TH 18 INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS BIODEGRADABLE CONTINUOUS FIBRE REINFORCED COMPOSITES BASED ON HYBRID YARNS T. Lehtonen1*, J. Tuominen1, J. Rausch2, E. Mäder2* 1 Vivoxid Ltd., Turku, Finland 2 Dept. Composite Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (Leibniz Institute of Polymer Research), Dresden, Germany * Corresponding author (
[email protected]), (
[email protected]) Keywords: biodegradability, glass fibre, polylactide, mechanical properties 1 Introduction medical device sector as well as manufacture of “green” composites for car and commodity plastic During the last four decades the biodegradable industries. polymers have found their place in special applications in biomedical and technical fields. [1-4] The hybrid yarn technology is one method to However, their worldwide production volumes are manufacture continuous fibre reinforced thermoplas- still marginal compared with non-biodegradable tics [8]. Its main advantages are related to the high polymers. One of the major restricting factors for the degree of flexibility regarding the final shape of the wider use of biodegradable polymers in the field of composites as well as to the high fibre volume load bearing medical devices, packaging, and contents and the correspondingly high mechanical consumer goods is the lack of mechanical properties properties of the composites. and cost of goods. For instance, one of the most In this work latest results of processing continuous widely used biodegradable polymers, polylactide GF/PLA hybrid yarns, composites thereof and (PLA), for non-load bearing medical devices, fibres, mechanical as well as interface properties will be nonwovens, films, and disposable articles is a presented. comparably hard and brittle material. Regarding to mechanical properties of PLA no significant improvements have been achieved since the 2 Experimental development of self-reinforced PLA [5].