Manual-2016.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Manual-2016.Pdf GROMACS Groningen Machine for Chemical Simulations Reference Manual Version 2016 GROMACS Reference Manual Version 2016 Contributions from Emile Apol, Rossen Apostolov, Herman J.C. Berendsen, Aldert van Buuren, Pär Bjelkmar, Rudi van Drunen, Anton Feenstra, Sebastian Fritsch, Gerrit Groenhof, Christoph Junghans, Jochen Hub, Peter Kasson, Carsten Kutzner, Brad Lambeth, Per Larsson, Justin A. Lemkul, Erik Marklund, Peiter Meulenhoff, Teemu Murtola, Szilárd Páll, Sander Pronk, Roland Schulz, Michael Shirts, Alfons Sijbers, Peter Tieleman, Christian Wennberg and Maarten Wolf. Mark Abraham, Berk Hess, David van der Spoel, and Erik Lindahl. c 1991–2000: Department of Biophysical Chemistry, University of Groningen. Nijenborgh 4, 9747 AG Groningen, The Netherlands. c 2001–2018: The GROMACS development teams at the Royal Institute of Technology and Uppsala University, Sweden. More information can be found on our website: www.gromacs.org. iv Preface & Disclaimer This manual is not complete and has no pretention to be so due to lack of time of the contributors – our first priority is to improve the software. It is worked on continuously, which in some cases might mean the information is not entirely correct. Comments on form and content are welcome, please send them to one of the mailing lists (see www.gromacs.org), or open an issue at redmine.gromacs.org. Corrections can also be made in the GROMACS git source repository and uploaded to gerrit.gromacs.org. We release an updated version of the manual whenever we release a new version of the software, so in general it is a good idea to use a manual with the same major and minor release number as your GROMACS installation. On-line Resources You can find more documentation and other material at our homepage www.gromacs.org. Among other things there is an on-line reference, several GROMACS mailing lists with archives and contributed topologies/force fields. Citation information When citing this document in any scientific publication please refer to it as: M.J. Abraham, D. van der Spoel, E. Lindahl, B. Hess, and the GROMACS development team, GROMACS User Manual version 2016, www.gromacs.org (2018) However, we prefer that you cite (some of) the GROMACS papers [1,2,3,4,5,6,7,8] when you publish your results. Any future development depends on academic research grants, since the package is distributed as free software! GROMACS is Free Software The entire GROMACS package is available under the GNU Lesser General Public License (LGPL), version 2.1. This means it’s free as in free speech, not just that you can use it without pay- ing us money. You can redistribute GROMACS and/or modify it under the terms of the LGPL as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. For details, check the COPYING file in the source code or consult http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html. The GROMACS source code and and selected set of binary packages are available on our home- page, www.gromacs.org. Have fun. Contents 1 Introduction1 1.1 Computational Chemistry and Molecular Modeling................1 1.2 Molecular Dynamics Simulations..........................2 1.3 Energy Minimization and Search Methods.....................5 2 Definitions and Units7 2.1 Notation.......................................7 2.2 MD units......................................7 2.3 Reduced units....................................9 2.4 Mixed or Double precision............................. 10 3 Algorithms 11 3.1 Introduction..................................... 11 3.2 Periodic boundary conditions............................ 11 3.2.1 Some useful box types........................... 13 3.2.2 Cut-off restrictions............................. 14 3.3 The group concept................................. 14 3.4 Molecular Dynamics................................ 15 3.4.1 Initial conditions.............................. 17 3.4.2 Neighbor searching............................. 18 3.4.3 Compute forces............................... 24 3.4.4 The leap-frog integrator.......................... 26 3.4.5 The velocity Verlet integrator....................... 26 3.4.6 Understanding reversible integrators: The Trotter decomposition..... 27 3.4.7 Multiple time stepping........................... 29 3.4.8 Temperature coupling........................... 29 vi Contents 3.4.9 Pressure coupling.............................. 35 3.4.10 The complete update algorithm...................... 41 3.4.11 Output step................................. 43 3.5 Shell molecular dynamics.............................. 43 3.5.1 Optimization of the shell positions..................... 43 3.6 Constraint algorithms................................ 44 3.6.1 SHAKE................................... 44 3.6.2 LINCS................................... 45 3.7 Simulated Annealing................................ 47 3.8 Stochastic Dynamics................................ 48 3.9 Brownian Dynamics................................ 49 3.10 Energy Minimization................................ 49 3.10.1 Steepest Descent.............................. 49 3.10.2 Conjugate Gradient............................. 50 3.10.3 L-BFGS................................... 50 3.11 Normal-Mode Analysis............................... 51 3.12 Free energy calculations.............................. 51 3.12.1 Slow-growth methods........................... 51 3.12.2 Thermodynamic integration........................ 53 3.13 Replica exchange.................................. 54 3.14 Essential Dynamics sampling............................ 55 3.15 Expanded Ensemble................................. 56 3.16 Parallelization.................................... 56 3.17 Domain decomposition............................... 57 3.17.1 Coordinate and force communication................... 57 3.17.2 Dynamic load balancing.......................... 58 3.17.3 Constraints in parallel........................... 59 3.17.4 Interaction ranges.............................. 59 3.17.5 Multiple-Program, Multiple-Data PME parallelization.......... 60 3.17.6 Domain decomposition flow chart..................... 62 3.18 Implicit solvation.................................. 62 4 Interaction function and force fields 65 4.1 Non-bonded interactions.............................. 65 Contents vii 4.1.1 The Lennard-Jones interaction....................... 66 4.1.2 Buckingham potential........................... 67 4.1.3 Coulomb interaction............................ 67 4.1.4 Coulomb interaction with reaction field.................. 68 4.1.5 Modified non-bonded interactions..................... 69 4.1.6 Modified short-range interactions with Ewald summation......... 71 4.2 Bonded interactions................................. 71 4.2.1 Bond stretching............................... 71 4.2.2 Morse potential bond stretching...................... 72 4.2.3 Cubic bond stretching potential...................... 73 4.2.4 FENE bond stretching potential...................... 74 4.2.5 Harmonic angle potential.......................... 74 4.2.6 Cosine based angle potential........................ 75 4.2.7 Restricted bending potential........................ 75 4.2.8 Urey-Bradley potential........................... 76 4.2.9 Bond-Bond cross term........................... 77 4.2.10 Bond-Angle cross term........................... 77 4.2.11 Quartic angle potential........................... 77 4.2.12 Improper dihedrals............................. 77 4.2.13 Proper dihedrals.............................. 79 4.2.14 Tabulated bonded interaction functions.................. 82 4.3 Restraints...................................... 84 4.3.1 Position restraints.............................. 84 4.3.2 Flat-bottomed position restraints...................... 85 4.3.3 Angle restraints............................... 86 4.3.4 Dihedral restraints............................. 86 4.3.5 Distance restraints............................. 87 4.3.6 Orientation restraints............................ 90 4.4 Polarization..................................... 94 4.4.1 Simple polarization............................. 94 4.4.2 Water polarization............................. 94 4.4.3 Thole polarization............................. 94 4.5 Free energy interactions............................... 94 4.5.1 Soft-core interactions............................ 98 viii Contents 4.6 Methods....................................... 99 4.6.1 Exclusions and 1-4 Interactions....................... 99 4.6.2 Charge Groups............................... 100 4.6.3 Treatment of Cut-offs in the group scheme................ 100 4.7 Virtual interaction sites............................... 101 4.8 Long Range Electrostatics............................. 105 4.8.1 Ewald summation.............................. 105 4.8.2 PME.................................... 106 4.8.3 P3M-AD.................................. 107 4.8.4 Optimizing Fourier transforms and PME calculations........... 107 4.9 Long Range Van der Waals interactions...................... 107 4.9.1 Dispersion correction............................ 107 4.9.2 Lennard-Jones PME............................ 109 4.10 Force field...................................... 112 4.10.1 GROMOS-96................................ 113 4.10.2 OPLS/AA.................................. 114 4.10.3 AMBER.................................. 114 4.10.4 CHARMM................................. 114 4.10.5 Coarse-grained force fields......................... 115 4.10.6 MARTINI.................................. 115 4.10.7 PLUM..................................
Recommended publications
  • Mercury 2.4 User Guide and Tutorials 2011 CSDS Release
    Mercury 2.4 User Guide and Tutorials 2011 CSDS Release Copyright © 2010 The Cambridge Crystallographic Data Centre Registered Charity No 800579 Conditions of Use The Cambridge Structural Database System (CSD System) comprising all or some of the following: ConQuest, Quest, PreQuest, Mercury, (Mercury CSD and Materials module of Mercury), VISTA, Mogul, IsoStar, SuperStar, web accessible CSD tools and services, WebCSD, CSD Java sketcher, CSD data file, CSD-UNITY, CSD-MDL, CSD-SDfile, CSD data updates, sub files derived from the foregoing data files, documentation and command procedures (each individually a Component) is a database and copyright work belonging to the Cambridge Crystallographic Data Centre (CCDC) and its licensors and all rights are protected. Use of the CSD System is permitted solely in accordance with a valid Licence of Access Agreement and all Components included are proprietary. When a Component is supplied independently of the CSD System its use is subject to the conditions of the separate licence. All persons accessing the CSD System or its Components should make themselves aware of the conditions contained in the Licence of Access Agreement or the relevant licence. In particular: • The CSD System and its Components are licensed subject to a time limit for use by a specified organisation at a specified location. • The CSD System and its Components are to be treated as confidential and may NOT be disclosed or re- distributed in any form, in whole or in part, to any third party. • Software or data derived from or developed using the CSD System may not be distributed without prior written approval of the CCDC.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • GROMACS: Fast, Flexible, and Free
    GROMACS: Fast, Flexible, and Free DAVID VAN DER SPOEL,1 ERIK LINDAHL,2 BERK HESS,3 GERRIT GROENHOF,4 ALAN E. MARK,4 HERMAN J. C. BERENDSEN4 1Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, S-75124 Uppsala, Sweden 2Stockholm Bioinformatics Center, SCFAB, Stockholm University, SE-10691 Stockholm, Sweden 3Max-Planck Institut fu¨r Polymerforschung, Ackermannweg 10, D-55128 Mainz, Germany 4Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands Received 12 February 2005; Accepted 18 March 2005 DOI 10.1002/jcc.20291 Published online in Wiley InterScience (www.interscience.wiley.com). Abstract: This article describes the software suite GROMACS (Groningen MAchine for Chemical Simulation) that was developed at the University of Groningen, The Netherlands, in the early 1990s. The software, written in ANSI C, originates from a parallel hardware project, and is well suited for parallelization on processor clusters. By careful optimization of neighbor searching and of inner loop performance, GROMACS is a very fast program for molecular dynamics simulation. It does not have a force field of its own, but is compatible with GROMOS, OPLS, AMBER, and ENCAD force fields. In addition, it can handle polarizable shell models and flexible constraints. The program is versatile, as force routines can be added by the user, tabulated functions can be specified, and analyses can be easily customized. Nonequilibrium dynamics and free energy determinations are incorporated. Interfaces with popular quantum-chemical packages (MOPAC, GAMES-UK, GAUSSIAN) are provided to perform mixed MM/QM simula- tions. The package includes about 100 utility and analysis programs.
    [Show full text]
  • Secondary Structure Propensities in Peptide Folding Simulations: a Systematic Comparison of Molecular Mechanics Interaction Schemes
    Biophysical Journal Volume 97 July 2009 599–608 599 Secondary Structure Propensities in Peptide Folding Simulations: A Systematic Comparison of Molecular Mechanics Interaction Schemes Dirk Matthes and Bert L. de Groot* Department of Theoretical and Computational Biophysics, Computational Biomolecular Dynamics Group, Max-Planck-Institute for Biophysical Chemistry, Go¨ttingen, Germany ABSTRACT We present a systematic study directed toward the secondary structure propensity and sampling behavior in peptide folding simulations with eight different molecular dynamics force-field variants in explicit solvent. We report on the combi- national result of force field, water model, and electrostatic interaction schemes and compare to available experimental charac- terization of five studied model peptides in terms of reproduced structure and dynamics. The total simulation time exceeded 18 ms and included simulations that started from both folded and extended conformations. Despite remaining sampling issues, a number of distinct trends in the folding behavior of the peptides emerged. Pronounced differences in the propensity of finding prominent secondary structure motifs in the different applied force fields suggest that problems point in particular to the balance of the relative stabilities of helical and extended conformations. INTRODUCTION Molecular dynamics (MD) simulations are routinely utilized to that study, simulations of relatively short lengths were per- study the folding dynamics of peptides and small proteins as formed and the natively folded state was used as starting well as biomolecular aggregation. The critical constituents of point, possibly biasing the results (13). such molecular mechanics studies are the validity of the under- For folding simulations, such a systematic test has not lyingphysical models together with theassumptionsofclassical been carried out so far, although with growing computer dynamics and a sufficient sampling of the conformational power several approaches toward the in silico folding space.
    [Show full text]
  • Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development
    processes Review Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development Outi M. H. Salo-Ahen 1,2,* , Ida Alanko 1,2, Rajendra Bhadane 1,2 , Alexandre M. J. J. Bonvin 3,* , Rodrigo Vargas Honorato 3, Shakhawath Hossain 4 , André H. Juffer 5 , Aleksei Kabedev 4, Maija Lahtela-Kakkonen 6, Anders Støttrup Larsen 7, Eveline Lescrinier 8 , Parthiban Marimuthu 1,2 , Muhammad Usman Mirza 8 , Ghulam Mustafa 9, Ariane Nunes-Alves 10,11,* , Tatu Pantsar 6,12, Atefeh Saadabadi 1,2 , Kalaimathy Singaravelu 13 and Michiel Vanmeert 8 1 Pharmaceutical Sciences Laboratory (Pharmacy), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland; ida.alanko@abo.fi (I.A.); rajendra.bhadane@abo.fi (R.B.); parthiban.marimuthu@abo.fi (P.M.); atefeh.saadabadi@abo.fi (A.S.) 2 Structural Bioinformatics Laboratory (Biochemistry), Åbo Akademi University, Tykistökatu 6 A, Biocity, FI-20520 Turku, Finland 3 Faculty of Science-Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; [email protected] 4 Swedish Drug Delivery Forum (SDDF), Department of Pharmacy, Uppsala Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden; [email protected] (S.H.); [email protected] (A.K.) 5 Biocenter Oulu & Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 7 A, FI-90014 Oulu, Finland; andre.juffer@oulu.fi 6 School of Pharmacy, University of Eastern Finland, FI-70210 Kuopio, Finland; maija.lahtela-kakkonen@uef.fi (M.L.-K.); tatu.pantsar@uef.fi
    [Show full text]
  • Ee9e60701e814784783a672a9
    International Journal of Technology (2017) 4: 611‐621 ISSN 2086‐9614 © IJTech 2017 A PRELIMINARY STUDY ON SHIFTING FROM VIRTUAL MACHINE TO DOCKER CONTAINER FOR INSILICO DRUG DISCOVERY IN THE CLOUD Agung Putra Pasaribu1, Muhammad Fajar Siddiq1, Muhammad Irfan Fadhila1, Muhammad H. Hilman1, Arry Yanuar2, Heru Suhartanto1* 1Faculty of Computer Science, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia 2Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia (Received: January 2017 / Revised: April 2017 / Accepted: June 2017) ABSTRACT The rapid growth of information technology and internet access has moved many offline activities online. Cloud computing is an easy and inexpensive solution, as supported by virtualization servers that allow easier access to personal computing resources. Unfortunately, current virtualization technology has some major disadvantages that can lead to suboptimal server performance. As a result, some companies have begun to move from virtual machines to containers. While containers are not new technology, their use has increased recently due to the Docker container platform product. Docker’s features can provide easier solutions. In this work, insilico drug discovery applications from molecular modelling to virtual screening were tested to run in Docker. The results are very promising, as Docker beat the virtual machine in most tests and reduced the performance gap that exists when using a virtual machine (VirtualBox). The virtual machine placed third in test performance, after the host itself and Docker. Keywords: Cloud computing; Docker container; Molecular modeling; Virtual screening 1. INTRODUCTION In recent years, cloud computing has entered the realm of information technology (IT) and has been widely used by the enterprise in support of business activities (Foundation, 2016).
    [Show full text]
  • BOSS, Version 4.6 Biochemical and Organic Simulation System User’S Manual for UNIX, Linux, and Windows
    BOSS, Version 4.6 Biochemical and Organic Simulation System User’s Manual for UNIX, Linux, and Windows William L. Jorgensen Department of Chemistry, Yale University P. O. Box 208107 New Haven, Connecticut 06520-8107 Phone: (203) 432-6278 Fax: (203) 432-6299 Internet: [email protected] January 2004 Contents Page Introduction 4 1 Can’t Wait to Start – Use the x Scripts 6 2 Statistical Mechanics Simulation – Theory 6 3 Energy and Free Energy Evaluation 7 4 New Features 9 5 Operating Systems 14 6 Installation 14 7 Files 14 8 Command or bat File Input 16 9 Parameter File Input 18 10 Z-matrix File Input 26 10.1 Atom Input 29 10.2 Geometry Variations 29 10.3 Bond Length Variations 29 10.4 Additional Bonds 30 10.5 Harmonic Restraints 30 10.6 Bond Angle Variations 30 10.7 Additional Bond Angles 31 10.8 Dihedral Angle Variations 31 10.9 Additional Dihedral Angles 33 10.10 Domain Definitions 34 10.11 Conformational Searching 34 10.12 Sample Z-matrix 34 10.13 Z-matrix Input for Custom Solvents 35 11 PDB Input 37 12 Coordinate Input in Mind Format and Reaction Path Following 38 13 Pure Liquid Simulations 39 14 Cluster Simulations 39 2 15 Solventless and Molecular Mechanics Calculations 40 15.1 Continuum Simulations 40 15.2 Energy Minimizations 41 15.3 Dihedral Angle Driving 42 15.4 Potential Surface Scanning 42 15.5 Normal Coordinate Analysis 43 15.6 Conformational Searching 45 16 Available Solvent Boxes 48 17 Ewald Summation for Long-Range Electrostatics 50 18 Test Jobs 51 19 Output 56 19.1 Some Variable Definitions 58 20 Contents of the Distribution Files 59 21 Appendix – No.
    [Show full text]
  • Introduction to GROMOS
    CSCPB - Introduction to GROMOS Information: Prof. Dr. W.F. van Gunsteren Laboratory of Physical Chemistry, ETH-Z¨urich, 8092 Z¨urich, Switzerland Tel: +41-44-6325501 Fax: +41-44-6321039 e-mail: [email protected] Note: This MD tutorial is still under development. Please report any errors, incon- sistencies, obscurities or suggestions for improvements to [email protected]. Purpose: This molecular dynamics (MD) tutorial serves a number of objectives. These are to obtain experience with: • computer simulation in general • executing and understanding GROMOS • interpreting the results of computer simulations Version: SVN revision December 5, 2007 W.F.v.G., Z.G., J.D., A-P.K., C.C., N.S. 1 Required knowledge: Some knowledge about the following is required: • Computer programming languages: ability to read simple code (C++). • Computer operating system language of the machine on which the tutorial will be carried out: UNIX. Good books on MD are (Frenkel & Smit, 2002) and (Allen & Tildesley, 1987). 2 Contents 1 INTRODUCTION 4 1.1 The Lennard-Jones interaction . 4 1.2 Electrostatic interaction . 5 1.3 Periodic boundary conditions . 5 1.4 Newton’s equations of motion . 6 1.5 The leap-frog integration scheme . 7 1.6 Coupling to a temperature bath . 8 1.7 Pressure and the virial . 9 1.8 Center of mass motion . 9 1.9 Gaussian or Maxwellian distributions . 10 1.10 The radial distribution function g(r).................. 10 1.11 Units . 11 2 INSTALLATION OF GROMOS 12 2.1 System Requirements . 12 2.2 Getting and Installing GROMOSXX . 13 2.3 Getting and Installing GROMOS++ .
    [Show full text]
  • Computer-Aided Drug Design: a Practical Guide
    Computer-Aided Drug Design: A Practical Guide Forrest Smith, Ph.D. Department of Drug Discovery and Development Harrison School of Pharmacy Auburn, University History of Drug Design • Natural Products-Ebers Papyrus, 1500 B.C. documents over 700 plant based products used to treat a variety of illnesses • The rise of Organic Chemistry, middle or the 20th Century, semi-synthetic and synthetic drugs • Computers emerge in the late 1980s, CADD with minimal impact • Automation in the 1990s, High Through-put Screening and Robotics, Compound Libraries • CADD has continued to advance since its introduction with improving capabilities Computational Chemistry • Ab initio calculations • Semi-empirical calculations • Molecular Mechanics Molecular Mechanics Global Minimum Force Fields • MM2, MM3, MM4 • MMFF • AMBER • CHARM • OPLS Finding the Global Minimum • Systematic Search • Monte Carlo Methods • Simulated Annealing • Quenched Dynamics Minor Groove Binders Computer-Aided Drug Design • Structure Based Design – Docking – Molecular Dynamics – Free Energy Perturbation • Ligand Based Design-QSAR – COMFA – Pharmacophore Modeling – Shape Based Methods Docking-The Receptor • X-Ray Crystal Structures – RCSB Protein Data Bank (https://www.rcsb.org/) – Private Data • Homology Modeling • Nuclear Magnetic Resonance Docking- The Ligand • Proprietary Ligands • Databases qReal Databases • FDA approved drugs- (http://chemoinfo.ipmc.cnrs.fr/MOLDB/index.html) • Purchasable compounds Zinc 15, currently 100 million compounds (http://zinc15.docking.org/) q Virtual Databases-
    [Show full text]
  • Guidelines for the Analysis of Free Energy Calculations
    Journal of Computer-Aided Molecular Design manuscript No. (will be inserted by the editor) Guidelines for the analysis of free energy calculations Pavel V. Klimovich, Michael R. Shirts, and David L. Mobley Received: date / Accepted: date Abstract Free energy calculations based on molecular dy- Python tool also handles output from multiple types of free namics (MD) simulations show considerable promise for ap- energy calculations, including expanded ensemble and Hamil- plications ranging from drug discovery to prediction of phys- tonian replica exchange, as well as standard fixed ensemble ical properties and structure-function studies. But these cal- calculations. We also survey a range of statistical and graph- culations are still difficult and tedious to analyze, and best ical ways of assessing the quality of the data and free energy practices for analysis are not well defined or propagated. Es- estimates, and provide prototypes of these in our tool. We sentially, each group analyzing these calculations needs to hope these tools and discussion will serve as a foundation decide how to conduct the analysis and, usually, develop its for more standardization of and agreement on best practices own analysis tools. Here, we review and recommend best for analysis of free energy calculations. practices for analysis yielding reliable free energies from molecular simulations. Additionally, we provide a Python Keywords hydration free energy · transfer free energy · tool, alchemical-analysis.py, freely available on free energy calculation · analysis tool · binding free energy · GitHub at https://github.com/choderalab/pymbar-examplesalchemical , that implements the analysis practices reviewed here for sev- eral reference simulation packages, which can be adapted to handle data from other packages.
    [Show full text]
  • Release 0.11 Todd Gamblin
    Spack Documentation Release 0.11 Todd Gamblin Feb 07, 2018 Basics 1 Feature Overview 3 1.1 Simple package installation.......................................3 1.2 Custom versions & configurations....................................3 1.3 Customize dependencies.........................................4 1.4 Non-destructive installs.........................................4 1.5 Packages can peacefully coexist.....................................4 1.6 Creating packages is easy........................................4 2 Getting Started 7 2.1 Prerequisites...............................................7 2.2 Installation................................................7 2.3 Compiler configuration..........................................9 2.4 Vendor-Specific Compiler Configuration................................ 13 2.5 System Packages............................................. 16 2.6 Utilities Configuration.......................................... 18 2.7 GPG Signing............................................... 20 2.8 Spack on Cray.............................................. 21 3 Basic Usage 25 3.1 Listing available packages........................................ 25 3.2 Installing and uninstalling........................................ 42 3.3 Seeing installed packages........................................ 44 3.4 Specs & dependencies.......................................... 46 3.5 Virtual dependencies........................................... 50 3.6 Extensions & Python support...................................... 53 3.7 Filesystem requirements........................................
    [Show full text]
  • Small Molecule and Protein Docking Introduction
    Small Molecule and Protein Docking Introduction • A significant portion of biology is built on the paradigm sequence structure function • As we sequence more genomes and get more structural information, the next challenge will be to predict interactions and binding for two or more biomolecules (nucleic acids, proteins, peptides, drugs or other small molecules) Introduction • The questions we are interested in are: – Do two biomolecules bind each other? – If so, how do they bind? – What is the binding free energy or affinity? • The goals we have are: – Searching for lead compounds – Estimating effect of modifications – General understanding of binding – … Rationale • The ability to predict the binding site and binding affinity of a drug or compound is immensely valuable in the area or pharmaceutical design • Most (if not all) drug companies use computational methods as one of the first methods of screening or development • Computer-aided drug design is a more daunting task, but there are several examples of drugs developed with a significant contribution from computational methods Examples • Tacrine – inhibits acetylcholinesterase and boost acetylcholine levels (for treating Alzheimer’s disease) • Relenza – targets influenza • Invirase, Norvir, Crixivan – Various HIV protease inhibitors • Celebrex – inhibits Cox-2 enzyme which causes inflammation (not our fault) Docking • Docking refers to a computational scheme that tries to find the best binding orientation between two biomolecules where the starting point is the atomic coordinates of the two molecules • Additional data may be provided (biochemical, mutational, conservation, etc.) and this can significantly improve the performance, however this extra information is not required Bound vs. Unbound Docking • The simplest problem is the “bound” docking problem.
    [Show full text]