Mouse Lcorl Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Lcorl Knockout Project (CRISPR/Cas9) http://www.alphaknockout.com/ Mouse Lcorl Knockout Project (CRISPR/Cas9) Objective: To create a Lcorl knockout Mouse model (C57BL/6N) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Lcorl gene (NCBI Reference Sequence: NM_178142 ; Ensembl: ENSMUSG00000015882 ) is located on Mouse chromosome 5. 7 exons are identified, with the ATG start codon in exon 1 and the TAG stop codon in exon 7 (Transcript: ENSMUST00000045586). Exon 2~4 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 2 starts from about 16.08% of the coding region. Exon 2~4 covers 29.21% of the coding region. The size of effective KO region: ~19967 bp. The KO region does not have any other known gene. Page 1 of 9 http://www.alphaknockout.com/ Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 7 Legends Exon of mouse Lcorl Knockout region Page 2 of 9 http://www.alphaknockout.com/ Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 4 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 http://www.alphaknockout.com/ Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(28.55% 571) | C(20.6% 412) | G(16.7% 334) | T(34.15% 683) Note: The 2000 bp section upstream of Exon 2 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(28.85% 577) | C(15.1% 302) | G(15.65% 313) | T(40.4% 808) Note: The 2000 bp section downstream of Exon 4 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 http://www.alphaknockout.com/ BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr5 - 45795359 45797358 2000 browser details YourSeq 272 1401 1927 2000 89.2% chrX - 52871911 52872319 409 browser details YourSeq 263 1410 1931 2000 90.2% chr2 + 31070115 31070543 429 browser details YourSeq 231 1415 1923 2000 88.7% chr14 + 53287658 53287934 277 browser details YourSeq 162 1757 1944 2000 94.6% chr11 + 5768146 5768336 191 browser details YourSeq 160 1398 1931 2000 85.9% chr5 + 114735199 114735368 170 browser details YourSeq 160 1397 1932 2000 86.4% chr10 + 41301372 41301539 168 browser details YourSeq 160 1765 1934 2000 97.7% chr1 + 183258498 183258670 173 browser details YourSeq 155 1397 1931 2000 85.6% chr8 - 105946246 105946412 167 browser details YourSeq 155 1762 1941 2000 95.9% chr5 - 151010893 151011089 197 browser details YourSeq 155 1773 1934 2000 98.2% chr11 - 93398405 93398579 175 browser details YourSeq 153 1762 1931 2000 97.6% chr11 - 116721098 116721272 175 browser details YourSeq 152 1400 1566 2000 95.9% chrX + 130722082 130722250 169 browser details YourSeq 150 1391 1566 2000 95.3% chr4 - 7498767 7498965 199 browser details YourSeq 150 1784 1954 2000 94.3% chr8 + 107111631 107111794 164 browser details YourSeq 150 1396 1564 2000 96.4% chr3 + 59272429 59272601 173 browser details YourSeq 149 1397 1565 2000 94.7% chrX - 77672811 77672980 170 browser details YourSeq 149 1779 1931 2000 98.7% chr5 - 90266513 90266665 153 browser details YourSeq 149 1403 1566 2000 96.4% chr6 + 146573171 146573342 172 browser details YourSeq 148 1403 1566 2000 95.7% chr2 - 161226627 161226790 164 Note: The 2000 bp section upstream of Exon 2 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr5 - 45773392 45775391 2000 browser details YourSeq 33 1421 1465 2000 79.0% chr6 - 21314090 21314130 41 browser details YourSeq 24 1112 1139 2000 92.9% chr1 + 12325785 12325812 28 Note: The 2000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 http://www.alphaknockout.com/ Gene and protein information: Lcorl ligand dependent nuclear receptor corepressor-like [ Mus musculus (house mouse) ] Gene ID: 209707, updated on 24-Oct-2019 Gene summary Official Symbol Lcorl provided by MGI Official Full Name ligand dependent nuclear receptor corepressor-like provided by MGI Primary source MGI:MGI:2651932 See related Ensembl:ENSMUSG00000015882 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Mlr1 Expression Broad expression in whole brain E14.5 (RPKM 2.2), CNS E18 (RPKM 2.0) and 18 other tissues See more Orthologs human all Genomic context Location: 5; 5 B3 See Lcorl in Genome Data Viewer Exon count: 12 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 5 NC_000071.6 (45697181..45857835, complement) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 5 NC_000071.5 (46091680..46248779, complement) Chromosome 5 - NC_000071.6 Page 6 of 9 http://www.alphaknockout.com/ Transcript information: This gene has 12 transcripts Gene: Lcorl ENSMUSG00000015882 Description ligand dependent nuclear receptor corepressor-like [Source:MGI Symbol;Acc:MGI:2651932] Gene Synonyms A830039H10Rik, Mlr1 Location Chromosome 5: 45,697,181-45,857,615 reverse strand. GRCm38:CM000998.2 About this gene This gene has 12 transcripts (splice variants), 127 orthologues, 1 paralogue and is a member of 2 Ensembl protein families. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Lcorl- ENSMUST00000045586.12 5708 315aa ENSMUSP00000042677.6 Protein coding CCDS19277 Q3U285 TSL:1 202 GENCODE basic Lcorl- ENSMUST00000087164.9 4979 517aa ENSMUSP00000084408.3 Protein coding CCDS19278 Q3U285 TSL:1 204 GENCODE basic Lcorl- ENSMUST00000016026.13 4884 600aa ENSMUSP00000016026.7 Protein coding CCDS51499 Q3U285 TSL:1 201 GENCODE basic Lcorl- ENSMUST00000238522.1 10477 1851aa ENSMUSP00000158672.1 Protein coding - - GENCODE 212 basic APPRIS P1 Lcorl- ENSMUST00000190036.6 5463 220aa ENSMUSP00000140503.2 Protein coding - A0A0H2UH31 CDS 5' 210 incomplete TSL:1 Lcorl- ENSMUST00000121573.7 2378 232aa ENSMUSP00000112416.1 Protein coding - E9PXY2 TSL:1 205 GENCODE basic Lcorl- ENSMUST00000189859.6 384 128aa ENSMUSP00000139996.2 Protein coding - A0A087WQ10 CDS 5' and 3' 209 incomplete TSL:3 Lcorl- ENSMUST00000186633.2 351 117aa ENSMUSP00000141174.2 Protein coding - A0A087WST0 CDS 5' and 3' 207 incomplete TSL:3 Lcorl- ENSMUST00000187615.6 439 49aa ENSMUSP00000139466.1 Nonsense mediated - A0A087WNR9 CDS 5' 208 decay incomplete TSL:2 Lcorl- ENSMUST00000200142.1 7912 No - Retained intron - - TSL:NA 211 protein Lcorl- ENSMUST00000156295.1 678 No - Retained intron - - TSL:2 206 protein Lcorl- ENSMUST00000067997.10 1174 No - lncRNA - - TSL:1 203 protein Page 7 of 9 http://www.alphaknockout.com/ 180.44 kb Forward strand 45.70Mb 45.75Mb 45.80Mb 45.85Mb Genes Ncapg-201 >protein coding 4930449I04Rik-201 >TEC (Comprehensive set... Ncapg-205 >retained intron Ncapg-206 >retained intron Ncapg-204 >retained intron Ncapg-202 >retained intron Gm36401-201 >TEC Contigs AC093341.5 > < AC158786.8 Genes < Lcorl-212protein coding (Comprehensive set... < Lcorl-202protein coding < Lcorl-210protein coding < Lcorl-205protein coding < Lcorl-211retained intron < Lcorl-209protein coding < Lcorl-204protein coding < Lcorl-201protein coding < Lcorl-208nonsense mediated decay < Gm43201-201TEC < Gm29036-201transcribed processed pseudogene < Gm43200-201TEC < Lcorl-203processed transcript < Lcorl-206retained intron < Lcorl-207protein coding Regulatory Build 45.70Mb 45.75Mb 45.80Mb 45.85Mb Reverse strand 180.44 kb Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding pseudogene processed transcript Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Page 8 of 9 http://www.alphaknockout.com/ Transcript: ENSMUST00000045586 < Lcorl-202protein coding Reverse strand 160.44 kb ENSMUSP00000042... MobiDB lite Low complexity (Seg) PANTHER PTHR21545 PTHR21545:SF10 All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend splice region variant synonymous variant Scale bar 0 40 80 120 160 200 240 315 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC, VectorBuilder. Page 9 of 9.
Recommended publications
  • Genome-Wide Association Study of Body Weight
    Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight Hawlader A. Al-Mamun, Paul Kwan, Samuel A. Clark, Mohammad H. Ferdosi, Ross Tellam, Cedric Gondro To cite this version: Hawlader A. Al-Mamun, Paul Kwan, Samuel A. Clark, Mohammad H. Ferdosi, Ross Tellam, et al.. Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight. Genetics Selection Evolution, 2015, 47 (1), pp.66. 10.1186/s12711-015-0142-4. hal-01341302 HAL Id: hal-01341302 https://hal.archives-ouvertes.fr/hal-01341302 Submitted on 4 Jul 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. et al. Genetics Selection Evolution Al-Mamun (2015) 47:66 Genetics DOI 10.1186/s12711-015-0142-4 Selection Evolution RESEARCH ARTICLE Open Access Genome-wide association study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and bovine genomic regions affecting height and weight Hawlader A. Al-Mamun1,2, Paul Kwan2, Samuel A.
    [Show full text]
  • Genetic Architecture of Quantitative Traits in Beef Cattle Revealed by Genome Wide Association Studies of Imputed Whole Genome S
    Zhang et al. BMC Genomics (2020) 21:36 https://doi.org/10.1186/s12864-019-6362-1 RESEARCH ARTICLE Open Access Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: I: feed efficiency and component traits Feng Zhang1,2,3,4, Yining Wang1,2, Robert Mukiibi2, Liuhong Chen1,2, Michael Vinsky1, Graham Plastow2, John Basarab5, Paul Stothard2 and Changxi Li1,2* Abstract Background: Genome wide association studies (GWAS) on residual feed intake (RFI) and its component traits including daily dry matter intake (DMI), average daily gain (ADG), and metabolic body weight (MWT) were conducted in a population of 7573 animals from multiple beef cattle breeds based on 7,853,211 imputed whole genome sequence variants. The GWAS results were used to elucidate genetic architectures of the feed efficiency related traits in beef cattle. Results: The DNA variant allele substitution effects approximated a bell-shaped distribution for all the traits while the distribution of additive genetic variances explained by single DNA variants followed a scaled inverse chi- squared distribution to a greater extent. With a threshold of P-value < 1.00E-05, 16, 72, 88, and 116 lead DNA variants on multiple chromosomes were significantly associated with RFI, DMI, ADG, and MWT, respectively. In addition, lead DNA variants with potentially large pleiotropic effects on DMI, ADG, and MWT were found on chromosomes 6, 14 and 20. On average, missense, 3’UTR, 5’UTR, and other regulatory region variants exhibited larger allele substitution effects in comparison to other functional classes. Intergenic and intron variants captured smaller proportions of additive genetic variance per DNA variant.
    [Show full text]
  • LCORL (NM 153686) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC207306L4 LCORL (NM_153686) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: LCORL (NM_153686) Human Tagged ORF Clone Tag: mGFP Symbol: LCORL Synonyms: MLR1 Vector: pLenti-C-mGFP-P2A-Puro (PS100093) E. coli Selection: Chloramphenicol (34 ug/mL) Cell Selection: Puromycin ORF Nucleotide The ORF insert of this clone is exactly the same as(RC207306). Sequence: Restriction Sites: SgfI-MluI Cloning Scheme: ACCN: NM_153686 ORF Size: 954 bp This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 LCORL (NM_153686) Human Tagged ORF Clone – RC207306L4 OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_153686.4, NP_710153.2 RefSeq Size: 3577 bp RefSeq ORF: 957 bp Locus ID: 254251 UniProt ID: Q8N3X6, B4DSW0 Domains: HTH_psq Protein Families: Transcription Factors MW: 35.4 kDa Gene Summary: This gene encodes a transcription factor that appears to function in spermatogenesis.
    [Show full text]
  • High-Resolution Analysis of Selection Sweeps Identified Between Fine
    Gutiérrez‑Gil et al. Genet Sel Evol (2017) 49:81 DOI 10.1186/s12711-017-0354-x Genetics Selection Evolution RESEARCH ARTICLE Open Access High‑resolution analysis of selection sweeps identifed between fne‑wool Merino and coarse‑wool Churra sheep breeds Beatriz Gutiérrez‑Gil1* , Cristina Esteban‑Blanco1,2, Pamela Wiener3, Praveen Krishna Chitneedi1, Aroa Suarez‑Vega1 and Juan‑Jose Arranz1 Abstract Background: With the aim of identifying selection signals in three Merino sheep lines that are highly specialized for fne wool production (Australian Industry Merino, Australian Merino and Australian Poll Merino) and considering that these lines have been subjected to selection not only for wool traits but also for growth and carcass traits and parasite resistance, we contrasted the OvineSNP50 BeadChip (50 K-chip) pooled genotypes of these Merino lines with the genotypes of a coarse-wool breed, phylogenetically related breed, Spanish Churra dairy sheep. Genome re-sequenc‑ ing datasets of the two breeds were analyzed to further explore the genetic variation of the regions initially identifed as putative selection signals. Results: Based on the 50 K-chip genotypes, we used the overlapping selection signals (SS) identifed by four selec‑ tion sweep mapping analyses (that detect genetic diferentiation, reduced heterozygosity and patterns of haplotype diversity) to defne 18 convergence candidate regions (CCR), fve associated with positive selection in Australian Merino and the remainder indicating positive selection in Churra. Subsequent analysis of whole-genome sequences from 15 Churra and 13 Merino samples identifed 142,400 genetic variants (139,745 bi-allelic SNPs and 2655 indels) within the 18 defned CCR. Annotation of 1291 variants that were signifcantly associated with breed identity between Churra and Merino samples identifed 257 intragenic variants that caused 296 functional annotation variants, 275 of which were located across 31 coding genes.
    [Show full text]
  • Supplementary Information – Postema Et Al., the Genetics of Situs Inversus Totalis Without Primary Ciliary Dyskinesia
    1 Supplementary information – Postema et al., The genetics of situs inversus totalis without primary ciliary dyskinesia Table of Contents: Supplementary Methods 2 Supplementary Results 5 Supplementary References 6 Supplementary Tables and Figures Table S1. Subject characteristics 9 Table S2. Inbreeding coefficients per subject 10 Figure S1. Multidimensional scaling to capture overall genomic diversity 11 among the 30 study samples Table S3. Significantly enriched gene-sets under a recessive mutation model 12 Table S4. Broader list of candidate genes, and the sources that led to their 13 inclusion Table S5. Potential recessive and X-linked mutations in the unsolved cases 15 Table S6. Potential mutations in the unsolved cases, dominant model 22 2 1.0 Supplementary Methods 1.1 Participants Fifteen people with radiologically documented SIT, including nine without PCD and six with Kartagener syndrome, and 15 healthy controls matched for age, sex, education and handedness, were recruited from Ghent University Hospital and Middelheim Hospital Antwerp. Details about the recruitment and selection procedure have been described elsewhere (1). Briefly, among the 15 people with radiologically documented SIT, those who had symptoms reminiscent of PCD, or who were formally diagnosed with PCD according to their medical record, were categorized as having Kartagener syndrome. Those who had no reported symptoms or formal diagnosis of PCD were assigned to the non-PCD SIT group. Handedness was assessed using the Edinburgh Handedness Inventory (EHI) (2). Tables 1 and S1 give overviews of the participants and their characteristics. Note that one non-PCD SIT subject reported being forced to switch from left- to right-handedness in childhood, in which case five out of nine of the non-PCD SIT cases are naturally left-handed (Table 1, Table S1).
    [Show full text]
  • A Genome-Wide Association Study for Body Weight in Japanese Thoroughbred Racehorses Clarifies Candidate Regions on Chromosomes 3, 9, 15, and 18
    —Full Paper— A genome-wide association study for body weight in Japanese Thoroughbred racehorses clarifies candidate regions on chromosomes 3, 9, 15, and 18 Teruaki TOZAKI1*, Mio KIKUCHI1, Hironaga KAKOI1, Kei-ichi HIROTA1 and Shun-ichi NAGATA1 1Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi 320-0851, Japan Body weight is an important trait to confirm growth and development in humans and animals. In Thoroughbred racehorses, it is measured in the postnatal, training, and racing periods to evaluate growth and training degrees. The body weight of mature Thoroughbred J. Equine Sci. racehorses generally ranges from 400 to 600 kg, and this broad range is likely influenced Vol. 28, No. 4 by environmental and genetic factors. Therefore, a genome-wide association study pp. 127–134, 2017 (GWAS) using the Equine SNP70 BeadChip was performed to identify the genomic regions associated with body weight in Japanese Thoroughbred racehorses using 851 individuals. The average body weight of these horses was 473.9 kg (standard deviation: 28.0) at the age of 3, and GWAS identified statistically significant SNPs on chromosomes 3 (BIEC2_808466, P=2.32E-14), 9 (BIEC2_1105503, P=1.03E-7), 15 (BIEC2_322669, P=9.50E-6), and 18 (BIEC2_417274, P=1.44E-14), which were associated with body weight as a quantitative trait. The genomic regions on chromosomes 3, 9, 15, and 18 included ligand-dependent nuclear receptor compressor-like protein (LCORL), zinc finger and AT hook domain containing (ZFAT), tribbles pseudokinase 2 (TRIB2), and myostatin (MSTN), respectively, as candidate genes. LCORL and ZFAT are associated with withers height in horses, whereas MSTN affects muscle mass.
    [Show full text]
  • Sheep Genome Functional Annotation Reveals Proximal Regulatory Elements Contributed to the Evolution of Modern Breeds
    ARTICLE DOI: 10.1038/s41467-017-02809-1 OPEN Sheep genome functional annotation reveals proximal regulatory elements contributed to the evolution of modern breeds Marina Naval-Sanchez1, Quan Nguyen1, Sean McWilliam1, Laercio R. Porto-Neto1, Ross Tellam1, Tony Vuocolo1, Antonio Reverter1, Miguel Perez-Enciso 2,3, Rudiger Brauning4, Shannon Clarke4, Alan McCulloch4, Wahid Zamani5, Saeid Naderi 6, Hamid Reza Rezaei7, Francois Pompanon 8, Pierre Taberlet8, Kim C. Worley9, Richard A. Gibbs9, Donna M. Muzny9, Shalini N. Jhangiani9, Noelle Cockett10, Hans Daetwyler11,12 & James Kijas1 1234567890():,; Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis)to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species. 1 CSIRO Agriculture and Food, 306 Carmody Road, St. Lucia 4067 QLD, Australia. 2 Centre for Research in Agricultural Genomics (CRAG), Bellaterra 08193, Spain. 3 ICREA, Carrer de Lluís Companys 23, Barcelona 08010, Spain.
    [Show full text]
  • Expression Levels of LCORL Are Associated with Body Size in Horses
    Expression Levels of LCORL Are Associated with Body Size in Horses Julia Metzger, Rahel Schrimpf, Ute Philipp, Ottmar Distl* Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany Abstract Body size is an important characteristic for horses of various breeds and essential for the classification of ponies concerning the limit value of 148 cm (58.27 inches) height at the withers. Genome-wide association analyses revealed the highest associated quantitative trait locus for height at the withers on horse chromosome (ECA) 3 upstream of the candidate gene LCORL. Using 214 Hanoverian horses genotyped on the Illumina equine SNP50 BeadChip and 42 different horse breeds across all size ranges, we confirmed the highly associated single nucleotide polymorphism BIEC2-808543 (2log10P = 8.3) and the adjacent gene LCORL as the most promising candidate for body size. We investigated the relative expression levels of LCORL and its two neighbouring genes NCAPG and DCAF16 using quantitative real-time PCR (RT-qPCR). We could demonstrate a significant association of the relative LCORL expression levels with the size of the horses and the BIEC2- 808543 genotypes within and across horse breeds. In heterozygous C/T-horses expression levels of LCORL were significantly decreased by 40% and in homozygous C/C-horses by 56% relative to the smaller T/T-horses. Bioinformatic analyses indicated that this SNP T.C mutation is disrupting a putative binding site of the transcription factor TFIID which is important for the transcription process of genes involved in skeletal bone development. Thus, our findings suggest that expression levels of LCORL play a key role for body size within and across horse breeds and regulation of the expression of LCORL is associated with genetic variants of BIEC2-808543.
    [Show full text]
  • NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility
    International Journal of Molecular Sciences Article NCAPG Dynamically Coordinates the Myogenesis of Fetal Bovine Tissue by Adjusting Chromatin Accessibility 1,2, 1, 3 4 1 1 1 Xin Hu y, Yishen Xing y, Xing Fu , Qiyuan Yang , Ling Ren , Yahui Wang , Qian Li , Junya Li 1,* and Lupei Zhang 1,* 1 Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs; Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (X.H.); [email protected] (Y.X.); [email protected] (L.R.); [email protected] (Y.W.); [email protected] (Q.L.) 2 Molecular and Cellular Biology, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium 3 School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA; [email protected] 4 Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; [email protected] * Correspondence: [email protected] (L.Z.); [email protected] (J.L.) These authors contributed equally to this work. y Received: 29 January 2020; Accepted: 11 February 2020; Published: 13 February 2020 Abstract: NCAPG is a subunit of condensin I that plays a crucial role in chromatin condensation during mitosis. NCAPG has been demonstrated to be associated with farm animal growth traits. However, its role in regulating myoblast differentiation is still unclear. We used myoblasts derived from fetal bovine tissue as an in vitro model and found that NCAPG was expressed during myogenic differentiation in the cytoplasm and nucleus. Silencing NCAPG prolonged the mitosis and impaired the differentiation due to increased myoblast apoptosis.
    [Show full text]
  • Plant & Animal Genome V
    January 9-13, 2016 PLANT & ANIMAL GENOME XXIV Town & Country Hotel THE INTERNATIONAL CONFERENCE San Diego, CA ON THE STATUS OF PLANT & ANIMAL GENOME RESEARCH FINAL PROGRAM & EXHIBIT GUIDE Organizing Committee Chairman: Stephen R. Heller, NIST (USA) Ī PLANT COORGANIZERS Juan F. Medrano, University of California, Dave Clements, Johns Hopkins University, Davis, USA USA Huaijun Zhou, University of California, Catherine Feuillet, Bayer CropScience, USA Davis, USA J. Perry Gustafson, University of Missouri, (Retired ), USA Ī ABSTRACT & WEBSITE Jerome P. Miksche, Emeritus Director, COORDINATORS USDA, Plant Genome Program, USA David Grant, USDA/ARS/CICGR, USA Graham Moore, John Innes Centre, UK Gerard Lazo, USDA/ARS/WRRC, USA Susan R. Wessler, University of California, Victoria Carollo Blake, USA Riverside, USA Rod A. Wing, University of Arizona, USA; Ī TRAVEL GRANTS COORDINATOR International Rice Research Institute, Tom Blake, Professor Emeritus, Philippines Montana State University, USA Ī ANIMAL COORGANIZERS Ī SPECIAL DUTY COORDINATORS Daniel Ciobanu, University of Nebraska – Hans Cheng, USDA/ARS, USA Lincoln, USA Max Rothschild, Iowa State University, USA Kwan-Suk Kim, Chungbuk National University, South Korea Sponsors and Supporters ORGANIZER Scherago International Ī USDA, Agricultural Research Service 111 Town Square Place Ī USDA, National Agricultural Library Suite 1208 USDA, National Institute of Food and Agriculture Ī Jersey City, NJ 07310 Ī John Innes Centre Phone: (201) 653-4777 Fax: (201) 653-5705 Cover artwork provided by Applied Biosystems. Originally developed for the company’s “Genetic Harvest” Agriculture Seminars, this image Email: [email protected] represents the importance of molecular genetic approaches in plant and animal research. Website: www.intlpag.org About Frasergen Frasergen is an innovative leader in cutting-edge bioinformatics and overseas in high-throughput genome sequencing, big genome data genomics.
    [Show full text]
  • 393LN V 393P 344SQ V 393P Probe Set Entrez Gene
    393LN v 393P 344SQ v 393P Entrez fold fold probe set Gene Gene Symbol Gene cluster Gene Title p-value change p-value change chemokine (C-C motif) ligand 21b /// chemokine (C-C motif) ligand 21a /// chemokine (C-C motif) ligand 21c 1419426_s_at 18829 /// Ccl21b /// Ccl2 1 - up 393 LN only (leucine) 0.0047 9.199837 0.45212 6.847887 nuclear factor of activated T-cells, cytoplasmic, calcineurin- 1447085_s_at 18018 Nfatc1 1 - up 393 LN only dependent 1 0.009048 12.065 0.13718 4.81 RIKEN cDNA 1453647_at 78668 9530059J11Rik1 - up 393 LN only 9530059J11 gene 0.002208 5.482897 0.27642 3.45171 transient receptor potential cation channel, subfamily 1457164_at 277328 Trpa1 1 - up 393 LN only A, member 1 0.000111 9.180344 0.01771 3.048114 regulating synaptic membrane 1422809_at 116838 Rims2 1 - up 393 LN only exocytosis 2 0.001891 8.560424 0.13159 2.980501 glial cell line derived neurotrophic factor family receptor alpha 1433716_x_at 14586 Gfra2 1 - up 393 LN only 2 0.006868 30.88736 0.01066 2.811211 1446936_at --- --- 1 - up 393 LN only --- 0.007695 6.373955 0.11733 2.480287 zinc finger protein 1438742_at 320683 Zfp629 1 - up 393 LN only 629 0.002644 5.231855 0.38124 2.377016 phospholipase A2, 1426019_at 18786 Plaa 1 - up 393 LN only activating protein 0.008657 6.2364 0.12336 2.262117 1445314_at 14009 Etv1 1 - up 393 LN only ets variant gene 1 0.007224 3.643646 0.36434 2.01989 ciliary rootlet coiled- 1427338_at 230872 Crocc 1 - up 393 LN only coil, rootletin 0.002482 7.783242 0.49977 1.794171 expressed sequence 1436585_at 99463 BB182297 1 - up 393
    [Show full text]
  • A Genome-Wide Scan for Diversifying Selection Signatures in Selected Horse Breeds
    RESEARCH ARTICLE A genome-wide scan for diversifying selection signatures in selected horse breeds 1 1 1 1 Artur GurgulID *, Igor Jasielczuk , Ewelina Semik-Gurgul , Klaudia Pawlina-TyszkoID , 2 1 3 Monika Stefaniuk-SzmukierID , Tomasz Szmatoøa , Grażyna Polak , Iwona Tomczyk- Wrona3, Monika Bugno-Poniewierska1,4 1 Department of Animal Molecular Biology, National Research Institute of Animal Production, Balice, Poland, 2 Department of Horse Breeding, University of Agriculture in KrakoÂw, al. KrakoÂw, Poland, 3 Department of Horse Breeding, National Research Institute of Animal Production, Balice, Poland, 4 Institute of Veterinary a1111111111 Sciences, University of Agriculture in Krakow, al. KrakoÂw, Poland a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The genetic differentiation of the current horse population was evolutionarily created by nat- ural or artificial selection which shaped the genomes of individual breeds in several unique OPEN ACCESS ways. The availability of high throughput genotyping methods created the opportunity to Citation: Gurgul A, Jasielczuk I, Semik-Gurgul E, study this genetic variation on a genome-wide level allowing detection of genome regions Pawlina-Tyszko K, Stefaniuk-Szmukier M, Szmatoøa divergently selected between separate breeds as well as among different horse types shar- T, et al. (2019) A genome-wide scan for ing similar phenotypic features. In this study, we used the population differentiation index diversifying selection signatures in selected horse breeds. PLoS ONE 14(1): e0210751. https://doi. (FST) that is generally used for measuring locus-specific allele frequencies variation org/10.1371/journal.pone.0210751 between populations, to detect selection signatures among six horse breeds maintained in Editor: Juan J Loor, University of Illinois, UNITED Poland.
    [Show full text]