Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, 08193 Barcelona, Spain; [email protected] 4 Department of Pharmacy, Pharmaceutical Technology and Parasitology, University of Valencia, Burjassot, 46100 Valencia, Spain; [email protected] (O.D.-S.); [email protected] (I.U.) 5 Department of Range and Watershed Management, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan 8731753153, Iran; [email protected] 6 Department of Surgical Science, University of Cagliari, Molecular Biology Service Lab (MBS), Via Ospedale 40, 09124 Cagliari, Italy; [email protected] (S.F.); [email protected] (G.O.) 7 Centre d’Analyses et de Recherche, Unité de Recherche TVA, Laboratoire CTA, Faculté des Sciences, Université Saint-Joseph, B.P. -
Pulmonary Delivery of Biological Drugs
pharmaceutics Review Pulmonary Delivery of Biological Drugs Wanling Liang 1,*, Harry W. Pan 1 , Driton Vllasaliu 2 and Jenny K. W. Lam 1 1 Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China; [email protected] (H.W.P.); [email protected] (J.K.W.L.) 2 School of Cancer and Pharmaceutical Sciences, King’s College London, 150 Stamford Street, London SE1 9NH, UK; [email protected] * Correspondence: [email protected]; Tel.: +852-3917-9024 Received: 15 September 2020; Accepted: 20 October 2020; Published: 26 October 2020 Abstract: In the last decade, biological drugs have rapidly proliferated and have now become an important therapeutic modality. This is because of their high potency, high specificity and desirable safety profile. The majority of biological drugs are peptide- and protein-based therapeutics with poor oral bioavailability. They are normally administered by parenteral injection (with a very few exceptions). Pulmonary delivery is an attractive non-invasive alternative route of administration for local and systemic delivery of biologics with immense potential to treat various diseases, including diabetes, cystic fibrosis, respiratory viral infection and asthma, etc. The massive surface area and extensive vascularisation in the lungs enable rapid absorption and fast onset of action. Despite the benefits of pulmonary delivery, development of inhalable biological drug is a challenging task. There are various anatomical, physiological and immunological barriers that affect the therapeutic efficacy of inhaled formulations. This review assesses the characteristics of biological drugs and the barriers to pulmonary drug delivery. -
In Vitro Release Test Methods for Drug Formulations for Parenteral Applications
dx.doi.org/10.14227/DT250418P8 Reprinted with permission. Copyright 2018. The United States Pharmacopeial Convention. All rights reserved. In Vitro Release Test Methods for Drug Formulations for Parenteral Applications Vivian Gray,a Susan Cady,b David Curran,c James DeMuth,d Okponanabofa Eradiri,e Munir Hussain,f Johannes Krämer,g John Shabushnig,h Erika Stippler,i,j a V. A. Gray Consulting, Inc, Hockessin, DE. b Boehringer Ingelheim Animal Health, North Brunswick, NJ. c GlaxoSmithKline R&D, King of Prussia, PA. d University of Wisconsin, Madison, WI. e Food and Drug Administration, Silver Spring, MD.—The views presented in this article do not necessarily reflect those of the FDA. No official support or endorsement by the Food and Drug Administration is intended or should be inferred. f Bristol-Myers Squibb Company, New Brunswick, NJ. (Retired). g PHAST, Homburg, Germany. h Insight Pharma Consulting, LLC, Marshall, MI. i United States Pharmacopeia, Rockville, MD. j Correspondence should be addressed to: Desmond G Hunt, Principal Scientific Liaison, US Pharmacopeial Convention, 12601 Twinbrook Parkway, Rockville, MD 20852-1790; tel: +1.301.816.8341; email: [email protected] ABSTRACT In vitro drug release testing for parenteral drug formulations could benefit from more regulatory guidance and compendial information as this testing is a part of current expectations for drug product approval. This Stimuli article discusses in vitro drug release methods for those parenteral drug formulations that are not solutions and explores the challenges involved in using these methods for each formulation type. INTRODUCTION particulate matter, sterility, bacterial endotoxins, water his Stimuli article is the work of some members of the content, aluminum content, and content uniformity. -
Thin Films As an Emerging Platform for Drug Delivery
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector asian journal of pharmaceutical sciences 11 (2016) 559–574 HOSTED BY Available online at www.sciencedirect.com ScienceDirect journal homepage: www.elsevier.com/locate/ajps Review Thin films as an emerging platform for drug delivery Sandeep Karki a,1, Hyeongmin Kim a,b,c,1, Seon-Jeong Na a, Dohyun Shin a,c, Kanghee Jo a,c, Jaehwi Lee a,b,c,* a Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea b Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 06974, Republic of Korea c Center for Metareceptome Research, Chung-Ang University, Seoul 06974, Republic of Korea ARTICLE INFO ABSTRACT Article history: Pharmaceutical scientists throughout the world are trying to explore thin films as a novel Received 21 April 2016 drug delivery tool. Thin films have been identified as an alternative approach to conven- Accepted 12 May 2016 tional dosage forms. The thin films are considered to be convenient to swallow, self- Available online 6 June 2016 administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via Keywords: several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design Thin film of efficient thin films requires a comprehensive knowledge of the pharmacological and phar- Film-forming polymer maceutical properties of drugs and polymers along with an appropriate selection of Mechanical properties manufacturing processes. -
Hormone Replacement Therapy (HRT)
Hormone replacement therapy (HRT) The leaflet aims to answer your questions about taking HRT to treat your menopausal symptoms. If you have any questions or concerns, please speak to the doctor or nurse caring for you. This leaflet should be read alongside any patient information provided by the manufacturer. What is HRT and why do I need it? HRT is medication aimed at relieving the symptoms that some women experience during the menopause, also known as the change of life. These symptoms could include hot flushes, night sweats, vaginal dryness, tiredness and irritability, and decreased sex drive. HRT works by replacing the hormone (oestrogen) that your body stops producing when you go through the menopause or when you have had surgery to remove your ovaries. Used long-term, HRT may help to reduce the risk of osteoporosis (thinning of the bones) and bowel cancer. However, there are also known risks including an increased risk of certain types of cancer. These risks are described in more detail later in this leaflet. As new research is available this will be discussed with you in your clinic appointment. When you start HRT, the doctor or nurse will discuss your age, symptoms and medical conditions before looking at the risks and benefits of HRT which are specific to you. These risks and benefits could change and will be discussed at your yearly review. Some women have a medical menopause (a menopause caused by medical treatment) and may be offered HRT. Some women are not able to take HRT – usually these are women with cancers that have been caused by hormones and women who have had a blood clot. -
Preparation and Evaluation of Liposome Containing Clove Oil
PREPARATION AND EVALUATION OF LIPOSOME CONTAINING CLOVE OIL By Pilaslak Akrachalanont A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree MASTER OF PHARMACY Program of Pharmaceutical Technology Graduate School SILPAKORN UNIVERSITY 2008 PREPARATION AND EVALUATION OF LIPOSOME CONTAINING CLOVE OIL By Pilaslak Akrachalanont A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree MASTER OF PHARMACY Program of Pharmaceutical Technology Graduate School SILPAKORN UNIVERSITY 2008 !"#$% &'(% !)%*+!,-.&"-#,//1(",$3 .!('1( $3! ,!" 4"-#2552 .)6.&$3! ,!" The graduate school, Silpakorn University has approved and accredited the thesis title of Preparation and Evaluation of Liposome Containing Clove Oil submitted by Miss Pilaslak Akarachalanon as a partial fulfillment of the requirements for the degree of master of pharmacy, program of pharmaceutical technology. (Associate Professor Sirichai Chinatangkul, Ph.D.) Dean of graduate school ./.../... The Thesis advisors 1. Associate Professor Somlak Kongmuang, Ph.D. 2. Assistant Professor Police Captain Malai Sathirapund 3. Associate Professor Uthai Sotanaphun, Ph.D. The Thesis Examination Committee Chairman (Parichat Chomto, Ph.D.) ../../.. .Member (Prof. Garnpimol Rittidej, Ph.D.) ../../.. .Member (Assoc.Prof. Somlak Kongmuang, Ph.D.) ../../.. .Member Member (Assist.Prof. Pol.Capt. Malai Sathirapund) (Assoc.Prof. Uthai Sotanaphun, Ph.D.) ../../.. ../../ 47353202 : MAJOR : PHARMACEUTICAL TECHNOLOGY KEY WORDS : LOPOSOME / CLOVE OIL / EUGENOL / THIN FILM METHOD PILASLAK AKRACHALANONT : PREPARATION AND EVALUATION OF LIPOSOME CONTAINING CLOVE OIL. THESIS ADVISORS : ASSOC.PROF.SOMLAK KONGMUANG, Ph.D., ASSIST.PROF POL.CAPT. MALAI SATHIRAPUND, AND ASSOC.PROF. UTHAI SOTANAPHUN, Ph.D. 117 pp. This research particularly focuses on preparation of liposomes which can efficiently maintain stability and quality of clove oil. The research method used in this study can be divided into five main steps. -
Ph and Temperature Dual-Sensitive Liposome Gel Based on Novel Cleavable Mpeg-Hz-CHEMS Polymeric Vaginal Delivery System
International Journal of Nanomedicine Dovepress open access to scientific and medical research Open Access Full Text Article Original RESEARCH pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system Daquan Chen1,2 Background: In this study, a pH and temperature dual-sensitive liposome gel based on a Kaoxiang Sun1,2 novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone- Hongjie Mu1 cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Mingtan Tang3 Methods: The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH- Rongcai Liang1,2 sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The Aiping Wang1,2 novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Shasha Zhou1 Results: A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was Haijun Sun1 formed and improved the solubility of arctigenin characterized by Fourier transform infrared 1 Feng Zhao spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with 1 Jianwen Yao a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was 1,2 Wanhui Liu stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions 1School of Pharmacy, Yantai (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less University, 2State Key Laboratory toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated of Longacting and Targeting Drug Delivery Systems, Yantai, 3School of that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed Pharmaceutical Sciences, Shandong sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. -
Safety Page Transdermal Patches: High Risk for Error?
Safety Page Transdermal patches: High risk for error? Although transdermal patches that the patches are not being derm, there is potential for confusion, provide a useful alternative to oral applied appropriately. which may result in the patches being medications, patch administration can •Why can’t you tape it on? The technol- applied to the wrong area. be complicated. Transdermal patches ogy of most patches is designed to use Errors have been reported wherein are a common route of administration the occlusive dressing to facilitate the patients receive or apply multiple for hormonal therapy, narcotic analge- absorption of the drug through the patches at once. One man did not sia, and nicotine. There are patches skin. Some patients do not realize that survive after his wife applied six fen- available for over-the-counter and pre- the patch must be applied directly to tanyl patches to his skin at one time. scription-only use. the skin. There was a report of a Another common problem is that the Medication errors with patches patient who applied his new patch old patch is not removed when the occur in every healthcare practice set- directly on top of the old one. This new patch is applied. ting—patients’ homes, physician continued until he had four patches Clear patches have become popular offices, intensive care units, cardiac stuck to one another instead of to his because you cannot see them on the step-down units, day care facilities, skin. In one case, a practitioner skin; however, this feature has also inpatient institutional settings, emer- applied the overlay to the patient’s made them error-prone.