Blake Ridge Methane Seeps: Characterization of a Soft-Sediment, Chemosynthetically Based Ecosystem
Deep-Sea Research I 50 (2003) 281–300 Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem C.L. Van Dovera,*, P. Aharonb, J.M. Bernhardc, E. Caylord, M. Doerriesa, W. Flickingera, W. Gilhoolyd, S.K. Goffredie, K.E. Knicka, S.A. Mackod, S. Rapoporta, E.C. Raulfsa, C. Ruppelf, J.L. Salernoa, R.D. Seitzg, B.K. Sen Guptah, T. Shanki, M. Turnipseeda, R. Vrijenhoeke a Biology Department, College of William & Mary, Williamsburg, VA 23187, USA b Department of Geological Sciences, University of Alabama, Box 870338, Tuscaloosa, AL 35487, USA c Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA d Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA e Monterey Bay Aquarium Research Institute, 7700 Sandholt Road, Moss Landing, CA 95039, USA f School of Earth & Atmospheric Sciences, Georgia Tech., Atlanta, GA 30332, USA g Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA h Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA i Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 24 May 2002; received in revised form 23 October 2002; accepted 26 November 2002 Abstract Observations from the first submersible reconnaissance of the Blake Ridge Diapir provide the geological and ecological contexts for chemosynthetic communities established in close association with methane seeps. The seeps mark the loci of focused venting of methane from the gas hydrate reservoir, and, in one location (Hole 996D of the Ocean Drilling Program), methane emitted at the seafloor was observed forming gas hydrate on the underside of a carbonate overhang.
[Show full text]