Functions and Mechanisms of Rab46 in Endothelial Cells

Total Page:16

File Type:pdf, Size:1020Kb

Functions and Mechanisms of Rab46 in Endothelial Cells The University of Leeds Faculty of Medicine and Health Leeds Institute of Cardiovascular and Metabolic Medicine Functions and mechanisms of Rab46 in endothelial cells Lucia Pedicini October, 2019 Thesis submitted to The University of Leeds in accordance with the requirements for the Degree of Doctor of Philosophy II Intellectual Property and Publication Statements The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. The right of Lucia Pedicini to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. © 2019. The University of Leeds and Lucia Pedicini III Acknowledgments My PhD journey has been a great personal and professional challenge since the very beginning. I will never forget the first days when I had to face the Northern accent and quickly realise that my English knowledge was not enough in the North of England, a land far away from the posh Queen’s English that I learnt at school. Undertaking this PhD has been a truly life-changing experience for me and it would not have been possible without the people I met throughout this journey. First and foremost, I would like to thank the continued guidance and support of my supervisor, Dr Lynn McKeown. Thanks for your patience every time I asked you to slow down and ‘say it again’ during our lab meetings – how we have put up with each other accents I still do not know! I will be eternally grateful for believing in me and for always having an open door especially when things did not work out. I could not have imagined having a better advisor for my PhD study. I look forward to continuing working together. I gratefully acknowledge Professor David Beech for all his constant support and guidance throughout my PhD. All the invaluable advice helped me working at my full potential without being lost within my research. I feel privileged to have had the opportunity to carry out my PhD in his lab. I also would like to thank Dr Izzy Jayasinghe for being always very welcoming in his lab and for all the extremely useful advice on imaging analysis. My PhD has been a continuous learning curve and I am especially grateful to all the old and new members of the Beech lab for their help and support over the years. Hannah who has always been patient in teaching me all the techniques from scratch at the very beginning of my PhD. Beth, Nikki, Katy and Nele who have been part of these three years as good teammates. Beth with your posh accent, you have always made me laugh and smile with all the hilarious stories of your daily life. Thanks for always being a good friend and a good lab mate, especially with our fury friends. I’ll miss you so much but moving it’s part of the scientist’s life and I know you’ll be a brilliant and successful scientist. Nikki, I will always remember your bagels and your very precise western blots. We shared this last few months of writing and it was a good feeling not to being alone. Katy, thanks for your fluent Italian and for your mild Manchester accent, I am sorry for all the time you had to express yourself again. Also, you’re an artist, keep drawing you’re amazing! Nele, thanks for always being very supportive and for helping me since the beginning when I was struggling to adjust myself to live in a foreign country. Thanks for listening, for understanding my struggle about living abroad and for always being a very good friend. So many things have changed in these last years but definitely the best one is your little girl. IV Marj and Fiona thanks for being enormously helpful in this year. Fiona thanks for answering my very stupid PCR questions and Marj for sharing the pain of our western blot session together, we will never know which friends show up at our party! Thanks to both of you for sharing your Tuscany trip with me, you know how much I miss it. Anyway I’m very happy you’ll be part of whatever is coming next in my LICAMM experience. And please keep filming our daily life! Last but not least a huge thank you for someone who has been sharing this adventure for me since the very first day, Kat. It was hard at the beginning to find a balance between me and you as we were both experiencing hard time but now, I feel I couldn’t do it without you on my side. You have always been very helpful, you have never left me alone and most and foremost you have been the most supportive person in these last few months. You know better than anyone how hard it was for me, how much I sacrificed trying to work hard and finish this PhD on time. I am indebted to you for being a patient listener, I have always felt better after all our complain sessions! Kat you are really a good friend and the best lab mate ever, I’ll always be grateful for all the times you made me laugh during the experiments, to always keep a sense of humour when I had lost mine and for all the crimes that somehow always happen to us. Hope to return everything you did for me in the next year! I also like to thank the rest of the McKeown’s group. Ash and Sabina we couldn’t ask for better new entries than you. Thanks a lot for your help and proofreading and I really think we should do more Aberdeen trips together. It was a very good time. I also want to thank my new and old friends. My Italian friends who have always waited for my return maybe for just a dinner together and friends whose although the distance made hard to see each other, are still part of my life. Moving to Leeds was not easy and first and foremost I want to thank my friend Guada who is the first person I met here. We shared the house during my first year and since the beginning was like we knew each other from years. They say that Italians and Spanish have something in common, I have to say that maybe it’s true. You have been the closest friend here in the UK, you were always there to help me when I was alone and definitely think we built a long-lasting friendship. A very deep thank you must now go to my family, to my life-coaches: my granddad and my grandma and to the love of my life. Un grazie di cuore a voi mamma e papà che siete e sarete per sempre la mia “casa”, il mio rifugio sicuro. Grazie per avermi sempre sostenuto in tutte le mie scelte, so che è stato difficile lasciarmi andare. Ogni volta che parto lo vedo nei vostri occhi e lo sento in silenzio nel mio cuore…ma io vi porto sempre con me, porto con me i valori che mi avete insegnato e spero di potervi far sentire orgogliosi del futuro che sto cercando di costruire. Magari un giorno chissà a furia di venirmi a trovare vi verrà anche voglia di viaggiare! C’è un mondo da scoprire e anche se l’Italia sarà sempre il posto più bello del mondo ne vale la pena di scoprire il resto. V Francesco e Noemi, che dire non potevamo essere più diversi di così ma siete la parte diciamo frizzante della famiglia. Mi sono sempre sentita un po’ mamma e un po’ sorella per voi…chissà forse solo per tenere a bada i vostri animi ribelli…comunque vogliate io ci sarò sempre per voi anche perché cosa fareste senza di me? Chi sarà la parte saggia del trio? Grazie semplicemente di esserci. E poi è difficile ringraziare le persone che hanno fatto di me quella che sono oggi, trovare le parole per descrivere cosa siete per me è davvero difficile. Siete la mia più grande fortuna, ci siete sempre stati, mi avete regalato tutti i ricordi più belli e la gioia nel cuore di tornare a casa. Grazie a te nonno che sei sempre stato il mio più grande sostenitore, sei la mia motivazione e vedere nei tuoi occhi la tua soddisfazione quando parlo di scienza è il mio regalo più grande. Grazie per avermi trasmesso l’amore per scoprire cose nuove e soprattutto l’amore per viaggiare….sarete con me in ogni mio viaggio! Grazie a te a nonna per aspettare ogni volta le mie telefonate per sapere quando torno. Come dici tu non è semplice stare lontani (anche se non esattamente con queste parole). Ma non importa la distanza perché i momenti che passiamo insieme sono i più belli di sempre, abbiamo tante cose da fare e anche se ora forse ti sembra più difficile, niente è impossibile perché l’amore smuove le montagne e io ne ho abbastanza per smuoverti da quella poltrona. L’ultimo grazie è sempre per Te che hai sempre creduto in me, mi hai spinto a guardare in alto, ad essere una persona migliore prima di tutto per me stessa. Mi hai spesso, a volte con forza, posto davanti i miei limiti e spinto a superarli.
Recommended publications
  • The Kinetics of Nucleotide Binding to Isolated Chlamydomonas Axonemes Using UV-TIRF Microscopy
    bioRxiv preprint doi: https://doi.org/10.1101/547091; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The kinetics of nucleotide binding to isolated Chlamydomonas axonemes using UV-TIRF microscopy M. Feofilova, M. Mahamdeh, J. Howard 1 bioRxiv preprint doi: https://doi.org/10.1101/547091; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Key words: dynein, axoneme, cilia, flagella, mantATP, fluorescent nucleotide Abbreviations ADP – adenosine diphosphate ATP – adenosine triphosphate MantATP - methylanthraniloyl adenosine triphosphate TIRF – total-internal-reflection fluorescence 2 bioRxiv preprint doi: https://doi.org/10.1101/547091; this version posted February 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Cilia and flagella are long, slender organelles found in many eukaryotic cells where they have sensory, developmental and motile functions. All cilia and flagella contain a microtubule-based structure called the axoneme. In motile cilia and flagella, which drive cell locomotion and fluid transport, the axoneme contains, along most of its length, motor proteins from the axonemal dynein family.
    [Show full text]
  • Cargo Specific Regulation of Cytoplasmic Dynein by Effector Proteins
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2018 Cargo Specific Regulation Of Cytoplasmic Dynein By Effector Proteins Mara Olenick University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biochemistry Commons, Biophysics Commons, and the Cell Biology Commons Recommended Citation Olenick, Mara, "Cargo Specific Regulation Of Cytoplasmic Dynein By Effector Proteins" (2018). Publicly Accessible Penn Dissertations. 3167. https://repository.upenn.edu/edissertations/3167 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/3167 For more information, please contact [email protected]. Cargo Specific Regulation Of Cytoplasmic Dynein By Effector Proteins Abstract Axonal transport is vital for the development and survival of neurons. The transport of cargo and organelles from the axon to the cell body is driven almost completely by the molecular motor, cytoplasmic dynein. Yet, it remains unclear how dynein is spatially and temporally regulated given the variety of cargo that must be properly localized to maintain cellular function. Previous work has suggested that adaptor proteins provide a mechanism for cargo-specific egulationr of motors. During my thesis work, I have investigated the role of mammalian Hook proteins, Hook1 and Hook3, as potential motor adaptors. Using optogenetic and single molecule assays, I found that Hook proteins interact with both dynein and dynactin, to effectively activate dynein motility, inducing longer run lengths and higher velocities than the previously characterized dynein activator, BICD2. In addition, I found that complex formation requires the N-terminal domain of Hook proteins, which resembles the calponin-homology domain of EB proteins yet cannot bind directly to microtubules.
    [Show full text]
  • Intraflagellar Transport Dynein Is Autoinhibited by Trapping of Its Mechanical and Track-Binding Elements
    Intraflagellar Transport Dynein is Autoinhibited by Trapping of its Mechanical and Track-Binding Elements Katerina Toropova1, Miroslav Mladenov1, Anthony J. Roberts1* 1Institute of Structural and Molecular Biology, Birkbeck, London, United Kingdom. *Correspondence should be addressed to A.J.R. ([email protected]). ABSTRACT Cilia are multi-functional organelles that are constructed using intraflagellar transport (IFT) of cargo to and from their tip. It is widely held that the retrograde IFT motor, dynein-2, must be controlled in order to reach the ciliary tip and then unleashed to power the return journey. However, the mechanism is unknown. Here, we systematically define the mechanochemistry of human dynein-2 motors as monomers, dimers, and multi-motor assemblies with kinesin-II. Combining these data with insights from single-particle electron microscopy, we discover that dynein-2 dimers are intrinsically autoinhibited. Inhibition is mediated by trapping dynein-2’s mechanical “linker” and “stalk” domains within a novel motor-motor interface. We find that linker-mediated inhibition enables efficient transport of dynein-2 by kinesin-II in vitro. These results suggest a conserved mechanism for autoregulation among dimeric dyneins, which is exploited as a switch for dynein-2’s recycling activity during IFT. 1 Introduction A major question in structural cell biology is how micrometer-scaled organelles are constructed and maintained. Cilia (also known as eukaryotic flagella) are multi-functional organelles that emanate from almost all cell types in the human body and many other eukaryotes 1. Non-motile cilia serve as “signaling antennae” in processes as diverse as morphogenesis, mechanosensation, and olfaction 2.
    [Show full text]
  • Discrete Dynamic Model of the Mammalian Sperm Acrosome Reaction
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.07.434290; this version posted March 8, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Discrete dynamic model of the mammalian sperm 2 acrosome reaction: the influence of acrosomal pH 3 and biochemical heterogeneity 1;2∗ 3;4 2;5 4 Andr´esAldana , Jorge Carneiro , Gustavo Mart´ınez-Mekler and Alberto Darszon 1∗ 1 5 Departamento de Gen´eticay Fisiolog´ıaMolecular, Instituto de Biotecnolog´ıa, 6 Universidad Nacional Aut´onomade M´exico,Morelos, M´exico 2 7 Centro de Ciencias de la Complejidad, Universidad Nacional Aut´onomade M´exico, 8 Ciudad de M´exico,M´exico 3 9 Instituto Gulbenkian de Ci^encia,Oeiras, Oeiras, Portugal 4 10 Instituto de Tecnologia Qu´ımica e Biol´ogica Ant´onioXavier, Universidade Nova, 11 Oeiras, Portugal 5 12 Instituto de Ciencias F´ısicas,Universidad Nacional Aut´onomade M´exico,Morelos, 13 M´exico 14 Correspondence: 15 Alberto Darszon 16 [email protected] 17 Andr´esAldana 18 [email protected] 19 Abstract 20 The acrosome reaction (AR) is an exocytotic process essential for mammalian fertil- 21 ization. It involves diverse biochemical and physiological changes that culminate in the 22 release of the acrosomal content to the extracellular medium as well as a reorganization 23 of the plasma membrane (PM) that allows sperm to interact and fuse with the egg.
    [Show full text]
  • The Dynein Family at a Glance Peter Höök and Richard B
    Cell Science at a Glance 4369 The dynein family at a functions. Although at least 14 classes of accessory subunits bind; and a ~380 kDa kinesin and 17 classes of myosin have motor domain. The motor domain glance been identified, the dyneins fall into contains six discernible AAA ATPase Peter Höök* and Richard B. only two major classes, axonemal and units, identifying the dynein HC as a Vallee cytoplasmic dyneins, based on both divergent member of the AAA+ family functional and structural criteria. of ATPases (Neuwald et al., 1999). Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. Axonemal dyneins are responsible for Members of the AAA+ family are *Author for correspondence (e-mail: ciliary and flagellar beating; cytoplasmic involved in a very wide range of [email protected]) dyneins are involved in intracellular functions but have a common feature: the Journal of Cell Science 119, 4369-4371 transport, mitosis, cell polarization and formation of ring-shaped oligomeric Published by The Company of Biologists 2006 directed cell movement complexes of the AAA ATPase module. doi:10.1242/jcs.03176 Within the AAA+ proteins, dynein All dynein forms that have occupies a divergent branch along with Three families of cytoskeletal motor been identified biochemically are midasin (Iyer et al., 2004). This branch protein – the myosins, kinesins and multisubunit proteins. Each has one to is characterized by the incorporation of dyneins – have evolved to mediate three heavy chains (HCs) of >500 kDa; all six AAA modules within a single transport of cells and of structures and these correspond to the number of giant polypeptide.
    [Show full text]
  • The Rap1–Cofilin-1 Pathway Coordinates Actin Reorganization and MTOC Polarization at the B Cell Immune Synapse Jia C
    © 2017. Published by The Company of Biologists Ltd | Journal of Cell Science (2017) 130, 1094-1109 doi:10.1242/jcs.191858 RESEARCH ARTICLE The Rap1–cofilin-1 pathway coordinates actin reorganization and MTOC polarization at the B cell immune synapse Jia C. Wang, Jeff Y.-J. Lee, Sonja Christian, May Dang-Lawson, Caitlin Pritchard, Spencer A. Freeman* and Michael R. Gold‡ ABSTRACT from the plasma membrane (Freeman et al., 2011; Treanor et al., B cells that bind antigens displayed on antigen-presenting cells 2011, 2010). This increases BCR mobility (Freeman et al., 2015; (APCs) form an immune synapse, a polarized cellular structure that Treanor et al., 2010), allowing antigen-bound BCRs to form optimizes the dual functions of the B cell receptor (BCR), signal microclusters that recruit signaling enzymes (Harwood and Batista, transduction and antigen internalization. Immune synapse formation 2011; Tolar et al., 2009; Treanor et al., 2009). Concomitant actin involves polarization of the microtubule-organizing center (MTOC) polymerization at the cell periphery allows the B cell to spread towards the APC. We now show that BCR-induced MTOC across the antigen-bearing surface, encounter more antigens, and polarization requires the Rap1 GTPase (which has two isoforms, form additional BCR microclusters (Fleire et al., 2006; Song et al., Rap1a and Rap1b), an evolutionarily conserved regulator of cell 2013). Subsequent contraction of the B cell membrane (Fleire et al., polarity, as well as cofilin-1, an actin-severing protein that is regulated 2006) is accompanied by microtubule-dependent gathering of by Rap1. MTOC reorientation towards the antigen contact site BCR microclusters into a central supramolecular activation cluster correlated strongly with cofilin-1-dependent actin reorganization and (cSMAC) (Schnyder et al., 2011) that is characteristic of an immune cell spreading.
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Coupling of Atpase Activity, Microtubule Binding and Mechanics in the Dynein Motor Domain
    bioRxiv preprint doi: https://doi.org/10.1101/309179; this version posted January 11, 2019. The copyright holder for this preprint (which was not 1/11/2019certified by peer review) is the author/funder, who has granted bioRxivBioRxiv-Manuscript a license to display- Google the Docs preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Coupling of ATPase activity, microtubule binding and mechanics in the dynein motor domain Stefan Niekamp1, Nicolas Coudray2,3, Nan Zhang1, Ronald D. Vale1 & Gira Bhabha2 1 Department of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158. 2 Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016 3 Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016 The movement of a molecular motor protein Introduction along a cytoskeletal track requires Dyneins are minus-end directed, communication between enzymatic, microtubule-based molecular motors that belong polymer-binding, and mechanical elements. to the AAA+ (ATPases associated with diverse Such communication is particularly complex cellular activities) superfamily of proteins. and not well understood in the dynein motor, an Cytoplasmic dynein is responsible for the transport ATPase that is comprised of a ring of six AAA of numerous cargoes along microtubules (MTs), domains, a large mechanical element (linker) such as organelles, vesicles, viruses, and mRNAs spanning over the ring, and a (Vale, 2003; Vallee et al, 2004). In addition, microtubule-binding domain (MTBD) that is cytoplasmic dynein plays key roles in facilitating separated from the AAA ring by a ~135 Å basic cell biological processes such as spindle coiled-coil stalk.
    [Show full text]
  • Functions and Mechanics of Dynein Motor Proteins
    REVIEWS Functions and mechanics of dynein motor proteins Anthony J. Roberts1,2, Takahide Kon3,4, Peter J. Knight1, Kazuo Sutoh5 and Stan A. Burgess1 Abstract | Fuelled by ATP hydrolysis, dyneins generate force and movement on microtubules in a wealth of biological processes, including ciliary beating, cell division and intracellular transport. The large mass and complexity of dynein motors have made elucidating their mechanisms a sizable task. Yet, through a combination of approaches, including X‑ray crystallography, cryo-electron microscopy, single-molecule assays and biochemical experiments, important progress has been made towards understanding how these giant motor proteins work. From these studies, a model for the mechanochemical cycle of dynein is emerging, in which nucleotide-driven flexing motions within the AAA+ ring of dynein alter the affinity of its microtubule-binding stalk and reshape its mechanical element to generate movement. To move, divide and spatially organize their teeming cytoskeletal polymers — these motors share a G protein- 1Astbury Centre for Structural interiors, eukaryotic cells use ATP-fuelled motor pro- related fold and similarities in their core mechanisms9. Molecular Biology, School of teins to generate forces and transport cargoes along Dynein is currently at the frontier of cell motility Molecular and Cellular Biology, Faculty of Biological cytoskeletal tracks. The numerous proteins, organelles research at the molecular level, as its mechanism of move- Sciences, University of Leeds, and mRNAs that undergo directed transport by motor ment is much less well understood than that of kinesin Leeds LS2 9JT, UK. proteins touch on a wide range of cellular and devel- and myosin. Dubbed the ‘big wheel’ of motor proteins10, 2Department of Cell Biology, opmental processes.
    [Show full text]
  • Characterization of Two G-Protein Coupled Receptors and One Fox Transcription Factor in Drosophila Embryonic Development by Cait
    Characterization of Two G-Protein Coupled Receptors and One Fox Transcription Factor in Drosophila Embryonic Development By Caitlin D. Hanlon A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland July 2015 ABSTRACT Cell migration is an exquisitely intricate process common to many higher organisms. Variations in the signals driving cell movement, the distance cells travel, and whether cells migrate as individuals, clusters, or as intact epithelia are all possible. Cell migration can be beneficial, as in development or wound healing, or detrimental, as in cancer metastasis. To begin to unravel the complexities inherent to cell migration, the Andrew lab uses the Drosophila salivary gland as a relatively simple model system for learning the molecular/cellular events underlying cell movement. The salivary gland begins as a placode of polarized columnar epithelial cells on the surface of the embryo that invaginates and move dorsally until a turning point is reached. There, it reorients and begins posterior migration, which continues until the gland reaches its final position along the anterior-posterior axis of the embryo. The broad goal of my work is to identify and characterize other key players in salivary gland migration. I characterized two G-protein coupled receptors (GPCRs) – Tre1 and mthl5 – which are expressed dynamically in the embryo. By creating a null allele of Tre1, I found that Tre1 plays a key role in germ cell migration and affects microtubule organization in the migrating salivary gland. I created a mthl5 mutant allele using the CRISPR/Cas9 system. mthl5 plays a role in the cell shape changes that drive salivary gland invagination.
    [Show full text]
  • Regulation of Cytoplasmic Dynein Via Local Synthesis of Its Cofactors, Lis1 and P150glued
    Regulation of Cytoplasmic Dynein via Local Synthesis of its Cofactors, Lis1 and p150Glued Joseph Manuel Villarin Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Joseph Manuel Villarin All rights reserved ABSTRACT Regulation of Cytoplasmic Dynein via Local Synthesis of its Cofactors, Lis1 and p150Glued Joseph Manuel Villarin Within the past thirty years, the discovery and characterization of the microtubule- associated motor proteins, kinesins and cytoplasmic dynein, has radically expanded our understanding of intracellular trafficking and motile phenomena. Nevertheless, the mechanisms by which eukaryotic cells integrate motor functionality and cargo interactions over multiple subcellular domains in a spatiotemporally controlled way remain largely mysterious. During transport within the neuronal axon, dynein and the kinesins run in opposite directions along uniformly polarized microtubule tracks, so that each motor must switch between active transport and being, itself, a cargo in order to be properly positioned and carry out its function. The axon thus represents a model system in which to study the regulatory mechanisms governing intracellular transport, especially under conditions when it must be modulated in response to changing environmental cues, such as during axon outgrowth and development. Recently, the localization of certain messenger RNAs and their local translation to yield protein has emerged as a critical process for the development of axons and other neuronal compartments. I observed that transcripts encoding the dynein cofactors Lis1 and dynactin are among those localized to axons, so I hypothesized that stimulus-dependent changes in axonal transport may occur via local synthesis of dynein cofactors.
    [Show full text]
  • Universita' Degli Studi Di Parma
    UNIVERSITA’ DEGLI STUDI DI PARMA Dottorato di ricerca in Medicina Molecolare Ciclo XXIX ROLE OF PKCepsilon IN CELL DIVISION AND DIFFERENTIATION: IMPLICATION FOR GENOMIC INSTABILITY AND AUTOIMMUNITY Settore scientifico disciplinare BIO/16 Coordinatore: Chiar.mo Prof. LUCIANO POLONELLI Tutor: Chiar.ma Prof.ssa GIULIANA GOBBI Co-Tutor: Chiar.mo Prof. MARCO VITALE Dottoranda: Dott.ssa SILVIA MARTINI All the data reported in this thesis have been submitted for publication on peer reviewed international scientific journals. Index Preface: role of PKC in cell division and cell differentiation ............................................................ 1 I. PKC involvement in mitotic spindle organization and early mitotic progression .................... 3 Introduction .................................................................................................................................................... 4 1. Protein kinase C epsilon (PKC) ......................................................................................................... 4 1.1 Protein kinase C family .................................................................................................................... 4 1.2 Protein Kinase C-epsilon (PKC) structure and functions ......................................................... 7 1.3 PKC roles in mitosis .................................................................................................................... 12 1.4 PKC in tumorigenesis .................................................................................................................
    [Show full text]