Eurydice Affinis Hansen, 1905

Total Page:16

File Type:pdf, Size:1020Kb

Eurydice Affinis Hansen, 1905 Eurydice affinis Hansen, 1905 AphiaID: 118843 ISÓPODE Animalia (Reino) >Arthropoda (Filo) >Crustacea (Subfilo) >Multicrustacea (Superclasse) >Malacostraca (Classe) >Eumalacostraca (Subclasse) > Peracarida (Superordem) > Isopoda (Ordem) > Cymothoida (Subordem) > Cymothooidea (Superfamilia) > Cirolanidae (Familia) Hans Hillewaert, via WoRMS Estatuto de Conservação 1 Referências additional source Schotte, M., B. F. Kensley, and S. Shilling. (1995-2017). World list of Marine, Freshwater and Terrestrial Crustacea Isopoda. National Museum of Natural History Smithsonian Institution: Washington D.C., USA [website archived on 2018-01-25]. [details] additional source Rappé, G. (1989). Annoted checklist of the marine and brackish-water Isopoda (Crustacea, Malacostraca) of Belgium, in: Wouters, K.; Baert, L. (Ed.) (1989). Proceedings of the Symposium “Invertebrates of Belgium”. pp. 165-168 [details] basis of record van der Land, J. (2001). Isopoda – excluding Epicaridea, in: Costello, M.J. et al. (Ed.) (2001). European register of marine species: a check-list of the marine species in Europe and a bibliography of guides to their identification. Collection Patrimoines Naturels, 50: pp. 315-321 [details] additional source Muller, Y. (2004). Faune et flore du littoral du Nord, du Pas-de-Calais et de la Belgique: inventaire. [Coastal fauna and flora of the Nord, Pas-de-Calais and Belgium: inventory]. Commission Régionale de Biologie Région Nord Pas-de-Calais: France. 307 pp., available online at http://www.vliz.be/imisdocs/publications/145561.pdf [details] original description Hansen, H. J. (1905) Revision of the European forms of the Cirolaninae, a subfamily of Crustacea, Isopoda. Journal of the Linnean Society, Zoology 29: 337-373. [details] additional source Jones, D. A. (1970). Population densities and breeding in Eurydice pulchra and Eurydice affinis in Britain. Journal of the Marine Biological Association of the United Kingdom. 50(3), 635–655. [details] additional source Jones, D. A. (1970). Population densities and breeding in Eurydice pulchra and Eurydice affinis in Britain. Journal of the Marine Biological Association of the United Kingdom. 50(3), 635–655. [details] original description Hansen, H. J. (1905). Revision of the European forms of the Cirolaninae, a subfamily of Crustacea, Isopoda. Journal of the Linnean Society, Zoology. 29: 337-373., available online at https://www.biodiversitylibrary.org/page/31598365#page/467/mode/1up [details] additional source Schotte, M.; Kensley, B. F.; Shilling, S. (1995 onwards). World list of Marine, Freshwater and Terrestrial Crustacea Isopoda. National Museum of Natural History Smithsonian Institution: Washington D.C., USA – no longer online. [website archived on 2018-01-25]. [details] Última atualização: 16 Jul. 2018 2 3.
Recommended publications
  • Basal Position of Two New Complete Mitochondrial Genomes of Parasitic
    Hua et al. Parasites & Vectors (2018) 11:628 https://doi.org/10.1186/s13071-018-3162-4 RESEARCH Open Access Basal position of two new complete mitochondrial genomes of parasitic Cymothoida (Crustacea: Isopoda) challenges the monophyly of the suborder and phylogeny of the entire order Cong J. Hua1,2, Wen X. Li1, Dong Zhang1,2, Hong Zou1, Ming Li1, Ivan Jakovlić3, Shan G. Wu1 and Gui T. Wang1,2* Abstract Background: Isopoda is a highly diverse order of crustaceans with more than 10,300 species, many of which are parasitic. Taxonomy and phylogeny within the order, especially those of the suborder Cymothoida Wägele, 1989, are still debated. Mitochondrial (mt) genomes are a useful tool for phylogenetic studies, but their availability for isopods is very limited. To explore these phylogenetic controversies on the mt genomic level and study the mt genome evolution in Isopoda, we sequenced mt genomes of two parasitic isopods, Tachaea chinensis Thielemann, 1910 and Ichthyoxenos japonensis Richardson, 1913, belonging to the suborder Cymothoida, and conducted comparative and phylogenetic mt genomic analyses across Isopoda. Results: The complete mt genomes of T. chinensis and I. japonensis were 14,616 bp and 15,440 bp in size, respectively, with the A+T content higher than in other isopods (72.7 and 72.8%, respectively). Both genomes code for 13 protein-coding genes, 21 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and possess a control region (CR). Both are missing a gene from the complete tRNA set: T. chinensis lacks trnS1 and I. japonensis lacks trnI. Both possess unique gene orders among isopods.
    [Show full text]
  • HELCOM Red List
    SPECIES INFORMATION SHEET Eurydice pulchra English name: Scientific name: Speckled sea louse Eurydice pulchra Taxonomical group: Species authority: Class: Malacostraca Leach, 1815 Order: Isopoda Family: Cirolanidae Subspecies, Variations, Synonyms: – Generation length: – Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): codes): Potentially eutrophication (H01.05), Potentially eutrophication (H01.05), contaminant contaminant pollution (H01), construction pollution (H01), construction (D03.03) (D03.03) IUCN Criteria: HELCOM Red List DD – Category: Data Deficient Global / European IUCN Red List Category: Habitats Directive: NE/NE – Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/* (Not threatened, incl. North Sea), Latvia –/–, Lithuania –/–-, Poland –/–, Russia –/–, Sweden –/– Distribution and status in the Baltic Sea region Eurydice pulchra occurs in the Kattegat and along the southern coasts of the Baltic (from the Kiel Bay to the Curonian Lagoon). It is very rare in Germany but occurs more commonly along the Polish exposed coast. It is not known whether the difference between old and new observations indicates a genuine decline or just lack of sampling. Most of the recent records are from the Polish coast. © HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Eurydice pulchra Distribution map The georeferenced records of the species compiled from the Danish national database for marine data (MADS), the database of the Leibniz Institute for Baltic Sea Research (IOW) (incl. also part of the Polish literature and monitoring data), and from literature: Demel (1936), Mańkowski (1954), Żmudziński (1982), Hague et al. (1996), and Masłowski (2006).
    [Show full text]
  • From International Minho River, Iberian Peninsula
    Research Article Oceanogr Fish Open Access J Volume 13 Issue 4 - April 2021 Copyright © All rights are reserved by Nuno Miguel Araújo Gomes DOI: 10.19080/OFOAJ.2021.13.555866 Isopods (Crustacea, Malacostraca) from International Minho River, Iberian Peninsula Nuno Miguel Araújo Gomes1,2*, Dimítri De Araújo Costa1,2, Harold Casalís Cantallo1, Tiago José Andrade Ribeiro1 and Carlos Antunes1,2 1Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Portugal 2Aquamuseu do Rio Minho, Parque do Castelinho, Portugal Submission: March 30, 2021; Published: May 07, 2021 Corresponding author: Nuno Miguel Araújo Gomes, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal. Email: [email protected] Abstract Isopods are a common, diverse, and abundant group of the littoral and estuarine invertebrate fauna. This study presents a survey on the species of isopods found on the Minho River estuary, Iberian Peninsula, using plankton net, glass eel fishing bycatch, grab sampler, and sein net thissampling area. methods. A total of 248 specimens were analysed belonging to five families with 13 species in 10 genera. Brief diagnosis, ecological notes, species distributions, figures and a key to species identifications are provided aiming to provide taxonomic support on future projects on Keywords: Atlantic Ocean; Distribution; Estuary; Isopoda; Taxonomy Introduction Portuguese archipelagos of Azores, e.g. [11-13]. Macroinvertebrate Order Isopoda (Crustacea) is a diverse group with more than surveys on the Minho River started on 1982 [14], but have 10.000 valid species according to the World Register of Marine been scarce with only a few works on macrobenthic ecology or Species database [1], occupying all habitats from marine deep waters to freshwater aquifers or from deserts to mountains [2].
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Speckled sea louse (Eurydice pulchra) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Georgina Budd 2007-06-28 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1663]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Budd, G.C. 2007. Eurydice pulchra Speckled sea louse. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1663.2 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-06-28 Speckled sea louse (Eurydice pulchra) - Marine Life Information Network See online review for distribution map Eurydice pulchra. Distribution data supplied by the Ocean Photographer: Marine Ecological Surveys Ltd Biogeographic Information System (OBIS).
    [Show full text]
  • Contribution to the Knowledge of the Free-Living Isopods of the Aegean
    TurkJZool 30(2006)361-372 ©TÜB‹TAK ContributiontotheKnowledgeoftheFree-Living IsopodsoftheAegeanSeaCoastofTurkey FevziKIRKIM1,AhmetKOCATAfi1,TuncerKATA⁄AN2,MuratSEZG‹N1 1EgeUniversity,FacultyofFisheries,DepartmentofHydrobiology,35000Bornova,‹zmir-TURKEY 2OndokuzMay›sUniversity,FacultyofFisheries,DepartmentofHydrobiology,57000,Sinop-TURKEY Received:29.07.2005 Abstract: ThisresearchwascarriedoutalongtheTurkishAegeanSeacoast(fromSarosBayinthenorthtoTurunç-Marmarisin thesouth)inordertodeterminetheIsopodfauna.Atotalof163samplingswereconductedat23stationsand17differentbiotopes, fromwhich3209specimenswerecollectedbelongingto18families,29generaand50species. Amongthespeciesdetermined,18arenewrecordsfortheTurkishfauna( Anthuragracilis,Apanthuracorsica,Asellusaquaticus, Janiropsisbreviremis,Uromunnapetiti,Cirolanacranchii,Eurydiceaffinis,E.inermis,E.pulchra,Cymodocehanseni,Dynamene bifida,Ischyromenelacazei,Lekanesphaeramonodi,Sphaeromapulchellum,Emethaaudouinii,Rocineladumerilii,Astacilla longicornis, andHalophilosciacouchi),and20arenewfortheTurkishAegeanSeacoast(bytheadditionofI.metallica andS.walkeri totheabovelist). KeyWords: Isopoda,Crustacea,taxonomy,AegeanSea,Turkey Türkiye’ninEgeDeniziK›y›lar›n›nSerbestYaflaml›IsopodFaunas›naKatk›lar Özet: Buçal›flmaTürkiye’ninEgeDenizik›y›lar›n›n(KuzeydeSarozKörfezi’ndenGüneydeTurunç-Marmaris’ekadar)Isopodfaunas›n› belirlemekamac›ylagerçeklefltirilmifltir.17farkl›biotopve23istasyondagerçeklefltirilen163örneklemede3209bireyeldeedilmifl ve18familya29genusve50türtespitedilmifltir. Belirlenentürleraras›nda18tür( Anthuragracilis,Apanthuracorsica,Asellusaquaticus,Janiropsisbreviremis,Uromunnapetiti,
    [Show full text]
  • Ecdysozoans: the Molting Animals
    33 Ecdysozoans: The Molting Animals Early in animal evolution, the protostomate lineage split into two branches—the lophotrochozoans and the ecdysozoans—as we saw in the previous chapter. The distinguishing feature of the ecdyso- zoans is an exoskeleton, a nonliving covering that provides an ani- mal with both protection and support. Once formed, however, an ex- oskeleton cannot grow. How, then, can ecdysozoans increase in size? Their solution is to shed, or molt, the exoskeleton and replace it with a new, larger one. Before the animal molts, a new exoskeleton is already forming underneath the old one. When the old exoskeleton is shed, the new one expands and hardens. But until Shedding the Exoskeleton This dragon- fly has just gone through a molt, a shed- it has hardened, the animal is very vulnerable to its enemies both because its outer ding of the outer exoskeleton. Such molts surface is easy to penetrate and because it can move only slowly. are necessary in order for the insect to The exoskeleton presented new challenges in other areas besides grow larger or to change its form. growth. Ecdysozoans cannot use cilia for locomotion, and most exdysozoans have hard exoskeletons that impede the passage of oxygen into the animal. To cope with these challenges, ecdysozoans evolved new mechanisms of locomotion and respiration. Despite these constraints, the ecdysozoans—the molting ani- mals—have more species than all other animal lineages combined. An increasingly rich array of molecular and genetic evidence, in- cluding a set of homeobox genes shared by all ecdysozoans, suggests that molting may have evolved only once during animal evolution.
    [Show full text]
  • Irish Biodiversity: a Taxonomic Inventory of Fauna
    Irish Biodiversity: a taxonomic inventory of fauna Irish Wildlife Manual No. 38 Irish Biodiversity: a taxonomic inventory of fauna S. E. Ferriss, K. G. Smith, and T. P. Inskipp (editors) Citations: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Section author (2009) Section title . In: Ferriss, S. E., Smith K. G., & Inskipp T. P. (eds.) Irish Biodiversity: a taxonomic inventory of fauna. Irish Wildlife Manuals, No. 38. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover photos: © Kevin G. Smith and Sarah E. Ferriss Irish Wildlife Manuals Series Editors: N. Kingston and F. Marnell © National Parks and Wildlife Service 2009 ISSN 1393 - 6670 Inventory of Irish fauna ____________________ TABLE OF CONTENTS Executive Summary.............................................................................................................................................1 Acknowledgements.............................................................................................................................................2 Introduction ..........................................................................................................................................................3 Methodology........................................................................................................................................................................3
    [Show full text]
  • Mitochondrial Architecture Rearrangements Produce Asymmetrical Nonadaptive Mutational Pressures That Subvert the Phylogenetic Reconstruction in Isopoda
    GBE Mitochondrial Architecture Rearrangements Produce Asymmetrical Nonadaptive Mutational Pressures That Subvert the Phylogenetic Reconstruction in Isopoda Dong Zhang1,2,3,†,HongZou1,2,†, Cong-Jie Hua1,2,Wen-XiangLi1,2, Shahid Mahboob4,5, Khalid Abdullah Al-Ghanim4, Fahad Al-Misned4,IvanJakovlic6,*, and Gui-Tang Wang1,2,* 1Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China 2State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, P.R. China 3University of Chinese Academy of Sciences, Beijing, P.R. China 4Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia 5Department of Zoology, GC University, Faisalabad, Pakistan 6Bio-Transduction Lab, Wuhan, P.R. China †These authors contributed equally to this work. *Corresponding authors: E-mails: [email protected]; [email protected]. Accepted: June 8, 2019 Data deposition: This project has been deposited at GenBank under the accession numbers MK079664, MK542856, MK542857 and MK542858. The remaining data are included within the article and its supplementary files. Abstract The phylogeny of Isopoda, a speciose order of crustaceans, remains unresolved, with different data sets (morphological, nuclear, mitochondrial) often producing starkly incongruent phylogenetic hypotheses. We hypothesized that extreme diversity in their life histories might be causing compositional heterogeneity/heterotachy in their mitochondrial genomes, and compromising the phy- logenetic reconstruction. We tested the effects of different data sets (mitochondrial, nuclear, nucleotides, amino acids, concatenated genes, individual genes, gene orders), phylogenetic algorithms (assuming data homogeneity, heterogeneity, and heterotachy), and partitioning; and found that almost all of them produced unique topologies.
    [Show full text]
  • Mitochondrial Architecture Rearrangements Produce
    bioRxiv preprint doi: https://doi.org/10.1101/607960; this version posted April 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Mitochondrial architecture rearrangements produce 2 asymmetrical nonadaptive mutational pressures that subvert 3 the phylogenetic reconstruction in Isopoda 4 Running title: Nonadaptive evolution and Isopoda mitogenomes 5 Dong Zhang1,2#, Hong Zou1#, Cong-Jie Hua1, Wen-Xiang Li1, Shahid Mahboob3,4, Khalid 6 Abdullah Al-Ghanim3, Fahad Al-Misned3, Ivan Jakovlić5,*, Gui-Tang Wang1,* 7 1 Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key 8 Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese 9 Academy of Sciences, Wuhan 430072, P. R. China 10 2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China 11 3 Department of Zoology, College of Science, King Saud University, P.O. Box 2455, 12 Riyadh-11451, Saudi Arabia. 13 4 Department of Zoology, GC University, Faisalabad, Pakistan 14 5 Bio-Transduction Lab, Wuhan 430075, P. R. China 15 # These authors contributed equally to this study. 16 *Authors for Correspondence: 17 Gui-Tang Wang, Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture and 18 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, 19 Chinese Academy of Sciences, Wuhan, 430072, China; Tel: +86-027 68780611, Email: 20 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/607960; this version posted April 13, 2019.
    [Show full text]
  • A Novel Form of Pigmentdispersing Hormone in the Central Nervous
    RESEARCH ARTICLE A Novel Form of Pigment-Dispersing Hormone in the Central Nervous System of the Intertidal Marine Isopod, Eurydice pulchra (Leach) David C. Wilcockson,1 Lin Zhang,2 Michael H. Hastings,3 Charalambos P. Kyriacou,2 and Simon G. Webster4* 1Institute of Biological Environmental and Rural Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, United Kingdom 2Department of Genetics, University of Leicester, Leicester, LE1 7RH, United Kingdom 3MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom 4School of Biological Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, United Kingdom ABSTRACT cleotide encoding sequence and thus facilitated Pigment-dispersing factor (PDF) is well known as a cir- description of PDH neurons by in situ hybridization and cadian clock output factor, which drives daily activity immunohistochemistry. We show them to be morpho- rhythms in many insects. The role of its homologue, logically similar to those that co-ordinate circadian ac- pigment-dispersing hormone (PDH), in the regulation of tivity rhythms in insects. In animals expressing both circadian and/or circatidal rhythmicity in crustaceans tidal (activity) and circadian (chromatophore) rhythms, is, however, poorly understood. The intertidal isopod however, there was no evidence for a corresponding crustacean, Eurydice pulchra has well-defined circatidal periodicity in the expression of pdh transcript, as deter- (12.4-hour) activity rhythms. In this study we show that mined by quantitative reverse transcriptase polymerase this runs parallel to a circadian (24-hour) cycle of chro- chain reaction (qRT-PCR) in Eurydice heads. It is there- matophore dispersion. As a first step in determining the fore suggested that any role for PDH in daily/tidal tim- potential role of PDH in these rhythms, we have identi- ing in Eurydice is not mediated at the transcriptional fied a novel form of PDH expressed in this species.
    [Show full text]
  • From Sand Beaches on the Iberian Peninsula
    /. mar. biol. Ass. U.K. (1997), 77,55-76 55 Printed in Great Britain ECOLOGY AND TAXONOMY OF THE GENUS EURYDICE (ISOPODA: CIROLANIDAE) FROM SAND BEACHES ON THE IBERIAN PENINSULA D.A. JONES AND C.J. PIERPOINT School of Ocean Sciences, University of Wales, Bangor, Menai Bridge, Gwynedd, LL59 5EY Quantitative sampling for the genus Eurydice (Isopoda: Cirolanidae) was conducted on 25 sand beach sites along the Atlantic coast of the Iberian Peninsula. Five species were recorded intertidally: Eurydice affinis, E. pulchra, E. naylori sp. nov., £. lusitaniensis sp. nov. and E. spinigera. Physical data collected were used to construct an index of exposure to rank each site. The distribution of intertidal Eurydice sp. is described in relation to exposure to wave action and to tidal level. Peak abundance of E. affinis, E. pulchra and £. naylori occurred most frequently between mean high water neap (MHWN) and mean tide level (MTL). Whilst E. affinis occurred over a wide range of exposure, £. naylori exhibited a marked preference for exposed sites and £. pulchra was only recorded from sheltered and semi-exposed sites. Surf plankton collections revealed the presence of £. lusitaniensis, but as only two specimens were collected, its ecology remains unknown. The zoogeographical distribution of the genus on North Atlantic and Mediterranean coasts is briefly reviewed. INTRODUCTION Isopods of the family Cirolanidae dominate the upper shore of sandy beaches in most temperate and tropical regions (Bruce, 1986) and are represented by members of the genus Eurydice at this level of the shore on European North Atlantic coasts (Wolff, 1966; Jones & Naylor, 1967; Dexter, 1988).
    [Show full text]
  • Isopod Trackways from the Crayssac Lagerstätte, Upper Jurassic, France
    Isopod trackways from the Crayssac Lagerstätte, upper Jurassic, France Christian Gaillard, Pierre Hantzpergue, Jean Vannier, Anne-Laurence Margérard, Jean-Michel Mazin To cite this version: Christian Gaillard, Pierre Hantzpergue, Jean Vannier, Anne-Laurence Margérard, Jean-Michel Mazin. Isopod trackways from the Crayssac Lagerstätte, upper Jurassic, France. Paleontology, 2004, 48 (5), pp.947-962. 10.1111/j.1475-4983.2005.00502.x. hal-00666942 HAL Id: hal-00666942 https://hal.archives-ouvertes.fr/hal-00666942 Submitted on 6 Feb 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. [Palaeontology, Vol. 48, Part 5, 2005, pp. 947–962] ISOPOD TRACKWAYS FROM THE CRAYSSAC LAGERSTA¨ TTE, UPPER JURASSIC, FRANCE by CHRISTIAN GAILLARD, PIERRE HANTZPERGUE, JEAN VANNIER, ANNE-LAURENCE MARGERARD and JEAN-MICHEL MAZIN UMR CNRS 5125 – Pale´oenvironnements et Pale´obiosphe`re, Universite´ de Lyon 1, Ge´ode - 2, rue Raphae¨l Dubois, F-69622 Villeurbanne Cedex, France; e-mails: [email protected]; [email protected]; [email protected] Typescript received 26 November 2003; accepted in revised form 28 July 2004 Abstract: Well-preserved arthropod trackways are described were crawling in a direction perpendicular to shoreline as a from the laminated limestones of the Crayssac Lagersta¨tte result of possible taxis induced by sediment wetness and ⁄ or (south-west France, Lower Tithonian).
    [Show full text]