Insight Into the Magnetic Mineralogy of Antarctic Rocks

Total Page:16

File Type:pdf, Size:1020Kb

Insight Into the Magnetic Mineralogy of Antarctic Rocks JOURNALOF GEOMAGNETISMAND GEOELECTRICITY Vol.19,No.3,1967 Insight into the Magnetic Mineralogy of Antarctic Rocks P.J. wasilewski and B.J. Carleton Department of Earth and Planetary Sciences University of Pittsburgh (Received June 15, 1967) Abstract A magnetic powder technique is presented, which is considered to be phase I of a methodology being developed at the University of Pittsburgh, to ultimately relate the mag- netic properties of rocks to the causitive mineralogy. The methodology, termed magnetic petrology, was suggested by an initial study of plutonic rocks from Ellsworth Land, Antarctica. Phase I, the magnetic powder technique utilizes a strained mechanically polished rock surface upon which a magnetite colloid is deposited. After washing the surface with alcohol or acetone, the magnetic minerals or magnetic phases are patterned with magnetite powder ; the non magnetic components remain free of powder. Introduction The magnetization history of rock samples used in paleomagnetic research could be considered the ultimate aim of rock magnetism research. Magnetization history, which is intimately related to the physico-chemical environment of a rock throughout its history begins when the blocking temperature of magnetic minerals is approached and continues until the rock is sampled for paleomagnetic studies. The problem will be somewhat more complicated if solid diffusion (exsolution) is operative at the blocking temperature. A direct correlation is implied between the magnetization history and the geologic history. Rapid progress has been made in rock magnetism research, with respect to instrumen- tation (see, for example, Collinson, et al, ed.,1967) and general understanding of magnetic properties of rocks and minerals, (Nagata, 1965, 1961), and their wide application to earth science (see, for example, Irving,1964). Presently, such measurements as size and shape of magnetic minerals, understanding of intergrowth structures and relationships, and degree of chemical change of the magnetic minerals are becoming increasingly important. Several important studies have been made using reflection-microscopy, (see, for example, Uyeda, 1956; Nagata, et at, 1957; Ozima, et at, 1967; Ozima and Larsen,1967). The present preoccupation of several investigations concerned with the field reversal problem has stim- ulated extensive reflection-microscopy studies (see, for example, Wilson and Haggerty, 1966; Watkins, et at, 1967; Wilson, et at, 1967). Interest in the stability of NRM has further stim- ulated reflection-microscopy (see, for example, Akimoto and Kushiro,1961). * Work supported by U.S. National Science Foundation Grant, NSF GA725, which is gratefully ac- knowledged. (195) 196 R.J. WASILEwsKI AND B.J. CARLETON However, studies of a polished surface using a reflection microscope for these purposes requires extensive experience. Consequently, many geophysicists who need the detailed information about magnetic minerals in rocks have always called upon ore microscopists for assistance. Because of the inherent subjectivity of the reflection technique, even an experienced microscopist can occasionally arrive at wrong conclusions regarding the rela- tionship between mineralogy and magnetic behavior. Basic research objectives become a bit more subtle when Antarctic rock samples are intended for use as paleomagnetic data. The geologic history is mostly unknown, and the structural and petrologic relationships are not vivid. This applies particularly to the Ellsworth Land region (Figure 1). The magnetic crust in Ellsworth Land appears highly variable with magnetic and essentially non magnetic plutons of acid to basic character areally related to acid and intermediate volcanics. There is lack of continuous exposure due to the ice sheet. Preliminary studies of the magnetic properties and representative chemical analyses indicate the following (Wasilewski, 1967): A. A plot of total iron (FeO+Fe2O3) and TItania (TiO2) against silica (SiO2) suggests a simple differentiation trend (Figure 2). B. The oxidation trend is indeterminate in view of limited data. (See figure 2 where Fe2O3/FeO vs. SiO2 is plotted.) C. Modal data (L. Lackey, 1966, written communication) offers no correlation between total iron as in Figure 2 and modal opaque percentage. D. There is no correlation between magnetic susceptibility, remanence, and rock basic- ity. E. Many of the cored specimens do not represent effective dipoles a basic assumption Fig. 1 Outline map of west antarctica locating the research area Insight into the Magnetic Mineralogy of Antarctic Rocks 197 Fig. 2 Lower plo-Filled circles are plot of total iron oxides (Feo+Fe2o3) against silica (SiO2) ; open circles are plot of titania (TiO2) against silica (SiO2) for 15 representative rocks from ellsworth land, antarctica. Upper plot Oxidation index corresponding to rocks in lower plot for paleomagnetic research. Whether the authors like it or not, the vector magnetism in rocks might be used for estima- tion of structural relationship as well as for paleomagnetic studies. This places greater de- mands on the understanding of the continuous physico-chemical environment of the magnetic mineralogy in the rocks. This necessitates a magnetic petrology which would attempt to present a self consistent evaluation of the vector properties of the magnetization within the framework of the Ellsworth Land crustal configuration. This paper is concerned with phase I of this Magnetic Petrology--a magnetic powder technique. The technique is almost identical to one used by Grabovsky, et at, (1960) in which the composition of iron ores was studied. Some of their results were confirmed by the authors' studies in evaluating the reliability of the technique. The Technioue The magnetite powder technique consists of placing a few drops of a magnetite colloid upon the surface of a polished rock specimen. The specimen is then washed with alcohol or acetone and observed. The magnetic grains will exhibit a powder pattern, easily distinguish- ed from the non magnetic grains which are free of powder. The magnetite colloid was prepar- ed according to the Elmore (1938) recipe and resulted in good detail. Grabovsky, et at, (1960) used fine magnetic powders in their studies. Presently, the authors are investigating the use of fine magnetic powders, as well as improved versions of the magnetite colloid (see, for example, Garrood,1962). The specimen usually constitutes the top or bottom of a core approximately one inch in diameter. After smoothing the surface to be polished on 240 and 320 emery paper, the specimen is mounted in quick-set plastic. In 20 to 30 minutes the specimen is ready for sur- face preparation. Initial smoothing is done on 400 and 600 emery paper. It is them high speed 198 R.J. WASILEWSKI AND B.J. CARLETON lapped with 1μgamma alumina. Low speed lapPing with 1μalumina is followed by 0.5μ gamma alumina lapping at high and then at low speed. The time for preparation of most surfaces is about one hour. The prepared surface is washed clean and with water, and then washed with alcohol before deposition of the colloid as a greasy or dirty surface will interfere with the powder pattern. The colloid is placed on the surface to be studied, and then alcohol or acetone is used to remove excess colloid. When the surface is completely dry, it is ready for microscope observations. A photograph is first taken while the surface is patterned with magnetite powder. A second photograph is taken after the surface has been cleaned so that compari- sons can be made. The surface is cleaned without moving the specimen from the stage. To insure that surface defects are not responsible for the observed powder pattern, the surface is then carefully studied. Polaroid pictures were taken at 120x magnification. Reliability of Technioue Precautions were taken to insure that the technique and the information gained were reliable. The strained surface will not yield any inf romation about intrinsic magnetic struc- ture. However, this intrinsic detail is not necessary, and effort was concentrated on deter- mination of reliability and effectiveness of the technique. The following points might be considered as indications of the reality of the powder patterns. A. Grinding is done in a random manner with consequent random strain. Low power magnification of the patterned surface reveals no maze pattern, which is particu- larly evident on the surface of exsolved grains where a uniform powder pattern is observed. B. A large magnetostatic energy is associated with the strained surface and hence, holes or inclusions are distinctly outlined by the powder. Nell spikes do not form, a hole is filled with powder and appears black, while an inclusion, if magnetic, is patterned and, if non magnetic, remains clear. C. Successive applications of the colloid with the surface cleaned between successive applications results in a reproduction of the pattern. D. Where boundaries of magnetic grains are sharp, the powder pattern is sharp, and where they are diffuse, a diffuse powder pattern results. E. In a pyrrhotite ore a banded pattern was observed. Each grain exhibited continuous banding which stopped at the grain boundary. Detailed study of the powder free surface proved convincingly that this banded pattern was due to magnetization contrasts within the grain and not to surface defects due to polishing. This pat- tern was reproduced after successive application of the colloidal magnetite. F. Small surface scratches may or may not interfere with the patterned surface.
Recommended publications
  • The Sedimentology and Mineralogy of the River Uranium Deposit Near Phuthaditjhaba, Qwa-Qwa
    PER-74 THE SEDIMENTOLOGY AND MINERALOGY OF THE RIVER URANIUM DEPOSIT NEAR PHUTHADITJHABA, QWA-QWA by J. P. le Roux NUCLEAR DEVELOPMENT CORPORATION OF SOUTH AFRICA (PTY) LTD NUCOR PRIVATE MO X2M PRETORIA 0001 m•v OCTOBER 1982 PER-74- THE SEDIMENTOLOGY AND MINERALOGY OF THE RIVER URANIUM DEPOSIT NEAR PHUTHADITJHABA, QWA-QWA b/ H.J. Brynard * J.P. le Roux * * Geology Department POSTAL ADDRESS: Private Bag X256 PRETORIA 0001 PELINDABA August 1982 ISBN 0-86960-747-2 CONTENTS SAMEVATTING ABSTRACT 1. INTRODUCTION 1 2. SEDIMENTOLOGY 1 2.1 Introduction 1 2.2 Depositional Environment 2 2.2.1 Palaeocurrents 2 2.2.2 Sedimentary structures and vertical profiles 5 2.2.3 Borehole analysis 15 2.3 Uranium Mineralisation 24 2.4 Conclusions and Recommendations 31 3. MINERALOGY 33 3.1 Introduction 33 3.2 Procedure 33 3.3 Terminology Relating to Carbon Content 34 3.4 Petrographic Description of the Sediments 34 3.5 Uranium Distribution 39 3.6 Minor and Trace Elements 42 3.7 Petrogenesis 43 3.8 Extraction Metallurgy 43 4. REFERENCES 44 PER-74-ii SAMEVATTING 'n Sedimentologiese en mineralogiese ondersoek is van die River-af setting uittigevoer wat deur Mynboukorporasie (Edms) Bpk in Qwa-Qwa, 15 km suaidwes van Phu triad it jnaba, ontdek is. Die ertsliggaam is in íluviale sand-steen van die boonste Elliot- formasie geleë. Palleostroomrigtings dui op 'n riviersisteem met 'n lae tot baie lae 3d.nuositeit en met "h vektor-gemiddelde aanvoer- rigting van 062°. 'n Studie van sedimentere strukture en korrelgroottes in kranssnitte is deuir to ontleding van boorgatlogs aangevul wat die sedimentêre afsettingsoragewing as h gevlegte stroom van die Donjek-tipe onthul.
    [Show full text]
  • Relationships Between Magnetic Parameters, Chemical Composition and Clay Minerals of Topsoils Near Coimbra, Central Portugal
    Nat. Hazards Earth Syst. Sci., 12, 2545–2555, 2012 www.nat-hazards-earth-syst-sci.net/12/2545/2012/ Natural Hazards doi:10.5194/nhess-12-2545-2012 and Earth © Author(s) 2012. CC Attribution 3.0 License. System Sciences Relationships between magnetic parameters, chemical composition and clay minerals of topsoils near Coimbra, central Portugal A. M. Lourenc¸o1, F. Rocha2, and C. R. Gomes1 1Centre for Geophysics, Earth Sciences Dept., University of Coimbra, Largo Marquesˆ de Pombal, 3000-272 Coimbra, Portugal 2Geobiotec Centre, Geosciences Dept., University of Aveiro, 3810-193 Aveiro, Portugal Correspondence to: A. M. Lourenc¸o ([email protected]) Received: 6 September 2011 – Revised: 27 February 2012 – Accepted: 28 February 2012 – Published: 14 August 2012 Abstract. Magnetic measurements, mineralogical and geo- al., 1980). This methodology is fast, economic and can be ap- chemical studies were carried out on surface soil samples plied in various research fields, such as environmental mon- in order to find possible relationships and to obtain envi- itoring, pedology, paleoclimatology, limnology, archeology ronmental implications. The samples were taken over a and stratigraphy. Recent studies have demonstrated the ad- square grid (500 × 500 m) near the city of Coimbra, in cen- vantages and the potential of the environmental magnetism tral Portugal. Mass specific magnetic susceptibility ranges methods as valuable aids in the detection and delimitation between 12.50 and 710.11 × 10−8 m3 kg−1 and isothermal of areas affected by pollution (e.g. Bityukova et al., 1999; magnetic remanence at 1 tesla values range between 253 Boyko et al., 2004; Blaha et al., 2008; Lu et al., 2009; and 18 174 × 10−3 Am−1.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Mineral Magnetism: Providing New Insights
    Mineral Magnetism: Providing New Insights into Geoscience Processes ABOVE : Single-domain grain (50 nm) of magnetite from a magnetotactic 1 2 bacteria displaying a Richard J. Harrison and Joshua M. Feinberg dipole-like external magnetic field and a 1811-5209/09/0005-0209$2.50 DOI: 10.2113/gselements.5.4.209 uniformally magnetized interior agnetic minerals are ubiquitous in the natural environment, and glacial and interglacial cycles and they are also present in a wide range of biological organisms, from variations in the Asian monsoon stretching back 2 million years. More bacteria to human beings. The last ten years have seen a striking M recently, magnetic measurements improvement in our ability to detect and image the magnetization of minerals of marine sediments have been used in geological and biological samples. These minerals carry a wealth of information to determine paleooceanographic encoded in their magnetic properties. Mineral magnetism (together with circulation patterns by constraining the geographical extent of ice- the related disciplines of rock magnetism, paleomagnetism, environmental rafted detritus during the last glacial magnetism, and biomagnetism) decodes this information and applies it to maximum. Even the spread of an ever increasing range of geoscience problems, from the origin of magnetic anthropogenic pollutants can be anomalies on Mars to quantifying variations in Earth’s paleoclimate. traced throughout a city environ- ment by measuring the magnetic KEYWORDS : magnetism, magnetic minerals, magnetism theory, electron holography properties of leaves, which trap magnetic particles from passing MAgnETIC minERALS ARE EVERYWHERE! vehicles (Maher 2009 this issue). Look closely enough at any geological sample and you will In addition to the many geoscience applications, the find traces of magnetic minerals.
    [Show full text]
  • Magnetic Properties of Rocks and Minerals
    MagneticProperties of Rocksand Minerals ChristopherP. Hunt, BruceM. Moskowitz,Subir K. Banerjee 1. INTRODUCTION composition-dependentmagnetic parameters of a varietyof iron-bearingminerals. This is an updatedcollation of magneticparameters of rocksand mineralsfor geologists,geochemists, and geo- 2. MAGNETIC SUSCEPTIBILITY physicists.Since the publication of theprevious edition of Handbookof PhysicalConstants [74], two othercollations Magnetic susceptibilityis a measureof the magnetic have appeared[16, 18]. In addition,selected magnetic responseof a materialto an externalmagnetic field. The parametershave alsobeen assembled[19, 22, 38, 41, 88]. volumesusceptibility k, measuredin dimensionlessunits, is Ratherthan produce a fully comprehensivecollection, we definedas the ratio of thematerial magnetization J (perunit have aimed for high-precisiondata obtainedfrom well- volume) to the weak externalmagnetic field H: characterizedsamples. Bothtables and figures have been used for presentingthe J=kH. (1) data,and best-fit equations have been provided for someof thedisplayed data so that interpolations can be made easily. Alternatively,the specificor masssusceptibility Z, mea- In an attemptto discouragethe useof the outdatedcgs suredin units of rn3kg4, isdefined as the ratio of the material system,all valuesare in theSI system(see Moskowitz, this magnetizationJ (per unit mass)to the weak externalmag- volume). Referenceshave been cited for the sourcesused netic field H: here. However,a morecomprehensive bibliography has alsobeen provided from which
    [Show full text]
  • Optical Mineralogy in a Nutshell
    Optical Mineralogy in a Nutshell Use of the petrographic microscope Slides borrowed/adapted from Jane Selverstone (University of New Mexico) and John Winter (Whitman College) Why use the petrographic microscope? • Identify minerals (no guessing!) • Determine rock type • Determine crystallization sequence • Document deformation history • Observe frozen-in reactions • Constrain P-T history • Note weathering/alteration • Fun, powerful, and cheap! The petrographic microscope Also called a polarizing microscope In order to use the scope, we need to understand a little about the physics of light, and then learn some tools and tricks… Polarized Light Microscopy Isotropic materials, which include gases, liquids, unstressed glasses and cubic crystals, demonstrate the same From Nikon optical properties in all directions. They have only one refractive index and no restriction on the vibration direction of light passing through them. Anisotropic materials, in contrast, which include 90 percent of all solid substances, have optical properties that vary with the orientation of incident light with the crystallographic axes. Anisotropic materials act as beam splitters and divide light rays into two parts. The technique of polarizing microscopy exploits the interference of the split light rays, as they are re-united along the same optical path to extract information about these materials. What happens as light moves through the scope? plane polarised light (single vibration direction) unpolarised light (all possible vibration directions) 1) Light passes
    [Show full text]
  • The Mars 2020 Candidate Landing Sites: a Magnetic Field Perspective
    The Mars 2020 Candidate Landing Sites: A Magnetic Field Perspective The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Mittelholz, Anna et al. “The Mars 2020 Candidate Landing Sites: A Magnetic Field Perspective.” Earth and Space Science 5, 9 (September 2018): 410-424 © 2018 The Authors As Published http://dx.doi.org/10.1029/2018EA000420 Publisher American Geophysical Union (AGU) Version Final published version Citable link http://hdl.handle.net/1721.1/118846 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ Earth and Space Science RESEARCH ARTICLE The Mars 2020 Candidate Landing Sites: A Magnetic 10.1029/2018EA000420 Field Perspective Key Points: • Mars 2020 offers the opportunity Anna Mittelholz1 , Achim Morschhauser2 , Catherine L. Johnson1,3, to acquire samples that record the Benoit Langlais4 , Robert J. Lillis5 , Foteini Vervelidou2 , and Benjamin P. Weiss6 intensity and direction of the ancient Martian magnetic field 1 • Laboratory paleomagnetic Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, 2 3 measurements of returned samples Canada, GFZ German Research Center for Geosciences, Potsdam, Germany, Planetary Science Institute, Tucson, AZ, USA, can address questions about the 4Laboratoire de Planétologie et Geodynamique, UMR 6112 CNRS & Université de Nantes, Nantes, France, 5Space Science history of the
    [Show full text]
  • History of Geological Science – Silvia F
    GEOLOGY – History of Geological Science – Silvia F. de M. Figueiroa HISTORY OF GEOLOGICAL SCIENCE Silvia F. de M. Figueirôa Department of Geological Education, Institute of Geosciences / University of Campinas (UNICAMP), P.O. box 6152 13083-970, Campinas-SP, Brazil Keywords: history, geology, mineralogy, paleontology, earth, mining, geological surveys, maps, gemstones, stratigraphy, fossils. Contents 1. Beginnings 2. Middle Ages and the Renaissance 3. The ‘Scientific revolution’ and its long-lasting impacts 4. Industrial Revolution, the search for raw materials and the survey of territories Glossary Bibliography Biographical Sketch Summary This chapter aims to provide a broad picture of the development of geological science, as detailed as possible. Geology as a modern science started roughly around two centuries ago. But as knowledge of the Earth it has existed since the beginnings of humankind. We begin by mentioning the ideas of ancient peoples – Greeks and Romans. We continue up to the Renaissance (15th century), explaining that practically all schools of thought shared a fairly integrated and unified vision of all the Cosmos. In a Geocentric world, Earth suffered the influence of all other planets and stars and so did everything in it, whether it was human, animal, vegetal or mineral. The planet was not composed only of its own element, but also by fire, water and air, as Aristotle had already postulated. The context of the so-called ‘Scientific Revolution’ implicated profound changes and discoveries that led to a conceptual revision of the knowledge about the Earth: Astronomy redefined by Copernicus denied the central place of the earth in the planetary system. At the same time, the construction and use of the telescope showed that the world was almost infinitely large, and that Earth and the Solar System did not occupy a special place in the Universe.
    [Show full text]
  • Rare Earth Element Mineralogy, Geochemistry, and Preliminary Resource Assessment of the Khanneshin Carbonatite Complex, Helmand Province, Afghanistan
    Prepared in cooperation with the Task Force for Business and Stability Operations, under the auspices of the U.S. Department of Defense and the Afghanistan Geological Survey Rare Earth Element Mineralogy, Geochemistry, and Preliminary Resource Assessment of the Khanneshin Carbonatite Complex, Helmand Province, Afghanistan Robert D. Tucker, Harvey E. Belkin, Klaus J. Schulz, Stephen G. Peters, and Kim P. Buttleman Open-File Report 2011–1207 USGS Afghanistan Project Product No. 200 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Suggested citation: Tucker, R.D., Belkin, H.E., Schulz, K.J., Peters, S.G., and Buttleman, K.P., 2011, Rare earth element mineralogy, geochemistry, and preliminary resource assessment of the Khanneshin carbonatite complex, Helmand Province, Afghanistan: U.S. Geological Survey Open-File Report 2011–1207, 50 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
    [Show full text]
  • Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth
    REVIEWS OF GEOPHYSICS, VOL. 26, NO. 3, PAGES 370-404, AUGUST 1988 Magma Genesis, Plate Tectonics, and Chemical Differentiation of the Earth PETER J. WYLLIE Division of Geolo•7icaland Planetary Sciences,California Institute of Technolo•Ty,Pasadena Magma genesis,migration, and eruption have played prominent roles in the chemical differentiation of the Earth. Plate tectonics has provided the framework of tectonic environments for different suites of igneousrocks and the dynamic mechanismsfor moving massesof rock into melting regions.Petrology is rooted in geophysics.Petrological and geophysicalprocesses are calibrated by the phase equilibria of the materials. The geochemistry of basalts and mantle xenoliths demonstrates that the mantle is hetero- geneous.The geochemical reservoirs are related to mantle convection, with interpretation of a mantle layered or stratified or peppered with blobs. Seismic tomography is beginning to reveal the density distribution of the mantle in three dimensions,and together with fluid mechanical models and interpreta- tion of the geoid, closer limits are being placed on mantle convection. Petrological cross sectionscon- structed for various tectonic environments by transferring phase boundaries for source rocks onto assumedthermal structuresprovide physical frameworks for consideration of magmatic and metasoma- tic events,with examplesbeing given for basalts,andesites, and granites at ocean-continentconvergent plate boundaries, basalts and nephelinitesfrom a thermal plume beneath Hawaii, kimberlites in cratons,
    [Show full text]
  • Sedimentology, Mineralogy, Palynology
    Sedimentology, Mineralogy, Palynology, and Depositional History of Some Uppermost Cretaceous and Lowermost Tertiary Rocks along the Utah Book and Roan Cliffs East of the Green ·River U.S. GEOLOGICAL SURVEY BULLETIN 1787-N Chapter N Sedimentology, Mineralogy, Palynology, and Depositional History of Some Uppermost Cretaceous and Lowermost Tertiary Rocks along the Utah Book and Roan Cliffs East of the Green River By KAREN J. FRANCZYK, JANET K. PITMAN, and DOUGlAS J. NICHOLS A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modern l . U.S. GEOLOGICAL SURVEY BULLETIN 1787 ~ EVOLUTION OF SEDIMENTARY BASINS-UINTA AND PICEANCE BASINS ) DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary • U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. UNITED STATES GOVERNMENT PRINTING OFFICE: 1990 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-In-Publication Data Franczyk, Karen J. Sedimentology, mineralogy, palynology, and depositional history of some uppermost Cretaceous and lowermost Tertiary rocks along the Utah Book and Roan Cliffs east of the Green River I by Karen J. Franczyk, Janet K. Pitman, and Douglas J. Nichols. p. em. - (Evolution of sedimentary basins-Uinta and Piceance Basins : ch. N) (U.S. Geological Survey bulletin; 1787) "A multidisciplinary approach to research studies of sedimentary rocks and their constituents and the evolution of sedimentary basins, both ancient and modem." Includes bibliographical references.
    [Show full text]
  • Reviews in Economic Geology, Vol. 20
    REVIEWS IN ECONOMIC GEOLOGY Volume 20 DIVERSITY OF CARLIN-STYLE GOLD DEPOSITS Editor John L. Muntean Ralph J. Roberts Center for Research in Economic Geology Nevada Bureau of Mines and Geology University of Nevada Reno SOCIETY OF ECONOMIC GEOLOGISTS, INC. Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/4617793/edocrev20fm.pdf by guest on 30 September 2021 REVIEWS IN ECONOMIC GEOLOGY Published by the Society of Economic Geologists, Inc. 7811 Shaffer Parkway Littleton, CO 80127, USA Website: segweb.org E-mail: [email protected] Printed by: robinprint 9457 S. University Blvd., #807 Highlands Ranch, CO 80126-4976 Email: [email protected] ISSN 0741–0123 (Print) 2374–443X (PDF) ISBN 978–1–629492–22–3 (Print) 978–1–629495–78–1 (PDF) Reviews in Economic Geology is a series publication of the Society of Economic Geolo- gists designed to accompany the Society’s Short Course series. Like the Short Courses, each volume provides comprehensive updates on various applied and academic topics for practicing economic geologists and geochemists in exploration, development, research, and teaching. Volumes are produced in conjunction with each new Short Course, first serving as a textbook for that course and subsequently made available to SEG members and others at a modest cost. On the cover: Map showing locations of Carlin-style gold deposits discussed in this volume: Great Basin, Nevada; Dian- Qian-Gui “Golden Triangle,” SW China; Nadaleen trend, Yukon, Canada; Bau district, Sarawak, Malaysia; Agdarreh and Zarshouran deposits, NW Iran; and Allchar deposit, Republic of Macedonia. Inset shows possible interrelationships between various sources of ore fluid and types of Carlin-style deposits, described in the introduction by Muntean in this volume.
    [Show full text]