Blake Ridge Methane Seeps: Characterization of a Soft-Sediment, Chemosynthetically Based Ecosystem

Total Page:16

File Type:pdf, Size:1020Kb

Blake Ridge Methane Seeps: Characterization of a Soft-Sediment, Chemosynthetically Based Ecosystem Deep-Sea Research I 50 (2003) 281–300 Blake Ridge methane seeps: characterization of a soft-sediment, chemosynthetically based ecosystem C.L. Van Dovera,*, P. Aharonb, J.M. Bernhardc, E. Caylord, M. Doerriesa, W. Flickingera, W. Gilhoolyd, S.K. Goffredie, K.E. Knicka, S.A. Mackod, S. Rapoporta, E.C. Raulfsa, C. Ruppelf, J.L. Salernoa, R.D. Seitzg, B.K. Sen Guptah, T. Shanki, M. Turnipseeda, R. Vrijenhoeke a Biology Department, College of William & Mary, Williamsburg, VA 23187, USA b Department of Geological Sciences, University of Alabama, Box 870338, Tuscaloosa, AL 35487, USA c Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA d Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22903, USA e Monterey Bay Aquarium Research Institute, 7700 Sandholt Road, Moss Landing, CA 95039, USA f School of Earth & Atmospheric Sciences, Georgia Tech., Atlanta, GA 30332, USA g Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Point, VA 23062, USA h Department of Geology & Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA i Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 24 May 2002; received in revised form 23 October 2002; accepted 26 November 2002 Abstract Observations from the first submersible reconnaissance of the Blake Ridge Diapir provide the geological and ecological contexts for chemosynthetic communities established in close association with methane seeps. The seeps mark the loci of focused venting of methane from the gas hydrate reservoir, and, in one location (Hole 996D of the Ocean Drilling Program), methane emitted at the seafloor was observed forming gas hydrate on the underside of a carbonate overhang. Megafaunal elements of a chemosynthetically based community mapped onto dive tracks provide a preliminary overview of faunal distributions and habitat heterogeneity. Dense mussel beds were prominent and covered 20 Â 20 m areas. The nearly non-overlapping distributions of mussels and clams indicate that there may be local (meter-scale) variations in fluid flux and chemistry within the seep site. Preliminary evidence suggests that the mussels are host to two symbiont types (sulfide-oxidizing thiotrophs and methanotrophs), while the clams derive their nutrition only from thiotrophic bacteria. Invertebrate biomass is dominated by mussels (Bathymodiolus heckerae) that reach lengths of up to 364 mm and, to a lesser extent, by small (22 mm length) vesicomyid clams (Vesicomya cf. venusta). Taking into account biomass distributions among taxa, symbiont characteristics of the bivalves, and stable-isotope analyses, the relative importance of methanotrophic vs thiotrophic bacteria in the overall nutrition of the invertebrate assemblage is on the order of 60% vs 40% (3:2). r 2003 Elsevier Science Ltd. All rights reserved. Keywords: Blake Ridge; Methane hydrates; Chemosynthesis; Stable isotopes; Bathymodiolus heckerae; Seeps *Corresponding author. E-mail address: [email protected] (C.L. Van Dover). 0967-0637/03/$ - see front matter r 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0967-0637(02)00162-0 282 C.L. Van Dover et al. / Deep-Sea Research I 50 (2003) 281–300 1. Introduction seafloor (mbsf; Paull et al., 1996). At some locations, however, gas hydrate and underlying A quarter of a century has passed since the first free gas occur close to the seafloor, and interaction exploration of hydrothermal vents, yet the pro- of the hydrate reservoir with geologic, oceano- spect remains for discovery of biogeographically graphic, and other processes leads to the develop- and ecologically distinctive types of chemosyn- ment of focused seeps. thetic systems in the world’s oceans. Exploration The US Atlantic continental margin south of and investigation of these systems will allow us to 34N is among the most extensively mapped gas- understand the diversity of habitats, species, and hydrate provinces in the world’s oceans. Several adaptations that can be supported by chemosyn- generations of seismic surveys (e.g., Tucholke et al., thesis. In this report, we provide preliminary 1977; Rowe and Gettrust, 1993; Taylor et al., characterization of a soft-sediment, chemosynthe- 1999; Holbrook, 2000) map a regionally extensive tically based ecosystem associated with a methane bottom-simulating reflector (BSR) in this area. hydrate province on the continental margin of the The BSR is a negative-impedance contrast reflec- eastern United States. Gas hydrates close to the tor that marks the phase boundary between sediment–seawater interface are also known from overlying gas hydrate and underlying free gas. other regions, including the Gulf of Mexico While gas hydrates are known to occur on the (MacDonald et al., 1994), the Barbados accre- Blake Ridge at locations with no BSR (e.g., Paull tionary complex (Olu et al., 1996), the Barents Sea et al., 1996), the presence of a BSR beneath a large (Egorov et al., 1999), and the Cascadia margin off part of the Blake Ridge implies widespread Oregon (Suess et al., 1999; Sahling et al., 2002). occurrence of gas hydrates. The focus site for this study lies near the A line of about 20 salt diapirs begins near the intersection of the Carolina Rise and the Blake intersection of the Blake Ridge with the Carolina Ridge (Fig. 1). This area of the South Atlantic Rise and extends northward on the eastern side of Bight has long been recognized as a major gas the Carolina Trough (Dillon et al., 1982). The hydrate province within the US Exclusive Eco- diapirs rise to within 600 m of the seafloor and nomic Zone (e.g., Markl et al., 1970; Tucholke disrupt the overlying sediments. Interaction be- et al., 1977; Paull and Dillon, 1981). Over most of tween the Blake Ridge Diapir (the southern-most the region, the top of the methane hydrate deposit diapir) and the underlying methane-hydrate re- probably lies at depths greater than 100 m below servoir was extensively investigated by Taylor et al. (2000). The high thermal conductivity of the diapir alters the local stability field for methane hydrates, ο ο ο ο ο causing upward warping of the BSR and shifting 82 W 80 W 78 W 76 W 74 W of the gas hydrate and free-gas system to shallower NC levels in the sedimentary section. At the same time, ο partial dissolution of the salt diapir raises local 34 N SOUTH CAROLINA pore-water salinities, further inhibiting gas-hy- 4000 drate stability and possibly contributing to the se increased mobility of fluids in the sedimentary ο section (Taylor et al., 2000). Emplacement of the 32 N GA Carolina Ri diapir has been accompanied by the development Blake of faults that act as conduits for the transfer of free Ridge Continental Shelf gas and waters rich in dissolved gas toward the 1000 2000 3000 seafloor (Paull et al., 1995). ο 30 N Seismic reflection profiles across the Blake Fig. 1. Blake Ridge Diapir study site location. Star indicates Ridge Diapir (e.g., USGS CH-06-92 Line 37) Blake Ridge Diapir; shaded off-shore area delineates region of show a prominent BSR that shoals over the diapir, gas-hydrate deposits; contour lines are in 1000-m intervals. and a fault that extends from the BSR to nearly C.L. Van Dover et al. / Deep-Sea Research I 50 (2003) 281–300 283 nates and gas hydrates were documented in core CH-95-18, Line 23 996 material, and collection of mussels at the tops of 3.0 escaping gas cores provided evidence for the existence of a chemosynthetic community on the crest of the diapir (Paull et al., 1996). BSR The geographic location of the Blake Ridge core of diapir methane seep raises questions about the biogeo- Two-Way Time (s) 3.5 graphical affinities of its fauna. The closest known 3 km deep-sea seep sites are those of the Barbados region to the southeast (Jollivet et al., 1990; Olu 200 300 400 500 et al., 1996, 1997) and of the Florida Escarpment, SW Shot Number NE on the opposite side of the Florida peninsula Fig. 2. Seismic profile across the Blake Ridge Diapir showing (Paull et al., 1984; Hecker, 1985). There is a the prominent Bottom-Simulating Reflector (BSR). Single perception that seeps support faunas that are more channel seismic data (line 23 of CH-95-18) collected by the USGS across the Blake Ridge Diapir during a cruise aboard the endemic to local regions than hydrothermal vents R/V Cape Hatteras in 1995 (Taylor et al., 1999). The raw data (Sibuet and Olu, 1998); comparisons of species have been slightly reprocessed. The seismic line crosses the lists and genetic differentiation in species from diapir from southwest to northeast. The BSR is warped upward these sites can be used to test this hypothesis. and disrupted over the core of the diapir, particularly between In this paper, we report new data that enhance shots 340 and 370. Vertically oriented features above the core of the diapir mark gas migration paths. our understanding of the geological context and ecological setting for the chemosynthetically based community on the Blake Diapir. Further accounts the seafloor (Fig. 2). Chemosynthetic communities of methane hydrate formation, foraminiferal and gas-rich plumes rising up to 320 m in the water biology and ecology, and quantitative analyses of column have been detected where the fault system the invertebrate assemblage associated with Blake intersects the seafloor (Paull et al., 1995, 1996). Ridge mussel beds will be presented elsewhere. Sediments consisting of hemipelagic silt and clay with 20–40% pelagic carbonate (Paull et al., 1995; Dillon and Max, 2000b) drape the diapir. These 2. Materials and methods sediments, which were deposited by strong, south- flowing near-bottom currents, were accreted ra- Four Alvin dives were conducted at the Blake pidly (up to 48 cm kaÀ1) during the late Pleistocene Ridge Diapir site (ODP Site 996; 3229.6230N, interval (Paull et al., 1996).
Recommended publications
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • Carbonate Ramps: an Introduction
    Downloaded from http://sp.lyellcollection.org/ by guest on September 29, 2021 Carbonate ramps: an introduction V. P. WRIGHT 1 & T. P. BURCHETTE 2 1Department of Earth Sciences, Cardiff University, Cardiff CF1 3YE, UK and BG Exploration and Production, 100 Thames Valley Park Drive, Reading RG6 1PT, UK 2Bp Exploration, Building 200, Chertsey Road, Sunbury-on-Thames, Middlesex TW16 7LN, UK Carbonate ramps are carbonate platforms which history. The term shelf is, however, most widely have a very low gradient depositional slope used in the geological context for any broad, (commonly less than 0.1 ~ from a shallow-water gently-sloping surface, clastic or carbonate, shoreline or lagoon to a basin floor (Burchette & which has a break in slope in deeper water, and Wright 1992). A large proportion of carbonate is typified by usage of the term 'continental successions in the geological record were shelf' (e.g. Bates & Jackson 1987). In addition, deposited in ramp-like settings. Nevertheless, the term ramp is now also widely used by clastic ramps remain one of the more enigmatic sedimentologists for low-gradient submarine carbonate platform types. In contrast to steeper- slopes, particularly on continental shelves. sloped rimmed shelves and isolated buildups, Where the dominant sea-floor sediments are of where the factors which have controlled their carbonate mineralogy, however, such a configu- location and development are commonly quite ration has become known as a 'distally steep- evident, the controls on ramp development have ened ramp', a morphology which in carbonate seldom been clearly demonstrated. In order to settings is more often than not inherited from an shed new light on this topic, and related aspects antecedent morphological feature.
    [Show full text]
  • Growth and Demise of a Paleogene Isolated Carbonate Platform of the Offshore Indus Basin, Pakistan: Effects of Regional and Local Controlling Factors
    Published in "Marine Micropaleontology 140: 33–45, 2018" which should be cited to refer to this work. Growth and demise of a Paleogene isolated carbonate platform of the Offshore Indus Basin, Pakistan: effects of regional and local controlling factors Khurram Shahzad1 · Christian Betzler1 · Nadeem Ahmed2 · Farrukh Qayyum1 · Silvia Spezzaferri3 · Anwar Qadir4 Abstract Based on high-resolution seismic and well depositional trend of the platform, controlled by the con- datasets, this paper examines the evolution and drown- tinuing thermal subsidence associated with the cooling of ing history of a Paleocene–Eocene carbonate platform in volcanic margin lithosphere, was the major contributor of the Offshore Indus Basin of Pakistan. This study uses the the accommodation space which supported the vertical internal seismic architecture, well log data as well as the accumulation of shallow water carbonate succession. Other microfauna to reconstruct factors that governed the car- factors such as eustatic changes and changes in the carbon- bonate platform growth and demise. Carbonates domi- ate producers as a response to the Paleogene climatic per- nated by larger benthic foraminifera assemblages permit turbations played secondary roles in the development and constraining the ages of the major evolutionary steps and drowning of these buildups. show that the depositional environment was tropical within oligotrophic conditions. With the aid of seismic stratigra- Keywords Paleogene carbonate platform · Seismic phy, the carbonate platform edifice is resolved into seven sequence stratigraphy · Drowning · Offshore Indus Basin · seismic units which in turn are grouped into three packages Larger benthic foraminifera · Biostratigraphy that reflect its evolution from platform initiation, aggrada- tion with escarpment formation and platform drowning.
    [Show full text]
  • Deep Sea Drilling Project Initial Reports Volume 50
    38. MESOZOIC CALCITURBDITES IN DEEP SEA DRILLING PROJECT HOLE 416A RECOGNITION OF A DROWNED CARBONATE PLATFORM Wolfgang Schlager, Rosenstiel School of Marine and Atmospheric Science, Division of Marine Geology and Geophysics, University of Miami, Miami, Florida ABSTRACT The Tithonian-Hauterivian section of Site 416 contains about 10 per cent limestone and marlstone in well-defined beds between shale and sandstone. Depositional structures, grain composition, and dia- genetic fabrics of the limestone beds as well as their association with graded sandstone and brown shale suggest their deposition by turbid- ity currents below calcite-compensation depth. Carbonate material was initially shed from a shallow-water platform with ooid shoals and peloidal sands. Soft clasts of deep-water carbonate muds were ripped up during downslope sediment transport. Shallow-water mud of metastable aragonite and magnesium calcite was deposited on top of the graded sands, forming the fine tail of the turbidite; it has been subsequently altered to tight micritic limestone that is harder and less porous than Coccolith sediment under similar overburden. Abnor- mally high strontium contents are attributed to high aragonite con- tents in the original sediment. This suggests that the limestone beds behaved virtually as closed systems during diagenesis. Drowning of the platform during the Valanginian is inferred from the disappearance of the micritic limestones, the increase in abun- dance of phosphorite, of ooids with quartz nuclei, and of the quartz content in the calciturbidites. In Hauterivian time, the carbonate supply disappeared completely. The last limestone layers are litho- clastic breccias which indicate that erosion has cut into well-lithified and dolomitized deeper parts of the platform rather than sweeping off loose sediment from its top.
    [Show full text]
  • Marine Ecology Progress Series 245:69
    MARINE ECOLOGY PROGRESS SERIES Vol. 245: 69–82, 2002 Published December 18 Mar Ecol Prog Ser Ecology and nutrition of the large agglutinated foraminiferan Bathysiphon capillare in the bathyal NE Atlantic: distribution within the sediment profile and lipid biomarker composition Andrew J. Gooday1,*, David W. Pond1, Samuel S. Bowser2 1Southampton Oceanography Centre, Empress Dock, Southampton SO14 3ZH, United Kingdom 2Wadsworth Center, New York State Department of Health, PO Box 509, Albany, New York 12201-0509, USA ABSTRACT: The large agglutinated foraminiferan Bathysiphon capillare de Folin (Protista) was an important component of the macrofauna in box core samples recovered at a 950 m site on the south- ern flank of the Wyville-Thomson Ridge, northern Rockall Trough. The long, narrow, very smooth, flexible tubes of B. capillare reached a maximum length of almost 10 cm. Densities ranged from 100 to 172 ind. m–2, a figure that represents at least 5 to 9% of metazoan macrofaunal densities. This infaunal species usually adopted a more or less horizontal orientation within the upper 5 cm layer of brownish sandy silt. Its cytoplasm yielded a diverse spectrum of fatty acids. These included various monounsaturated fatty acids (39% of total), mainly 18:1(n-7), 20:1(n-9) and 22:1(n-7), the polyunsat- urated fatty acids (PUFA) 20:4(n-6), 20.5(n-3) and 22.6(n-3), and non-methylene diene-interrupted fatty acids (NMIDS), particularly 22:2∆7,13 and 22:2∆7,15. The spectrum of PUFAs is consistent with the ingestion by B. capillare of phytodetrital material.
    [Show full text]
  • San Andrés, Old Providence and Santa Catalina (Caribbean Sea, Colombia)
    REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA CATALINA (CARIBBEAN SEA, COLOMBIA) with Field Guide JÓRN GEISTER Y JUAN MANUEL DÍAZ República de Colombia MINISTERIO DE MINAS Y ENERGÍA INSTITUTO COLOMBIANO DE GEOLOGÍA Y MINERÍA INGEOMINAS REEF ENVIRONMENTS AND GEOLOGY OF AN OCEANIC ARCHIPELAGO: SAN ANDRÉS, OLD PROVIDENCE AND SANTA. CATALINA (CARIBBEAN SEA, COLOMBIA with FIELD GUIDE) INGEOMINAS 2007 DIAGONAL 53 N°34-53 www.ingeominas.gov.co DIRECTOR GENERAL MARIO BALLESTEROS MEJÍA SECRETARIO GENERAL EDWIN GONZÁLEZ MORENO DIRECTOR SERVICIO GEOLÓGICO CÉSAR DAVID LÓPEZ ARENAS DIRECTOR SERVICIO MINERO (e) EDWARD ADAN FRANCO GAMBOA SUBDIRECTOR DE GEOLOGÍA BÁSICA ORLANDO NAVAS CAMACHO COORDINADORA GRUPO PARTICIPACIÓN CIUDADANA, ATENCIÓN AL CLIENTE Y COMUNICACIONES SANDRA ORTIZ ÁNGEL AUTORES: 315RN GEISTER Y JUAN MANUEL DÍAZ REVISIÓN EDITORIAL HUMBERTO GONZÁLEZ CARMEN ROSA CASTIBLANCO DISEÑO Y DIAGRAMACIÓN GUSTAVO VEJARANO MATIZ J SILVIA GUTIÉRREZ PORTADA: Foto: Estación en el mar Cl. San Andrés: Pared vertical de Bocatora Hole a -30 m. El coral Montastraea sp. adoptó una forma plana. Agosto de 1998. IMPRESIÓN IMPRENTA NACIONAL DE COLOMBIA CONTENT PREFACE 7 1. GENERAL BACKGROUND 8 2. STRUCTURAL SETTING AND REGIONAL GEOLOGY OF THE ARCHIPÉLAGO 9 2.1 Caribbean Piafe 9 2.2 Upper and Lower Nicaraguan Rises 9 2.3 Hess Escarpment and Colombia Basin 11 2.4 Islands and atolls of the Archipelago 12 3. CLIMATE AND OCEANOGRAPHY 14 4. GENERAL CHARACTERS OF WESTERN CARIBBEAN OCEANIC REEF COMPLEXE (fig. 7)
    [Show full text]
  • Refinement of Miocene Sea Level and Monsoon Events from the Sedimentary Archive of the Maldives (Indian Ocean) C
    Betzler et al. Progress in Earth and Planetary Science (2018) 5:5 Progress in Earth and DOI 10.1186/s40645-018-0165-x Planetary Science RESEARCH ARTICLE Open Access Refinement of Miocene sea level and monsoon events from the sedimentary archive of the Maldives (Indian Ocean) C. Betzler1* , G. P. Eberli2, T. Lüdmann1, J. Reolid1, D. Kroon3, J. J. G. Reijmer4, P. K. Swart2, J. Wright5, J. R. Young6, C. Alvarez-Zarikian7, M. Alonso-García8,9, O. M. Bialik10, C. L. Blättler11, J. A. Guo12, S. Haffen13, S. Horozal14, M. Inoue15, L. Jovane16, L. Lanci17, J. C. Laya18, A. L. Hui Mee2, M. Nakakuni19, B. N. Nath20, K. Niino21, L. M. Petruny22, S. D. Pratiwi23, A. L. Slagle24, C. R. Sloss25,X.Su26 and Z. Yao27,28 Abstract International Ocean Discovery Program (IODP) Expedition 359 cored sediments from eight borehole locations in the carbonate platform of the Maldives in the Indian Ocean. The expedition set out to unravel the timing of Neogene climate changes, in particular the evolution of the South Asian monsoon and fluctuations of the sea level. The timing of these changes are assessed by dating resultant sedimentary alterations that mark stratigraphic turning points in the Neogene Maldives platform system. The first four turning points during the early and middle Miocene are related to sea-level changes. These are reliably recorded in the stratigraphy of the carbonate sequences in which sequence boundaries provide the ages of the sea-level lowstand. Phases of aggradational platform growth give precise age brackets of long-term sea-level high stands during the early Miocene and the early to middle Miocene Climate Optimum that is dated here between 17 to 15.1 Ma.
    [Show full text]
  • Elasmobranch Egg Capsules Associated with Modern and Ancient Cold Seeps: a Nursery for Marine Deep-Water Predators
    Vol. 437: 175–181, 2011 MARINE ECOLOGY PROGRESS SERIES Published September 15 doi: 10.3354/meps09305 Mar Ecol Prog Ser OPEN ACCESS Elasmobranch egg capsules associated with modern and ancient cold seeps: a nursery for marine deep-water predators Tina Treude1,*, Steffen Kiel2, Peter Linke1, Jörn Peckmann3, James L. Goedert4 1Leibniz Institute of Marine Sciences, IFM-GEOMAR, Wischhofstrasse 1−3, 24148 Kiel, Germany 2Geobiology Group and Courant Research Center Geobiology, Georg-August-Universität Göttingen, Geoscience Center, Goldschmidtstr. 3, 37077 Göttingen, Germany 3Department of Geodynamics and Sedimentology, Center for Earth Sciences, University of Vienna, Althanstrasse 14 (UZA II), 1090 Vienna, Austria 4Burke Museum, University of Washington, Seattle, Washington 98195-3010, USA ABSTRACT: At 2 modern deep-water cold-seep sites, the North Alex Mud Volcano (eastern Mediterranean Sea, water depth ~500 m) and the Concepción Methane Seep Area (south-east Pacific Ocean, water depth ~700 m), we found abundant catshark (Chondrichthyes: Scylio - rhinidae) and skate (Chondrichthyes: Rajidae) egg capsules, respectively, associated with carbon- ates and tubeworms. Fossilized catshark egg capsules were found at the 35 million year old Bear River Cold-Seep Deposit (Washington State, USA) closely associated with remains of tubeworms and sponges. We suggest that cold-seep ecosystems have served as nurseries for predatory elas- mobranch fishes since at least late Eocene time and therewith possibly play an important role for the functioning of deep-water ecosystems. KEY WORDS: Catshark · Skate · Authigenic carbonate · Tubeworm · Methane · Deep sea · Chemosynthesis Resale or republication not permitted without written consent of the publisher INTRODUCTION methanotrophic or thiotrophic bacteria; chemosym- biotic clams, mussels, and vestimentiferan tube- Cold-seep ecosystems are based on chemosyn- worms) or feed on biomass produced by chemosyn- thetic processes fueled by methane and petroleum thesis (e.g.
    [Show full text]
  • Depositional Architecture and Facies of a Complete Reef Complex Succession: a Case Study of the Permian Jiantianba Reefs, Western Hubei, South China
    minerals Article Depositional Architecture and Facies of a Complete Reef Complex Succession: A Case Study of the Permian Jiantianba Reefs, Western Hubei, South China Beichen Chen 1,2, Xinong Xie 1,* , Ihsan S. Al-Aasm 2, Feng Wu 1 and Mo Zhou 1 1 College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan 430074, China; [email protected] (B.C.); fi[email protected] (F.W.); [email protected] (M.Z.) 2 Department of Earth and Environmental Sciences, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada; [email protected] * Correspondence: [email protected]; +86-6788-6160 Received: 26 September 2018; Accepted: 13 November 2018; Published: 16 November 2018 Abstract: The Upper Permian Changhsingian Jiantissanba reef complex is a well-known platform marginal reef, located in the western Hubei Province, China. Based on field observations and lithological analysis of the entire exposed reef complex, 12 reef facies have been distinguished according to their sedimentary components and growth fabrics. Each of the lithofacies is associated with a specific marine environment. Vertically traceable stratal patterns reveal 4 types of the lithologic associations of the Jiantianba reef: (1) heterozoan reef core association: developed in the deep marginal platform with muddy composition; (2) photozoan reef core association developed within the photic zone; (3) tide-controlled reef crest association with tidal-dominated characteristic of lithofacies in the shallow water; and (4) reef-bank association dominated by bioclastic components. The entire reef complex shows a complete reef succession revealing a function of the wave-resistant and morphological units. This study displays a complete sedimentary succession of Jiantianba reef, which provides a more accurate and comprehensive description of the reef lithofacies and a better understanding of the structure and composition of organic reefs.
    [Show full text]
  • The Evolution of Early Foraminifera
    The evolution of early Foraminifera Jan Pawlowski†‡, Maria Holzmann†,Ce´ dric Berney†, Jose´ Fahrni†, Andrew J. Gooday§, Tomas Cedhagen¶, Andrea Haburaʈ, and Samuel S. Bowserʈ †Department of Zoology and Animal Biology, University of Geneva, Sciences III, 1211 Geneva 4, Switzerland; §Southampton Oceanography Centre, Empress Dock, European Way, Southampton SO14 3ZH, United Kingdom; ¶Department of Marine Ecology, University of Aarhus, Finlandsgade 14, DK-8200 Aarhus N, Denmark; and ʈWadsworth Center, New York State Department of Health, P.O. Box 509, Albany, NY 12201 Communicated by W. A. Berggren, Woods Hole Oceanographic Institution, Woods Hole, MA, August 11, 2003 (received for review January 30, 2003) Fossil Foraminifera appear in the Early Cambrian, at about the same loculus to become globular or tubular, or by the development of time as the first skeletonized metazoans. However, due to the spiral growth (12). The evolution of spiral tests led to the inadequate preservation of early unilocular (single-chambered) formation of internal septae through the development of con- foraminiferal tests and difficulties in their identification, the evo- strictions in the spiral tubular chamber and hence the appear- lution of early foraminifers is poorly understood. By using molec- ance of multilocular forms. ular data from a wide range of extant naked and testate unilocular Because of their poor preservation and the difficulties in- species, we demonstrate that a large radiation of nonfossilized volved in their identification, the unilocular noncalcareous for- unilocular Foraminifera preceded the diversification of multilocular aminifers are largely ignored in paleontological studies. In a lineages during the Carboniferous. Within this radiation, similar previous study, we used molecular data to reveal the presence of test morphologies and wall types developed several times inde- naked foraminifers, perhaps resembling those that lived before pendently.
    [Show full text]
  • BENTHOS Scottish Association for Marine Science October 2002 Authors
    DTI Strategic Environmental Assessment 2002 SEA 7 area: BENTHOS Scottish Association for Marine Science October 2002 Authors: Peter Lamont, <[email protected]> Professor John D. Gage, <[email protected]> Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, PA37 1QA http://www.sams.ac.uk 1 Definition of SEA 7 area The DTI SEA 7 area is defined in Contract No. SEA678_data-03, Section IV – Scope of Services (p31) as UTM projection Zone 30 using ED50 datum and Clarke 1866 projection. The SEA 7 area, indicated on the chart page 34 in Section IV Scope of Services, shows the SEA 7 area to include only the western part of UTM zone 30. This marine part of zone 30 includes the West Coast of Scotland from the latitude of the south tip of the Isle of Man to Cape Wrath. Most of the SEA 7 area indicated as the shaded area of the chart labelled ‘SEA 7’ lies to the west of the ‘Thunderer’ line of longitude (6°W) and includes parts of zones 27, 28 and 29. The industry- adopted convention for these zones west of the ‘Thunderer’ line is the ETRF89 datum. The authors assume that the area for which information is required is as indicated on the chart in Appendix 1 SEA678 areas, page 34, i.e. the west (marine part) of zone 30 and the shaded parts of zones 27, 28 and 29. The Irish Sea boundary between SEA 6 & 7 is taken as from Carlingford Lough to the Isle of Man, then clockwise around the Isle of Man, then north to the Scottish coast around Dumfries.
    [Show full text]
  • Carbonate Platform Evolution: from a Bioconstructed Platform Margin to a Sand-Shoal System (Devonian, Guilin, South China)
    Sedimentology (2002) 49, 737–764 Carbonate platform evolution: from a bioconstructed platform margin to a sand-shoal system (Devonian, Guilin, South China) DAIZHAO CHEN*, MAURICE E. TUCKER , JINGQUAN ZHU* and MAOSHENG JIANG* *Institute of Geology and Geophysics, Chinese Academy of Sciences, PO Box 9825, Beijing 100029, China (E-mail: [email protected]) Department of Geological Sciences, University of Durham, Durham DH1 3LE, UK (E-mail: [email protected]) ABSTRACT The depositional organization and architecture of the middle–late Devonian Yangdi rimmed carbonate platform margin in the Guilin area of South China were related to oblique, extensional faulting in a strike-slip setting. The platform margin shows two main stages of construction in the late Givetian to Frasnian, with a bioconstructed margin evolving into a sand-shoal system. In the late Givetian, the platform margin was rimmed with microbial buildups composed mainly of cyanobacterial colonies (mostly Renalcis and Epiphyton). These grew upwards and produced an aggradational (locally slightly retrogradational) architecture with steep foreslope clinoforms. Three depositional sequences (S3–S5) are recognized in the upper Givetian strata, which are dominated by extensive microbialites. Metre-scale depositional cyclicity occurs in most facies associations, except in the platform-margin buildups and upper foreslope facies. In the latest Givetian (at the top of sequence S5), relative platform uplift (± subaerial exposure) and associated rapid basin subsidence (probably a block-tilting effect) caused large-scale platform collapse and slope erosion to give local scalloped embayments along the platform margin and the synchronous demise of microbial buildups. Subsequently, sand shoals and banks composed of ooids and peloids and, a little later, stromatoporoid buildups on the palaeohighs, developed along the platform margin, from which abundant loose sediment was transported downslope to form gravity-flow deposits.
    [Show full text]