Nephrin Mutations Can Cause Childhood-Onset Steroid-Resistant Nephrotic Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Nephrin Mutations Can Cause Childhood-Onset Steroid-Resistant Nephrotic Syndrome BRIEF COMMUNICATION www.jasn.org Nephrin Mutations Can Cause Childhood-Onset Steroid-Resistant Nephrotic Syndrome Aure´lie Philippe,*† Fabien Nevo,*† Ernie L. Esquivel,*† Dalia Reklaityte,*† ʈ Olivier Gribouval,*† Marie-Jose`phe Teˆte,*‡ Chantal Loirat,§ Jacques Dantal, Michel Fischbach,¶ Claire Pouteil-Noble,** Ste´phane Decramer,†† Martin Hoehne,‡‡ Thomas Benzing,‡‡ Marina Charbit,‡ Patrick Niaudet,*†‡ and Corinne Antignac*†§§ † *Inserm U574, Hoˆpital Necker-Enfants Malades, Universite´ Paris Descartes, Faculte´deMe´ decine Rene´ Descartes, BRIEF COMMUNICATION ‡Pediatric Nephrology and §§Department of Genetics, Hoˆpital Necker-Enfants Malades, Assistance Publique-Hoˆpitaux de Paris, and §Pediatric Nephrology Department, Universite´ Paris VII, Assistance Publique-Hoˆpitaux de Paris, Hoˆpital ʈ Robert Debre´, Paris, ITERT, Department of Nephrology and Clinical Immunology, CHU Nantes, Nantes, ¶Nephrology Dialysis Transplantation Children’s Unit, Hoˆpital de Hautepierre, Strasbourg, **Transplantation and Nephrology Unit, Centre Hospitalier Lyon-Sud, Pierre-Be´nite, and ††Department of Pediatric Nephrology, Hoˆpital des Enfants, and Inserm, U858/I2MR, Department of Renal and Cardiac Remodeling, Toulouse, France; and ‡‡Department of Medicine IV, University of Cologne, Cologne, Germany ABSTRACT Classically, infants with mutations in NPHS1, which encodes nephrin, present with but has since been described in other nephrotic syndrome within the first 3 mo of life (congenital nephrotic syndrome of populations.3–5 Nephrin is a single-pass the Finnish-type), and children with mutations in NPHS2, which encodes podocin, transmembrane protein consisting of present later with steroid-resistant nephrotic syndrome. Recently, however, eight extracellular Ig-like modules, a fi- NPHS2 mutations have been identified in children with congenital nephrotic syn- bronectin type III–like motif, and a cy- drome. Whether NPHS1 mutations similarly account for some cases of childhood tosolic C-terminal tail. Homodimers of steroid-resistant nephrotic syndrome is unknown. In this study, 160 patients who nephrin and heterodimers with the glo- belonged to 142 unrelated families and presented with nephrotic syndrome at merular protein NEPH1 constitute the least 3 mo after birth were screened for NPHS1 variants once mutations in NPHS2 structural basis of the slit diaphragm.6,7 had been excluded. Compound heterozygous NPHS1 mutations were identified in In addition to its structural function, one familial case and nine sporadic cases. Mutations included protein-truncating nephrin is involved in podocyte signal- nonsense and frameshift mutations, as well as splice-site and missense variants. ing events.8 Mutations were classified as “severe” or “mild” using prediction algorithms and Mutations in the NPHS2 gene en- functional assays. Most missense variants trafficked normally to the plasma mem- coding podocin were, thereafter, de- brane and maintained the ability to form nephrin homodimers and to heterodimer- scribed in patients presenting with au- ize with NEPH1, suggesting retained function. The presence of at least one “mild” tosomal recessive SRNS with onset mutation in these patients likely explains the later onset and milder course of typically between 3 mo and 5 yr of age.9 disease. These results broaden the spectrum of renal disease related to nephrin NPHS2 mutations account for 42% of mutations. Received January 17, 2008. Accepted May 14, J Am Soc Nephrol 19: 1871–1878, 2008. doi: 10.1681/ASN.2008010059 2008. Published online ahead of print. Publication date available at www.jasn.org. Idiopathic nephrotic syndrome (NS) improved understanding of the heredi- A.P., F.N., and E.L.E. contributed equally to this represents a heterogeneous group of tary basis of NS.1 Mutations in the work. glomerular disorders occurring mainly NPHS1 gene, encoding the podocyte- Correspondence: Dr. Corinne Antignac, Inserm in children and may be classified as ste- expressed protein nephrin, lead to the U574, 6e`mee´ tage, Tour Lavoisier, Hoˆpital Necker- Enfants Malades, 147, rue de Se`vres, 75015 Paris, roid-sensitive (SSNS) or steroid-resis- congenital NS of the Finnish-type France. Phone: ϩ33-1-44-49-50-98; Fax: ϩ33-1- tant (SRNS) on the basis of response to (CNF), which is inherited in an autoso- 44-49-02-90; E-mail: [email protected] corticosteroid therapy. Gene discovery mal recessive manner. It affects approx- Copyright ᮊ 2008 by the American Society of efforts in the past decade have led to an imately 1:10,000 newborns in Finland2 Nephrology J Am Soc Nephrol 19: 1871–1878, 2008 ISSN : 1046-6673/1910-1871 1871 BRIEF COMMUNICATION www.jasn.org familial and 10% of sporadic cases of and who presented with noncongenital volvement was reported. At the end of SRNS.10 Proper assembly of nephrin and onset and a more protracted course of follow-up, only five patients had reached other slit diaphragm constituents and renal disease. ESRD, at a mean age of 13.6 yr (range 6 to trafficking to the plasma membrane and Mutation screening was performed in 25 yr), whereas six patients had normal to lipid rafts require interaction with a cohort of familial and sporadic cases of serum creatinine (Table 1). Four patients podocin.11,12 SRNS, for which NPHS2 mutations had successfully received a renal allograft, Classically, mutations in the NPHS1 been excluded by sequencing the exonic with no disease recurrence. and NPHS2 genes have been distin- regions and intronic junctions. Nephrin In total, 14 mutations, 12 of which are guished by their implications in familial mutations were found in one family with novel, were identified in 10 unrelated pa- congenital (onset at birth to 3 mo) and in two affected siblings, among 44 families tients. These included six nonsense and childhood-onset (later than 3 mo) cases, with familial SRNS, using a combination frameshift, two splice-site, and six mis- respectively. Hinkes et al.13 recently con- of linkage analysis and NPHS1 sequencing sense mutations, uniformly distributed firmed the findings of others that pa- (Table 1). Of 98 patients with sporadic throughout the NPHS1 gene (Figure 1). tients with NPHS1 mutations present SRNS, nine individuals were compound Segregation of mutations confirmed re- with NS exclusively during the first 3 mo heterozygotes for NPHS1 mutations (Ta- cessive inheritance. All nonsense and of life.3–5,14 They also identified NPHS2 ble 1). The mean age of onset of NS in these frameshift mutations are predicted to re- mutations in 39% of children with con- 11 patients was 3.0 yr (range 6 mo to 8 yr); sult in a truncated protein. In addition, genital onset of NS,13 as described previ- hence, later than previously described for the c.3720_3735delC (p.L1240fs1286X) ously,15 therein broadening the spec- patients with NPHS1 mutations. The NS mutation is unusual because it involves a trum of NPHS2-associated renal disease. was resistant to corticosteroids in all cases, deletion of the last seven nucleotides of We therefore sought to determine as well as to cyclosporine and cyclophos- the NPHS1 coding and of 9 bp of the 3Ј- whether mutations in the nephrin gene phamide, when additional treatments untranslated regions. The resulting pro- may similarly account for a wider range were attempted. Renal biopsy performed tein lacks the usual terminal valine resi- of disease presentations to include child- at the time of presentation revealed me- due and instead bears an additional 45 hood-onset SRNS. Our studies revealed sangioproliferative lesions in one pa- amino acids with no known sequence that compound heterozygous mutations tient, minimal-change disease in six pa- homology. in the NPHS1 gene were responsible for tients, and FSGS in three patients (Table Six missense mutations were identi- SRNS in a cohort of patients in whom 1). Characteristic tubular lesions of CNF fied in this cohort of patients, and all NPHS2 mutations had been excluded were not observed. No extrarenal in- were ruled out as polymorphisms by se- Table 1. Clinical data of patients who had SRNS and in whom NPHS1 mutations were identifieda Age of Onset Patient Gender Biopsy Therapy Evolution Mutation 1 Severe Mutation 2 Mild Pu (NS) (yr) 1420 F 0.25 (3.00) MCNS CS, CP Normal Cr at 14 yr c.609–2A3C (M) c.319G3A p.A107T (P) 446 F 0.80 (0.80) MCNS CS ESRF at 9 yr c.3720_3735del16 c.1724C3A p.L1240fs1286Xb (P) p.P575Q (M) 1075 F 0.50 (0.50) FSGS Unknown ESRF at 13 yr c.1379G3A c.2928G3T p.R460Qb (?) p.R976S (?) 841 F 3.80 (3.80) FSGS CS, CsA Normal Cr at 6 yr c.468C3G c.2928G3T p.Y156X (P) p.R976S (M) 466 F 0.25 (0.75) MCNS CS, CP Normal Cr at 10 yr c.2479C3T c.2928G3T p.R827X (M) p.R976S (P) 1167 F 3.10 (3.10) FSGS CS, CP ESRF at 15 yr c.516delC c.2928G3T p.T712fs175X (M) p.R976S (P) 693 M 8.00 (8.00) MCNS CS Normal Cr at 16 yr c.1134–1135delGC c.286C3G p.R379fs417X (M) p.L96V (P) 1407 F 5.00 (5.00) MCNS CS, CP ESRF at 25 yr c.516delC c.2928G3T p.T712fs175X (M) p.R976S (P) 634 M 3.00 (3.00) MP Unknown ESRF at 6 yr c.1491delC c.2072–6C3G (P) p.S494fs547X (M) 771c F 2.20 (2.80) MCNS CS, CsA Normal Cr at 9 yr c.2495T3C c.2928G3T 1462c M 2.50 (2.50) Not performed No treatment Normal Cr at 6 yr p.L832P (P) p.R976S (M) aCP, cyclophosphamide; Cr, creatinine; CS, corticosteroids; CsA, cyclosporin A; ESRF, end-stage renal failure; MCNS, minimal-change glomerulonephritis; MP, mesangioproliferative glomerulonephritis; Pu, proteinuria. bThis mutation may potentially be a “mild” one. Mode of transmission of mutant alleles are indicated in parentheses: M, maternal; P, paternal; ?, unknown. cSiblings with the same parents. 1872 Journal of the American Society of Nephrology J Am Soc Nephrol 19: 1871–1878, 2008 www.jasn.org BRIEF COMMUNICATION Figure 1.
Recommended publications
  • Genotyping of Breech Flystrike Resource – Update
    Project No: ON-00515 Contract No: PO4500010753 AWI Project Manager: Bridget Peachey Contractor Name: CSIRO Agriculture and Food Prepared by: Dr Sonja Dominik Publication Date: July 2019 Genotyping of breech flystrike resource – update Published by Australian Wool Innovation Limited, Level 6, 68 Harrington Street, THE ROCKS, NSW, 2000 This publication should only be used as a general aid and is not a substitute for specific advice. To the extent permitted by law, we exclude all liability for loss or damage arising from the use of the information in this publication. AWI invests in research, development, innovation and marketing activities along the global supply chain for Australian wool. AWI is grateful for its funding, which is primarily provided by Australian woolgrowers through a wool levy and by the Australian Government which provides a matching contribution for eligible R&D activities © 2019 Australian Wool Innovation Ltd. All rights reserved. Contents Executive Summary .................................................................................................................... 3 1 Introduction/Hypothesis .................................................................................................... 5 2 Literature Review ............................................................................................................... 6 3 Project Objectives .............................................................................................................. 8 4 Success in Achieving Objectives ........................................................................................
    [Show full text]
  • Evaluation of Variability in Human Kidney Organoids
    ARTICLES https://doi.org/10.1038/s41592-018-0253-2 Evaluation of variability in human kidney organoids Belinda Phipson 1, Pei X. Er1, Alexander N. Combes1,2, Thomas A. Forbes1,3,4, Sara E. Howden1,2, Luke Zappia1,5, Hsan-Jan Yen1, Kynan T. Lawlor1, Lorna J. Hale1,4, Jane Sun6, Ernst Wolvetang6, Minoru Takasato1,7, Alicia Oshlack1,5 and Melissa H. Little 1,2,4* The utility of human pluripotent stem cell–derived kidney organoids relies implicitly on the robustness and transferability of the protocol. Here we analyze the sources of transcriptional variation in a specific kidney organoid protocol. Although individ- ual organoids within a differentiation batch showed strong transcriptional correlation, we noted significant variation between experimental batches, particularly in genes associated with temporal maturation. Single-cell profiling revealed shifts in neph- ron patterning and proportions of component cells. Distinct induced pluripotent stem cell clones showed congruent transcrip- tional programs, with interexperimental and interclonal variation also strongly associated with nephron patterning. Epithelial cells isolated from organoids aligned with total organoids at the same day of differentiation, again implicating relative matura- tion as a confounder. This understanding of experimental variation facilitated an optimized analysis of organoid-based disease modeling, thereby increasing the utility of kidney organoids for personalized medicine and functional genomics. he ability to derive induced pluripotent stem cells (iPSCs) In this study, we provide a comprehensive transcriptional from the somatic cells of patients1, together with directed dif- and morphological evaluation of our kidney organoid protocol. Tferentiation protocols, provides a capacity to model the cell Applying RNA sequencing (RNA-seq) to 57 whole organoids and types affected by disease.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Identification of Novel Kirrel3 Gene Splice Variants in Adult Human
    Durcan et al. BMC Physiology 2014, 14:11 http://www.biomedcentral.com/1472-6793/14/11 RESEARCH ARTICLE Open Access Identification of novel Kirrel3 gene splice variants in adult human skeletal muscle Peter Joseph Durcan1, Johannes D Conradie1, Mari Van deVyver2 and Kathryn Helen Myburgh1* Abstract Background: Multiple cell types including trophoblasts, osteoclasts and myoblasts require somatic cell fusion events as part of their physiological functions. In Drosophila Melanogaster the paralogus type 1 transmembrane receptors and members of the immunoglobulin superfamily Kin of Irre (Kirre) and roughest (Rst) regulate myoblast fusion during embryonic development. Present within the human genome are three homologs to Kirre termed Kin of Irre like (Kirrel) 1, 2 and 3. Currently it is unknown if Kirrel3 is expressed in adult human skeletal muscle. Results: We investigated (using PCR and Western blot) Kirrel3 in adult human skeletal muscle samples taken at rest and after mild exercise induced muscle damage. Kirrel3 mRNA expression was verified by sequencing and protein presence via blotting with 2 different anti-Kirrel3 protein antibodies. Evidence for three alternatively spliced Kirrel3 mRNA transcripts in adult human skeletal muscle was obtained. Kirrel3 mRNA in adult human skeletal muscle was detected at low or moderate levels, or not at all. This sporadic expression suggests that Kirrel3 is expressed in a pulsatile manner. Several anti Kirrel3 immunoreactive proteins were detected in all adult human skeletal muscle samples analysed and results suggest the presence of different isoforms or posttranslational modification, or both. Conclusion: The results presented here demonstrate for the first time that there are at least 3 splice variants of Kirrel3 expressed in adult human skeletal muscle, two of which have never previously been identified in human muscle.
    [Show full text]
  • Nephrin Is Specifically Located at the Slit Diaphragm of Glomerular Podocytes
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 7962–7967, July 1999 Cell Biology Nephrin is specifically located at the slit diaphragm of glomerular podocytes VESA RUOTSALAINEN*†,PA¨IVI LJUNGBERG*‡§,JORMA WARTIOVAARA¶,ULLA LENKKERI†,MARJO KESTILA¨†, ʈ HANNU JALANKO‡,CHRISTER HOLMBERG‡, AND KARL TRYGGVASON† †Biocenter and Department of Biochemistry, University of Oulu, 90570 Oulu, Finland; ‡Hospital for Children and Adolescents, University Hospital of Helsinki, 00014 Helsinki, Finland; §Department of Bacteriology and Immunology, Haartman Institute and ¶Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; and ʈDivision of Matrix Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden Communicated by Peter A. Reichard, Karolinska Institute, Stockholm, Sweden, April 9, 1999 (Received for review February 12, 1999) ABSTRACT We describe here the size and location of tight junction protein ZO-1 (17) has been localized in the nephrin, the first protein to be identified at the glomerular glomerulus, predominantly to points where the slit diaphragm podocyte slit diaphragm. In Western blots, nephrin antibodies is inserted into the lateral cell membrane of the foot process generated against the two terminal extracellular Ig domains of (18). The ZO-1 protein possibly connects the slit diaphragm, recombinant human nephrin recognized a 180-kDa protein in directly or indirectly, to the cytoskeleton. lysates of human glomeruli and a 150-kDa protein in trans- In numerous primary and secondary diseases of the kidney, fected COS-7 cell lysates. In immunofluorescence, antibodies the filtration barrier is affected, resulting in proteinuria, i.e., to this transmembrane protein revealed reactivity in the leakage of albumin and larger plasma proteins into the urine, glomerular basement membrane region, whereas the podocyte with edema and nephrotic syndrome as a consequence.
    [Show full text]
  • NPHS2 Antibody (Podocin) (R30382)
    NPHS2 Antibody (Podocin) (R30382) Catalog No. Formulation Size R30382 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide/thimerosal UniProt Q9NP85 Applications Western blot : 0.5-1ug/ml Limitations This NPHS2 antibody is available for research use only. Western blot testing of NPHS2 antibody and rat kidney tissue lysate. Predicted molecular weight ~42kDa. Description NPHS2, also called Podocin (PDCN), is a protein which lines the podocytes and assists in maintaining the barrier at the glomerular basement membrane. NPHS2 is a causative gene for Familial idiopathic nephrotic syndromes, which represents a heterogeneous group of kidney disorders, and include autosomal recessive steroid-resistant nephrotic syndrome, which is characterized by early childhood onset of proteinuria, rapid progression to end-stage renal disease and focal segmental glomerulosclerosis. By positional cloning, it was mapped to 1q25-31. It is almost exclusively expressed in the podocytes of fetal and mature kidney glomeruli, and encodes a new integral membrane protein, podocin, belonging to the stomatin protein family. Boute et al.(2000) found ten different NPHS2 mutations, comprising nonsense, frameshift and missense mutations, to segregate with the disease, demonstrating a crucial role for podocin in the function of the glomerular filtration barrier. Application Notes The stated application concentrations are suggested starting amounts. Titration of the NPHS2 antibody may be required due to differences in protocols and secondary/substrate sensitivity.
    [Show full text]
  • NPHS2 Gene Mutation, Atopy, and Gender As Risk Factors for Steroid-Resistant Nephrotic Syndrome in Indonesians
    Paediatrica Indonesiana VOLUME 51 September NUMBER 5 Original Article NPHS2 gene mutation, atopy, and gender as risk factors for steroid-resistant nephrotic syndrome in Indonesians Dedi Rachmadi, Dany Hilmanto, Ponpon Idjradinata, Abdurahman Sukadi Abstract QUHFHQW\HDUVPROHFXODUJHQHWLFVWXGLHVKDYH Background 6WHURLGUHVLVWDQWQHSKURWLFV\QGURPH 6516 RIWHQ EHHQZHOOGHYHORSHGLQFOXGLQJVWXGLHVIRU GHYHORSVLQWRHQGVWDJHUHQDOGLVHDVH3UHYLRXVVWXGLHVKDYH JHQHVLQYROYHGLQWKHSDWKRJHQHVLVRIQHSKURWLF reported that NPHS2JHQHPXWDWLRQJHQGHUDQGDWRSLFKLVWRU\ V\QGURPH2ISDUWLFXODULQWHUHVWLVWKHJHQH DUHULVNIDFWRUVDVVRFLDWHGZLWK6516,QWHUHWKQLFVRFLRFXOWXUDO I DQGHQYLURQPHQWDOGLIIHUHQFHVKDYHDOVREHHQVXJJHVWHGWRDIIHFW encoding a protein that maintains the diaphragm slit WKHVHPXWDWLRQV RISRGRF\WHV*HQHPXWDWLRQDQDO\VLVLVLPSRUWDQW Objective7RDQDO\]HSRVVLEOHULVNIDFWRUVIRU6516LQFOXGLQJ with regards to phenotype and predicting the severity NPHS2JHQHPXWDWLRQV &o7DQGGHO* JHQGHUDQG RIFOLQLFDOPDQLIHVWDWLRQV The NPHS2 gene encodes DWRSLFKLVWRU\LQ,QGRQHVLDQVXEMHFWVZLWK6516 the podocin protein and is located on chromosome Methods$FDVHFRQWUROVWXG\ZLWKVXEMHFWVFRQVLVWLQJRI 6516SDWLHQWVDQGFRQWUROVXEMHFWVZDVXQGHUWDNHQLQ T0XWDWLRQRIWKLVJHQHKDVEHHQDVVRFLDWHG ,QGRQHVLDQWHDFKLQJFHQWUHKRVSLWDOVIURP6HSWHPEHUWR ZLWKSRRUVWHURLGUHVSRQVHLQWUHDWPHQWRIQHSKURWLF 'HFHPEHU$QDO\VLVRIWKHNPHS2JHQHPXWDWLRQLQ V\QGURPH 16 3UHYLRXVVWXGLHVKDYHVKRZQWKDW &o7ZDVSHUIRUPHGE\DPSOLILFDWLRQUHIUDFWRU\PXWDWLRQV\VWHP SRNS patients with an NPHS2JHQHPXWDWLRQKDG SRO\PHUDVHFKDLQUHDFWLRQ $5063&5 ZKLOHWKDWIRUWKH NPHS2JHQHPXWDWLRQLQGHO*ZDVSHUIRUPHGE\UHVWULFWLRQ
    [Show full text]
  • CG/CA Genotypes Represent Novel Markers in the NPHS2 Gene Region Associated with Nephrotic Syndrome
    Journal of Genetics (2020)99:33 Ó Indian Academy of Sciences https://doi.org/10.1007/s12041-020-1188-9 (0123456789().,-volV)(0123456789().,-volV) RESEARCH ARTICLE CG/CA genotypes represent novel markers in the NPHS2 gene region associated with nephrotic syndrome LEILA ESMAELI CHAMGORDANI, NASIM EBRAHIMI, FARZANE AMIRMAHANI and SADEQ VALLIAN* Genetics Division, Faculty of Biological Sciences and Technologies, Department of Cellular and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran *For correspondence. E-mail: [email protected]. Received 15 November 2019; revised 10 January 2020; accepted 14 January 2020 Abstract. Nephrotic syndrome (NS) is considered as a primary disease of the kidney that represents a heterogeneous group of glomerular disorders occurring mainly in children. It is generally divided into steroid-sensitive and steroid-resistant forms, depending upon the patient’s response to steroid therapy. Among the genes involved, the NPHS2 gene has been reported as the causative gene in steroid resistant form of nephrotic syndrome. In the present study, heterozygosity rate, allelic frequency and linkage of rs2274625 and rs3829795 markers were investigated in the NPHS2 gene region. To determine the SNP alleles, tetra-primer ARMS PCR was used. After genotyping rs2274625 and rs3829795 polymorphic markers in 120 unrelated individuals and nine trios families, the data were analysed using various computer programs such as UCSC Genome Browser, dbSNP and SNPper. Based on the statistical analysis of the results, for rs2274625 marker, allele frequency for C and T alleles was 97% and 3%, respectively. For rs3829795 marker allele frequency for G and A alleles was 55% and 45%, respectively.
    [Show full text]
  • Selective Impairment of Gene Expression and Assembly of Nephrin in Human Diabetic Nephropathy
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 65 (2004), pp. 2193–2200 Selective impairment of gene expression and assembly of nephrin in human diabetic nephropathy ARIELA BENIGNI,ELENA GAGLIARDINI,SUSANNA TOMASONI,MAURO ABBATE,PIERO RUGGENENTI, RAGHU KALLURI, and GIUSEPPE REMUZZI Mario Negri Institute for Pharmacological Research, Negri Bergamo Laboratories, Bergamo, Italy; Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts; and Division of Nephrology and Dialysis, Azienda Ospedaliera, Ospedali Riuniti, Bergamo, Italy Selective impairment of gene expression and assembly of The nephropathy associated with diabetes is the lead- nephrin in human diabetic nephropathy. ing cause of end-stage renal disease (ESRD) worldwide Background. Recent disclosure of podocyte proteins has un- [1, 2]. In North America, 40% of patients adhering to raveled previously rather mysterious mechanisms that govern glomerular perm-selectivity in health and disease. Here we ad- dialysis transplantation programs in 1998 were diabetic. dressed the role of nephrin, CD2-associated protein (CD2AP), Related treatment costs were estimated at $51,000 per and podocin together with the integrity of the slit diaphragm year (i.e., about $12,000 more than the costs for nondia- in the pathogenesis of proteinuria of patients with diabetes and betics). nephropathy. Diabetic nephropathy, defined as urinary protein ex- Methods. Nephrin mRNA and protein expression were eval- > uated in parallel in adult diabetic patients by in situ hybridiza- cretion rate 0.5 g/24 hours (clinical proteinuria), man- tion and immunohistochemistry. For comparison, nondiabetic ifests within 15 to 20 years after the onset of disease in patients with minimal change nephrosis and normal control 20% to 40% of patients.
    [Show full text]
  • NPHS2 (Podocin) Mutations in Nephrotic Syndrome
    0031-3998/05/5705-0054R PEDIATRIC RESEARCH Vol. 57, No. 5, Pt 2, 2005 Copyright © 2005 International Pediatric Research Foundation, Inc. Printed in U.S.A. NPHS2 (Podocin) Mutations in Nephrotic Syndrome. Clinical Spectrum and Fine Mechanisms GIANLUCA CARIDI, FRANCESCO PERFUMO, AND GIAN MARCO GHIGGERI Laboratory on Pathophysiology of Uremia [G.C., G.M.C.], and Renal Unit [F.P., G.M.C.], Istituto Giannina Gaslini, 16148 Genova, Italy. ABSTRACT Nephrotic syndrome (NS) is the most frequent cause of iments with the common R229Q polymorphism demonstrated an proteinuria in children and is emerging as a leading cause of altered interaction with nephrin that affects the stability of the uremia. Molecular studies in families with recessive NS have led functional unit. Overall, data are here presented that underscore to the discovery of specialized molecules endowed in podocytes a major role of inherited defects of NPHS2 in NS in children that play a role in proteinuria. This review focalizes the key (including a relevant impact in sporadic cases) and give the position of podocin (NPHS2 gene) in this rapidly evolving field functional rationale for the association. A practical compendium and furnishes a compendium to those involved in clinics and is also given to clinicians involved in the management of NS that genetics of NS. Screening for NPHS2 mutations have been done should modify the classic therapeutic approach. (Pediatr Res 57: in sporadic NS and familial cases with recessive inheritance, 54R–61R, 2005) documenting a mutation detection rate of 45–55% in families and 8–20% in sporadic NS according to the different groups and considering all the clinical phenotypes.
    [Show full text]
  • Recombinant Human Kirrel3/NEPH2 Catalog Number: 4910-K3
    Recombinant Human Kirrel3/NEPH2 Catalog Number: 4910-K3 DESCRIPTION Source Mouse myeloma cell line, NS0­derived Leu29­Ala535 & Tyr33­Ala535 & Arg41­Ala535, all with a C­terminal 6­His tag Accession # Q8IZU9 N­terminal Sequence Leu29 Analysis Predicted Molecular 56.1 kDa, 55.7 kDa & 54.7 kDa Mass SPECIFICATIONS SDS­PAGE 65­85 kDa, reducing conditions Activity Measured by the ability of the immobilized protein to support the adhesion of MS­1 mouse pancreatic islet endothelial cells. When 5 x 104 cells/well are added to rhKirrel3 coated plates (30 µg/mL, 100 µL/well), approximately 40%­70% will adhere after 90 minutes at 37° C. Optimal dilutions should be determined by each laboratory for each application. Endotoxin Level <0.10 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS­PAGE under reducing conditions and visualized by silver stain. Formulation Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details. PREPARATION AND STORAGE Reconstitution Reconstitute at 100 μg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles. l 12 months from date of receipt, ­20 to ­70 °C as supplied. l 1 month, 2 to 8 °C under sterile conditions after reconstitution. l 3 months, ­20 to ­70 °C under sterile conditions after reconstitution. BACKGROUND Kirrel3 (kin of irregular chiasm­1­like 3), also known as Kirre or NEPH2 (nephrin­like 2), is an ~100 kDa type I transmembrane glycoprotein belonging to the NEPH family within the immunoglobulin superfamily (1, 2).
    [Show full text]
  • Human KIRREL / NEPH1 / KIRREL1 Protein (Fc Tag)
    Human KIRREL / NEPH1 / KIRREL1 Protein (Fc Tag) Catalog Number: 15752-H02H General Information SDS-PAGE: Gene Name Synonym: NEPH1 Protein Construction: A DNA sequence encoding the human KIRREL (NP_060710.3) (Met1-Leu493) was expressed with the Fc region of human IgG1 at the C-terminus. Source: Human Expression Host: HEK293 Cells QC Testing Purity: > 95 % as determined by SDS-PAGE Endotoxin: Protein Description < 1.0 EU per μg of the protein as determined by the LAL method NEPH1 (KIRREL1) belongs to a family of three closely related Stability: transmembrane proteins of the Ig superfamily with a structure similar to that of nephrin. All three Neph proteins share a conserved podocin-binding ℃ Samples are stable for up to twelve months from date of receipt at -70 motif; mutation of a centrally located tyrosine residue dramatically lowers the affinity of Neph1 for podocin. Neph1 triggers AP-1 activation similarly to Gln 17 Predicted N terminal: nephrin but requires the presence of Tec family kinases for efficient Molecular Mass: transactivation. Neph1 consists of a signal peptide, five Ig-like C2-type domains with the middle domain overlapping with a PKD-like domain, an The recombinant human KIRREL/Fc comprises 715 amino acids and has a RGD sequence, a transmembrane domain and a cytoplasmic tail, which is predicted molecular mass of 78.8 kDa. The apparent molecular mass of the expressed in slit diaphragm domains of podocytes and in vertebrate and protein is approximately 96.1 kDa in SDS-PAGE under reducing conditions. invertebrate nervous systems. Neph1 is abundantly expressed in the kidney, specifically expressed in podocytes of kidney glomeruli, and plays a Formulation: significant role in the normal development and function of the glomerular permeability.
    [Show full text]