Performance of a Cyclone Scrubber in Removal of Fine

Total Page:16

File Type:pdf, Size:1020Kb

Performance of a Cyclone Scrubber in Removal of Fine Available on line at Association of the Chemical Engineers of Serbia AChE Chemical Industry & Chemical Engineering Quarterly www.ache.org.rs/CICEQ Chem. Ind. Chem. Eng. Q. 26 (1) 31−40 (2020) CI&CEQ ANA ELISA ACHILES PERFORMANCE OF A CYCLONE SCRUBBER VÁDILA GIOVANA GUERRA IN REMOVAL OF FINE PARTICULATE Department of Chemical MATTER Engineering, Federal University of São Carlos, Brazil Article Highlights • Cyclone spray scrubber is an effective device for the removal of fine particles SCIENTIFIC PAPER • Great performance on fine particulate removal at low L/G flow ratio and pressure drop conditions UDC 621.928.3+641.513:66.074.2 • Inlet air velocity and water injection position influence the collection efficiency • Liquid-to-gas flow ratio strongly affects the performance of cyclone spray scrubber • Smaller droplet sizes increase the collection efficiency of fine solid particles Abstract Cyclones are not classified as effective devices for removing fine particles, while high efficiency wet scrubbers usually have high operational costs. In order to achieve better performance, the aim of this study is to evaluate, for the first time, a cyclone scrubber design based on the dimensions of a Stairmand cyclone separator with the inclusion of liquid injection nozzles located in differ- ent positions to improve the separation of fine particles. Given the lack of stu- dies considering the effect of liquid injection and other operational conditions in the removal performance of a cyclone scrubber with Stairmand dimensions, the present paper provides a complete evaluation of these effects for the separation of sugar cane bagasse ash from air. The parameters investigated were inlet gas velocity, liquid injection position, liquid-to-gas flow ratio and droplet size distribution. The cyclone scrubber performance was evaluated considering collection efficiency and pressure drop. Overall efficiency of almost 99% and low-pressure drop was achieved by employing a liquid-to-gas flow ratio of 0.43 L/m³ for the collection of ash from the combustion of sugar cane bagasse. Grade efficiencies revealed that injecting droplets into cyclones sig- nificantly improved the removal of fine particles with an aerodynamic diameter less than 2.5 µm. Keywords: cyclone scrubber, collection efficiency, fine particle separ- ation, liquid injection. Cyclones and wet scrubbers are applied in removal of this particulate matter from gas streams many industrial processes to separate the particles can lead to negative consequences, including chronic laden in gas stream. An example of a process that respiratory problems in humans [1]. Consequently, uses such equipment is the production of sugar and the removal of particulate matter from these industrial ethanol. The bagasse is generated in the production exhaust streams is essential in order to avoid air process and this waste is used for cogeneration of pollution [2,3]. electricity by burning it in boilers and at the end, it Dry cyclones are frequently employed in indus- produces sugar cane bagasse ash. The inadequate trial applications, due to their low operating costs, simple construction and maintenance, compactness, Correspondence: V.G. Guerra, Federal University of São Carlos. and suitability for use under harsh conditions [4]. Via Washington Luiz, km 235, 13565-905, São Carlos, SP, Brazil. However, dry cyclones are inefficient in collecting E-mail: [email protected] Paper received: 20 December, 2018 very fine particles smaller than 5 μm [5], so they are Paper revised: 11 July, 2019 mainly used for initial pretreatment, upstream of other Paper accepted: 6 August, 2019 more expensive air pollution control equipment [6]. https://doi.org/10.2298/CICEQ181220022A 31 A.E. ACHILES, V.G. GUERRA: PERFORMANCE OF A CYCLONE SCRUBBER... Chem. Ind. Chem. Eng. Q. 26 (1) 31−40 (2020) Wet scrubber techniques are applied in many erical investigation of the effects of the different col- industrial processes, due to their better capacity to lection mechanisms (Brownian diffusion, interception remove fine particles and soluble pollutants from gas and impaction) on the separation efficiency of a streams [7]. Nonetheless, major drawbacks of these gravitational wet scrubber. It was found that droplet scrubbing systems are related to the high energy cost residence time, liquid-to-gas flow ratio, and droplet associated with successful removal of submicron par- size distribution had significant effects on the wet ticles. Venturi scrubbers exhibit significant pressure scrubber efficiency. Therefore, the water droplet size drops, ranging from 2942 to 8826 Pa [8], while some is one of the most important considerations in design- types of scrubbers require the use of high liquid-to- ing a wet scrubber. gas ratios, resulting in the generation of large amounts Mohan and Meikap [11] reported on detailed of sludge [8,9]. experimental studies on the removal of dust particles In attempting to improve the collection efficiency from hot gases by using a spray-cum-bubble column of dry cyclones for smaller particles and decrease the with twin-fluid atomizers using water as the scrubbing operational cost associated with wet scrubbers, the medium. The results indicated that the spray-cum- cyclone spray scrubber combines the particle collect- -bubble column achieved almost 75-99% removal effi- ion mechanisms of these techniques, in a single dev- ciency of particulates. In addition, a comparison of the ice. This apparatus essentially consists of a dry cyc- experimental and theoretical efficiencies was made lone adapted with nozzles that inject atomized liquid and analyzed. (usually water) into the inner chamber. The addition of Lee et al. [8] developed a novel system con- droplets within the equipment leads to improvement sisting of a cyclone and a swirl scrubber with an imp- of its performance, because in addition to the centri- act cone and plates, and evaluated the particle col- fugal force acting on the particles, other collection lection efficiency and the applications of this appar- mechanisms (impaction, interception, and Brownian atus. The parameters investigated were the plate diffusion) also operate, hence increasing the probabil- angles, nozzle size and pressure, and volumetric flow ity of removing the particles from the gas stream. In rate of the scrubbing medium. The results demon- general, the removal rate of the small particles is con- strated that particle separation efficiency improved trolled by Brownian diffusion, while impaction and with decrease of the plate angle, increased pressure interception are significant for removal of large par- of the scrubbing medium at the nozzle tip, and inc- ticles [3,10]. reased volumetric flow rate of the scrubbing medium. The performance of the cyclone spray scrubber, Ahuja [2] studied a novel type of wetted wall including its collection efficiency and pressure drop, cyclone scrubber, where wetting of the cyclone walls depends mainly on the method of liquid injection, the led to an improvement of up to 33% in the collection droplet size distribution, the droplet number, the liquid efficiency for fine particles in the size range from 1 to flow distribution and the initial liquid momentum 3 μm. Higher inlet air velocity resulted in greater [3,11]. Several previous studies have investigated the separation efficiency for all particles, under both dry influence of these parameters on the performance and wet conditions. and applications of cyclone spray scrubbers. Yang et al. [16] studied an innovative type of Krames and Büttner [12] investigated a cyclone cyclone, called a “cyclone splitter”, using numerical scrubber with dimensions based on the Barth [13] and simulation to evaluate its performance, considering Muschelknautz [14] equations. Droplets were gener- the pressure drops obtained with pure and droplet- ated by a pneumatic atomization nozzle that was laden gasses. The effect of droplets loading on the arranged at the cyclone inlet in the direction of the pressure drop was determined using droplet volume flow. A key finding of this study was an empirical rel- concentrations in the inlet gas ranging from 0.1 to ation between the residence time and the separation 1.0%. Experimental results showed that the two- result. When the cyclone was operated in dry mode, phase Euler numbers decreased with increasing the separation efficiency declined with decreasing droplets loading, and a new pressure drop model for a inlet velocity. In contrast, operation in wet mode res- gas-liquid cyclone was established by introducing a ulted in the best separation at the lowest volumetric liquid phase correction coefficient. flow rate. According to the authors, the cyclone spray The aim of the present work was to evaluate the scrubber could be classified as a high efficiency performance of a Stairmand-type cyclone adapted separator. with water injection nozzles, considering the effects of In order to improve understanding of submicron inlet air velocity, droplet size distribution, number of particle removal, Kim et al. [15] conducted a num- droplets, droplet initial velocity, liquid injection posit- 32 A.E. ACHILES, V.G. GUERRA: PERFORMANCE OF A CYCLONE SCRUBBER... Chem. Ind. Chem. Eng. Q. 26 (1) 31−40 (2020) ion, and liquid-to-gas flow ratio. To this end, several that their sprays are oriented down. Considering the experiments were performed under defined conditions nozzles located at side configuration were in the hori- in order to investigate the separation efficiency and zontal direction: 1S and 3S nozzles are facing
Recommended publications
  • Wet Gas Scrubbing
    CHAPTER 41 WET GAS SCRUBBING Wet scrubbers use a liquid to remove solid, liquid, or gaseous contaminants from a gas stream. The scrubbing liquid performs this separation by dissolving, trap- ping, or chemically reacting with the contaminant. Scrubbers are used extensively to control air polluting emissions. So many dif- ferent scrubber configurations have been used that there is some confusion as to whether they all belong in the same category. In some references, for example, the definition of a scrubber may be restricted to certain design criteria, such as whether the units are open or packed. In this text, any device fitting the definition of the first sentence is a wet scrubber. Scrubber systems can be designed to remove entrained paniculate materials such as dust, fly ash, or metal oxides, or to remove gases, such as oxides of sulfur (SOx), from a flue gas stream to meet air emission standards. PARTICLE COLLECTION CONCEPTS In scrubbing paniculate matter from gases, the principal concern is usually removal of particles smaller than than 10 /on. Larger particles are relatively easy to separate. The successful design and operation of wet scrubbers depends on knowing the size, composition, and derivation of the particles to be collected. Figure 41.1 shows estimated size for some common pollutants. Just as fine particles in water (colloids) carry a charge of static electricity, so do colloidal par- ticles in the fumes and dust, defined as aerosols. If these particles carry no charge, they may be deliberately charged to assist removal by special separators called electrostatic precipitators. Among the particulates (term for the suspended solid materials) collected by wet scrubbers are dispersion aerosols from processes such as grinding, solid and liquid atomization, and transport of suspended powders by air currents or vibra- tion.
    [Show full text]
  • Gas Scrubbers
    Bulletin 7-S Gas Scrubbers INTRODUCTION The use of wet scrubbers for control of air pollution has gained wide acceptance throughout the industry. The ejector-venturi wet scrubber provides a number of advantages over many of the conventional single-purpose devices available. Particulate collectors such as cyclones and electrostatic precipitators cannot efficiently absorb gases or remove odors. Fabric filters, by design, cannot cope with gas streams having a high moisture content and are often affected by highly corrosive gases. Catalytic incinerators can be quickly poisoned by certain organic wastes. On the other hand, ejector-venturi gas scrubbers are very effective at removing noxious gases, particulates, odors, fumes and dusts from gas streams. Particulate contaminants are removed through impaction by the high velocity spray of scrubbing liquid. Gases and odors are eliminated through absorption and/or chemical reaction between the gases and scrubbing liquid. When properly matched to the application, these scrubbers, by their nature, are better able to cope with the high temperatures and corrosive conditions often encountered. Schutte & Koerting has over sixty years of experience in the control of commercial and industrial air pollution using wet scrubber technology. The ejector-venturi gas Description Page scrubbers described on the following pages have been Fig. 7010 Ejector-Venturi Scrubber 2 engineered to operate effectively in a variety of Fig. 7040 Separators 2 applications. Using the same basic design, these standard Fig. 7019 Vent Gas Scrubber System 2 scrubbers can be sized to meet volume requirements from Stock Systems 2 a few CFM to thousands of CFM. This broad applicability Fig. 7014 Scrubber-Separator System 3 permits Schutte & Koerting to stock these scrubbers in a Economical Stock Systems 3 wide range of sizes and materials.
    [Show full text]
  • Venturi Scrubbers
    VENTURI PARTICULATE SCRUBBERS Monroe Venturi Scrubber and Cyclonic Separator Monroe Environmental® Venturi Scrubbers Monroe Environmental offers several venturi exhausting a lime kiln are designed to remove both heavy and light design configurations: airborne particulate matter from exhaust sys- • Circular and rectangular venturi scrubbing tems, as well as flue and process gasses. Venturi throats Venturi Scrubber Scrubbers bring particulate–laden air streams Fixed and adjustable throat designs Applications together with water at high velocities to • • Eductor, ejector, and traditional venturi • Automotive manufacturing transfer the particulate into the water stream. throat designs The water droplets and particulates are then • High, medium, and low energy pressure • Glass manufacturing removed from the air stream through centrifu- drops • Machining operations gal separation and mist elimination stages. • Dual Throat Venturi Scrubber • Buffing & deburring • Wax spraying Discharge • Flame laminating Stack • Synthetic resin fines • Grease manufacturing • Explosive dust collection • Foundry dust & fumes Venturi Scrubber Chevron • Sludge dryer exhaust Cyclonic • Incineration processes Separator • Kiln exhaust scrubbing Fan • Frack sand & proppants Venturi Scrubber with • And many others Cyclonic Separator www.mon-env.com • [email protected] • Registered ISO 9001:2015 and ISO 14001:2015 • Venturi Scrubber for frac sand/proppant dust High pressure drop 80 in. W.C. fixed Venturi Scrubber and Cyclonic Separator for PM throat Venturi removal from dryer off–gas prior to RTO. Particulate Removal Monroe Environmental specializes in wet and dry particulate collection for a wide variety Monroe Venturi Air Scrubbers are currently op- of applications. The company’s first project in erating continuously at high efficiency in many the early 1970’s was a pilot venturi scrubbing types of industrial installations throughout the system designed to remove oil and particulate United States, Mexico, and Canada.
    [Show full text]
  • Removal of Particulates from Emissions of Joss Paper Furnaces
    Aerosol and Air Quality Research, 11: 429–436, 2011 Copyright © Taiwan Association for Aerosol Research ISSN: 1680-8584 print / 2071-1409 online doi: 10.4209/aaqr.2011.05.0062 Removal of Particulates from Emissions of Joss Paper Furnaces Yu-Yun Lo, I-Ching Wang, Meng-Lin Lee, Ming-Shean Chou* Institute of Environmental Engineering, National Sun Yat-sen University, 70 Lian-Hai Rd., Kaohsiung 80424, Taiwan, R.O.C. ABSTRACT In recent years, burning joss paper in temple furnaces has been noticed to be a significant cause for particulate emissions in Asia, especially in Taiwan. This study investigates feasible options of air pollution control devices (APCD) for joss paper furnaces in temples, and used a 40 kg/hr joss paper furnace for testing. This paper examined particulate removal efficiencies of two options: a bag house (capacity 30 m3/min at 108°C) and a wet scrubber (capacity 40 m3/min at 150°C). The results indicate that particulate matters (PM) in the diluted flue gas at the bag-house inlet were 76.6 ± 32.7 mg/Nm3 (average ± standard deviation), and those at the outlet of the bag-house could be reduced to as low as 0.55 ± 1.28 mg/Nm3. An average PM removal efficiency of 99.3% could be obtained with a filtration speed of approximately 2.0 m/min evaluated at 108°C. The wet scrubber removed approximately 70% of PM, with scrubbing intensities higher than 4.0 L/m2.s across the scrubber cross-section. For the duration of the experiment, no visual white smoke (water mist) was observed at the exit of the wet scrubber with a combustion rate of 16 kg/hr of joss paper, and the scrubbing water temperature was automatically sustained at lower than 61°C.
    [Show full text]
  • Section 5 SO2 and Acid Gas Controls
    Section 5 SO2 and Acid Gas Controls Chapter 1 Wet and Dry Scrubbers for Acid Gas Control John L. Sorrels Air Economics Group Health and Environmental Impacts Division Office of Air Quality Planning and Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711 Amanda Baynham, David D. Randall, Randall Laxton RTI International Research Triangle Park, NC 27709 April 2021 DISCLAIMER This document includes references to specific companies, trade names and commercial products. Mention of these companies and their products in this document is not intended to constitute an endorsement or recommendation by the U.S. Environmental Protection Agency. i Contents 1.1 Introduction ............................................................................................................................ 1 1.1.1 Process Description .................................................................................................... 2 1.1.2 Gas Absorber System Configurations ........................................................................ 2 1.1.3 Structural Design of Wet Absorption Equipment ...................................................... 5 1.1.4 Factors Affecting the Performance ............................................................................ 6 1.1.5 Structural Design of Dry Absorption Equipment ...................................................... 7 1.1.6 Equipment Life .......................................................................................................... 8 1.2 Flue Gas Desulfurization
    [Show full text]
  • Combustion Sources of Cdd/Cdf: Waste Incineration
    3. COMBUSTION SOURCES OF CDD/CDF: WASTE INCINERATION Incineration is the destruction of solid, liquid, or gaseous wastes through the application of heat within a controlled combustion system. The purposes of incineration are to reduce the volume of waste that needs land disposal and to reduce the toxicity of the waste, making it more sterile. In keeping with this definition, incinerator systems can be classified by the types of wastes incinerated: municipal solid waste incineration; medical and pathological waste incineration; hazardous waste incineration; sewage sludge incineration; tire incineration; and biogas flaring. Each of these types of incinerators are discussed in this chapter. The purposes of this chapter are to: characterize and describe waste incineration technologies in the United States and to derive estimates of annual releases of CDDs and CDFs into the atmosphere from these facilities for reference years 1987 and 1995. Combustion research has developed three theories on the mechanisms involved in the emission of CDDs and CDFs from combustion systems: (1) CDD/CDFs can be introduced into the combustor with the feed and pass through the system unchanged, (2) CDD/CDFs can be formed during combustion, or (3) CDD/CDFs can be formed via chemical reactions in the post-combustion portion of the system. The total CDD/CDF emissions are likely to be the net result of all three mechanisms; however, their relative importance is often uncertain. To the extent practical with the available data, the combustors in each source category were divided into classes judged to have similar emission factors. This classification effort attempted to reflect the emission mechanisms described above.
    [Show full text]
  • Mercury Removal in Packed Bed Wet Scrubber from Infectious Waste Incinerator
    วารสารวิชาการพระจอมเกลาพระนครเหนือ ปที่ 13 ฉบับที่ 4 ต.ค.-ธ.ค. 2546 The Journal of KMITNB., Vol.13, No.4, Oct - Dec 2003 Efficiency of Mercury Removal in Packed-Bed Wet Scrubber from Infectious Waste Incinerator Amornpon Changsuphan*, Somrat Kerdsuwan**, Vladimir N. Bashkin* Abstract environment, causing high risk of disease transmission and hence a myriad of health related problems, In the combustion process of infectious waste including such ailments as hepatitis, respiratory and incineration highly quantities of mercury and its parasitic diseases, or even Aides [1]. The department compounds occur in the combustion product during of Public Hygiene, Ministry of Public Health, which the incineration. A large number of different mercury oversees the disposal of infectious waste from compound can be formed and decomposed again due hospitals under the Ministry’s jurisdiction, has to the continuity charging composition of the flue gas. developed standard incinerator designs of 25, 50, and The packed-bed wet scrubber is recommended for 100 - 150 kg/hr capacities. These designs have been improving removal efficiency. The feed wastes for the distributed to the Hospitals so that they may undertake test experiments are composed of simulated waste to commission and manage their own infectious waste including plastic, cotton, rubber gloves and 1,000 ppb incineration facilities. Most of these incinerators have pure mercury per batch (5 kg of simulated wastes per now either depreciated or impaired, prompting the batch). Mercury is fed to the incinerator every 6-10 Department of Public Hygiene to start importing min., at optimum operating temperature and incinerators to replace the old ones. However, under combustion air during the incineration.
    [Show full text]
  • Design and Analysis of Venturi Scrubber H.A.Khandes.S.Dalvi,P.V.Agrawal, .P.Singh,A.Lokhande Mechanical Department,Savtribaiphule University
    © 2019 JETIR April 2019, Volume 6, Issue 4 www.jetir.org (ISSN-2349-5162) Design and Analysis of Venturi Scrubber H.A.KhandeS.S.Dalvi,P.V.Agrawal, .P.Singh,A.Lokhande Mechanical Department,SavtribaiPhule University Abstract- Scrubbers are attached to the exhaust system of manufacturing units of various industries. Scrubbers separate the flue gases, particulate matter from exhaust system. Clean gas is sent to environment in order to avoid environmental pollution. There are many types of scrubbers used depending on the requirements. Wet scrubbers of venturi type are used when particulate matter is present in flue gas. This paper gives information about hazards of pollution and role of scrubber in controlling it. This paper also gives background of scrubbers, its design procedure and analysis. Keywords-Venturi Scrubber, Particulate Matter (PM) I. Introduction In recent decades, the economic growth and the industrial development have been accompanied by an expansion of the urban area population and by the emergence of megacities. This rapid growth has resulted in a continuously increasing demand for shelter, resources, energy and utilities. At the same time urban emission of air pollutants has grown rapidly, leading to a worsening of the air quality both in the cities and in their surrounding areas. These latter, in particular, often concentrated in densely populated areas in the largest urban districts, may represent a significant source of emissions. According to the European Environment Agency, 90% of the urban population in Europe is exposed to pollutant levels above the threshold considered harmful by the World Health Organization (WHO), with a high cost in terms of health, safety and environmental damage.
    [Show full text]
  • Wet Scrubbers for Dry Dust? Absolutely
    February 2014 APC www.APCmag.net As appeared in Copyright CSC Publishing Wet Scrubbers for Dry Dust? Absolutely. Ron Hatton Sly Inc. quired design modifications needed on the scrub- Wet scrubbing in industrial processes sometimes ber, as there are with dry dust collectors. A dry col- can be an overlooked method for air pollution con- lector requires special grounding for the tubesheet trol. Whether the reasoning is reluctance to change and filter bags, along with the use of explosion from well-known, typical dry collection tech- vents or chemical suppression. These safety de- niques, concerns over handling dirty water, or sim- vices require periodic inspections and preventative ply being unaware that the technology is available maintenance to ensure that they function properly for an application, wet scrubbing is not typically at if an accident occurs. the forefront of engineers’ or process personnel’s Due to several tragic and fatal events in recent years, list of equipment for controlling plant emissions. the National Fire Protection Association (NFPA) and The purpose of this article is to highlight the bene- Occupational Safety and Health Administration fits and potential advantages of using a wet scrub- (OSHA) have broadened the application and tight- ber system. ened the enforcement of safety measures with regard to both plant housekeeping and equipment design. The increased safety requirements have been imple- mented to protect workers, plants, and equipment. et scrubbers can be used for controlling Although not all explosions occur inside dust con- exhaust from process equipment or as trol equipment, as happened in a housekeeping-re- nuisance collectors designed to address W lated explosion that occurred recently at a sugar housekeeping issues.
    [Show full text]
  • Venturi Scrubbers and the Big Bang Theory
    www.processingmagazine.com DECEMBER 2016 PROCESSING DECEMBER 2016 Filtration FEATURED PRODUCTs Colorimetric Analyzer The CA6 Colorimetric Analyzer from Electro-Chemical Devices provides accurate and reliable measurement of manganese or iron levels in municipal drinking water production, food and beverage processing, and other high-purity water processes. The analyzer is an on-line sequential sampling analyzer. A sequence of PROCESSINGMAGAZINE.com sampling, analysis and results processing is performed and repeated using colorimetric methods. Electro-Chemical Devices www.ecdi.com 502 TEMPERATURE MEASUREMENT SOLUTION Emerson Process Management introduces Rosemount X-well COVER STORY Technology, a surface-sensing, temperature measurement solu- PAGE 8 tion that eliminates the need for thermowell process penetration Breakthrough Products when measuring process temperatures in pipe applications. This solution provides accurate and repeatable internal process Meet the 10 influential temperature measurement, eliminating possible leak points and products from this year’s simplifying specification, installation and maintenance. competition, which rec- ognizes major innova- tion and incremental Emerson Process Management improvements in the www.emersonprocess.com process industries. 503 Serialization Unit Antares Vision’s Print & Check Flex Machine is a flexible, high-capacity serialization unit for WEB EXCLUSIVE maximizing the track-and-trace capabilities of large contract manufacturers. The unit is espe- cially suitable for contract packagers and
    [Show full text]
  • Advanced and Intensified Seawater Flue Gas Desulfurization Processes
    energies Review Advanced and Intensified Seawater Flue Gas Desulfurization Processes: Recent Developments and Improvements 1, , 1, 2 2 Nguyen Van Duc Long * y, Dong Young Lee y, Kim Myung Jin , Kwag Choongyong , Lee Young Mok 2, Lee Sung Won 2 and Moonyong Lee 1,* 1 School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Korea; [email protected] 2 Hanbal Masstech Ltd., Golden Root Complex, Gimhae 50969, Korea; [email protected] (K.M.J.); [email protected] (K.C.); [email protected] (L.Y.M.); [email protected] (L.S.W.) * Correspondence: [email protected] (N.V.D.L.); [email protected] (M.L.); Tel.: +82-53-810-3241 (N.V.D.L.); +82-53-810-2512 (M.L.) These two authors contributed equally to this work. y Received: 12 October 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: Seawater flue gas desulfurization (SWFGD) is considered to be a viable solution for coastal and naval applications; however, this process has several drawbacks, including its corrosive absorbent; low vapor loading capacity since the solubility of sulfur oxides (SOx) in seawater is lower than that of limestone used in conventional methods; high seawater flowrate; and large equipment size. This has prompted process industries to search for possible advanced and intensified configurations to enhance the performance of SWFGD processes to attain a higher vapor loading capacity, lower seawater flowrate, and smaller equipment size. This paper presents an overview of new developments as well as advanced and intensified configurations of SWFGD processes via process modifications such as modification and optimization of operating conditions, improvement of spray and vapor distributors, adding internal columns, using square or rectangular shape, using a pre-scrubber, multiple scrubber feed; process integration such as combined treatment of SOx and other gases, and waste heat recovery; and process intensification such as the use of electrified sprays, swirling gas flow, and rotating packed beds.
    [Show full text]
  • Crystal Industrial
    U AUTHORIZED Scrubbing System for Chemical, Fertilizer, Petrochemical, Refinery, Pharmaceutical and other Allied Industries www.crystalindustrial.in OVERVIEW OVERVIEW APPLICATIONS Scrubber Systems are globally used in industries for Application of Scrubbing Systems include removal of treatment of exhaust / vent gases and are an particulates, dust, odor from industrial exhaust / effective method in prevention of Air Pollution. The venting systems, or by-products, under continuous industrial exhaust / vent gases may also at times operation or emergency control systems of chemical, contain harmful particulates which may affect the fertilizer, petrochemical, refinery, pharmaceutical and environment / health of human beings. other allied industries. Traditional methods of Particulate Collectors for Air Exhaust systems treated consist of removal of Acid Mist, Pollution control such as Cyclones and Electrostatic Ammonia (NH3), Carbon Monoxide, Chlorine (Cl), Precipitators cannot efficiently absorb gases or Dimethyl Sulphate (DMS), Hydrochloric Acid (HCL), remove odor. Scrubbing Systems are now finding Hydrogen Sulphide (H2S), Oxides of Nitrogen, Sulphur preference compared to these traditional methods Dioxide (SO2), OxaHexaChloroxalence , Tri-Chorosylene , for treatment of industrial exhausts because of the and other industrial exhausts. economics and efficient method for removal of particulates and odors. PRODUCT RANGE Type of Scrubbing Systems regularly supplied by Depending upon the type of exhaust / vent gas Crystal for chemical, fertilizer,
    [Show full text]