The Flaw in Mathematics Mistakes Made in Infinite Set Theory More Than a Century Ago

Total Page:16

File Type:pdf, Size:1020Kb

The Flaw in Mathematics Mistakes Made in Infinite Set Theory More Than a Century Ago The Flaw in Mathematics Mistakes made in Infinite Set Theory more than a Century ago Pravin K. Johri Cantor’s set theory in the form of the axiomatic Zermelo-Fraenkel (ZFC) set theory is used in all areas of mathematics as a foundational basis for proving theorems. The object N = {1, 2, 3 …} is taken to be a completed, fixed, infinite set. It is really just an assumption, formulated as the axiom of infinity, and is simply based on faith that completed infinite entities exist. A fundamental mistake has already been made! The elements of N, the natural numbers, are all required to be finite and yet the size of N is taken to be an actual infinite quantity denoted as ℵ0 (aleph- null). Finite logic, which manipulates finite numbers, is used to prove properties of infinite objects without any specifics on how this finite logic extends to the actual infinite. This conflates finite with infinite. It is not clear what ℵ0 is, other than it is not a number, it is not finite, and it cannot be measured. A pure science, which should be concerned with numbers only, is now dabbling in ill-defined non-numbers. No wonder the rest of set theory is full of bizarre results, logic that defies common sense and is applied selectively to prove some results but not others, and many outright contradictions. 1 Natural and Real Numbers There is an endless sequence of finite natural numbers 1, 2, 3 … based on the Peano axioms that 1 is a natural number, and if n is a natural number then so is n+1 for all n. The real numbers satisfy the Field axioms. Field Axioms 0, 1 are real numbers and the following exist: A unique additive inverse -x for any real number x 0 -1 A unique multiplicative inverse x , for any real number x 0 Real numbers x + y and x * y, for every two real numbers x, y. Along with associative, commutative, and distributive properties. Both the Peano and the Field axioms dictate that if numbers exist then additional numbers exist as well. Neither the natural numbers nor the real numbers can be fully determined. There are always more numbers, and more, and yet more … Finite Sets A finite set is defined as a fixed collection of distinct objects. The size of a finite set is defined as the count of the objects in the set. A fancy term, cardinality, is used to denote size because, later on, some infinite sets will turn out to be uncountable. It is easy to construct mappings between sets as the elements of a finite set are indexed. Mappings are characterized as injective, surjective, and bijective which are all intuitive concepts. There is a single noteworthy theorem to equate the cardinality of two sets if one-to- one correspondence or a bijection can be established between them. A bijection is not necessary to show that two finite sets have the same size. One can simply count the objects in the two sets. It will be required with infinite sets. The best practical use of finite sets is in Venn diagrams. 2 Infinite Sets The same definition of a set as a fixed collection of distinct objects continues to apply. The sets N and R are the infinite sets of natural numbers and of real numbers, respectively. Wade [9] is a standard undergraduate textbook. It starts by implicitly assuming R is a set. “We shall denote the set of real numbers by R.” Rudin [8] is a standard graduate textbook. It also assumes without reservation that R is a set. “A field is a set S with two operations, called addition and multiplication, which satisfy the so-called field axioms.” “There exists an ordered field R … The members of R are called real numbers.” The two Notions of Infinity Aristotle’s abstract notion of a potential infinity is something without a bound and larger than any known number. The sequence of finite natural numbers 1, 2, 3 … is potentially infinite. A different concept of a completed actual infinity is used with infinite sets. It requires a new abstract notation – the “aleph” numbers to represent the sizes of infinite sets Excerpt from the Wikipedia page “Brouwer-Hilbert controversy” Cantor extended the intuitive notion of "the infinite" – one foot placed after the other in a never-ending march toward the horizon – to the notion of "a completed infinite" – the arrival "all the way, way out there" in one fell swoop, and he symbolized this [as] … ℵ0 (aleph-null). Excerpt from the Wikipedia page “Actual infinity” In the philosophy of mathematics, the abstraction of actual infinity involves the acceptance (if the axiom of infinity is included) of infinite entities, such as the set of all natural numbers or an infinite sequence of rational numbers, as given, actual, completed objects. This is contrasted with potential infinity, in which a non-terminating process (such as "add 1 to the previous number") produces a sequence with no last element, and each individual result is finite and is achieved in a finite number of steps. 3 Why must one “accept” N and R as completed infinite objects? What exactly is meant by “arrival all the way, way out there"? How can one “arrive” at ℵ0 if the natural numbers do not increase to ℵ0? Why isn’t completion defined precisely as in other areas of mathematics? The completion of a metric space is obtained by adding the limits to the Cauchy sequences. Can completion occur without a single modification to the potentially infinite, incomplete sequence 1, 2, 3 … inside the set N? Modern Mathematics Hilbert’s formalism or axiomatic approach is used in modern mathematics and results are established based on the core concepts: Precise definitions Logically correct arguments According to Quinn this “non-scientific approach” provides “unexpected bonuses”. Excerpts from Quinn [6] The breakthrough (in mathematics) was development of a system of rules and procedures that really worked, in the sense that, if they are followed very carefully, then arguments without rule violations give completely reliable conclusions. It became possible, for instance, to see that some intuitively outrageous things are nonetheless true. The definitions include the axioms. An axiom is a fancy word for a starting assumption which is taken to be valid and is not proven. In the past axioms had to be intuitive and also self- evident, but this is no longer required in modern mathematics. Axioms can be arbitrary in Hilbert’s formalism and they have to be stated up front. However, Cantor’s original “naïve” set theory resulted in paradoxes and new axioms were added in the “non-naïve” ZFC to rule out these anomalies, a clear violation of the concept of an axiom! The existence of infinite sets is cast as an axiom in modern mathematics. This is unfortunate. Axioms are not meant to institute as a fait accompli a proposition which otherwise is hard to establish and may even be wrong. 4 Axiom of Infinity There exists at least one infinite set namely the set N = {1, 2, 3 …}. The axiom of infinity is neither intuitive nor is it self-evident. In fact, it contradicts itself. The set N is considered a completed object even though the sequence of natural numbers inside it is incomplete. The Peano axioms cannot be resolved fully. They result in an endless non-fixed list of numbers which cannot be a fixed collection of distinct objects. Here is how Fraenkel describes the “actual” infinite set N = {1, 2, 3 …}. Excerpts from the Wikipedia page “Actual infinity” If the positive number n becomes infinitely great, the expression 1/n goes to naught (or gets infinitely small). In this sense one speaks of the improper or potential infinite. In sharp and clear contrast the set just considered is a readily finished, locked infinite set, fixed in itself, containing infinitely many exactly defined elements (the natural numbers) none more and none less. The set N is neither readily finished nor is it fixed in itself. There is no sharp and clear contrast, just a glaring self-contradiction. The natural numbers are all finite and yet the set of natural numbers is actually infinite. The natural numbers are called the counting numbers and they steadily increase in steps of 1. If there are infinitely many exactly defined elements then this cannot be true without there being an infinite counting number. But there isn’t one! The axiom of infinity conflates finite with nonfinite. This conflation is the reason behind the many “intuitively outrageous things” or contradictions. It allows finite logic, which doesn’t complete, to be used with infinite objects. Just assuming that N is a set and formulating it as the axiom of infinity does not make it true! 5 Cardinality of Infinite Sets An infinite set has nonfinite cardinality. It is no longer the count of the objects in the set. The same definition of a set applies to both finite and infinite sets. So, why is the size of an infinite set defined differently? There is a prescription in the concept of actual infinity that “infinity” is represented by an aleph (non)number, a bizarre concept. No one really knows what it means other than an Aleph number is not an ordinary number. It is confusing and wrong to call it a “number”. Ordinary numbers are used to count objects. It is “irrational” that sets such as N and R are made up of ordinary numbers and, yet, their count of elements cannot be such a number and, instead, has to be a non-number! A new way is required to compare the sizes of two infinite sets.
Recommended publications
  • The Modal Logic of Potential Infinity, with an Application to Free Choice
    The Modal Logic of Potential Infinity, With an Application to Free Choice Sequences Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Ethan Brauer, B.A. ∼6 6 Graduate Program in Philosophy The Ohio State University 2020 Dissertation Committee: Professor Stewart Shapiro, Co-adviser Professor Neil Tennant, Co-adviser Professor Chris Miller Professor Chris Pincock c Ethan Brauer, 2020 Abstract This dissertation is a study of potential infinity in mathematics and its contrast with actual infinity. Roughly, an actual infinity is a completed infinite totality. By contrast, a collection is potentially infinite when it is possible to expand it beyond any finite limit, despite not being a completed, actual infinite totality. The concept of potential infinity thus involves a notion of possibility. On this basis, recent progress has been made in giving an account of potential infinity using the resources of modal logic. Part I of this dissertation studies what the right modal logic is for reasoning about potential infinity. I begin Part I by rehearsing an argument|which is due to Linnebo and which I partially endorse|that the right modal logic is S4.2. Under this assumption, Linnebo has shown that a natural translation of non-modal first-order logic into modal first- order logic is sound and faithful. I argue that for the philosophical purposes at stake, the modal logic in question should be free and extend Linnebo's result to this setting. I then identify a limitation to the argument for S4.2 being the right modal logic for potential infinity.
    [Show full text]
  • Cantor on Infinity in Nature, Number, and the Divine Mind
    Cantor on Infinity in Nature, Number, and the Divine Mind Anne Newstead Abstract. The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristote- lian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian volunta- rist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Can- tor’s thought with reference to his main philosophical-mathematical treatise, the Grundlagen (1883) as well as with reference to his article, “Über die verschiedenen Standpunkte in bezug auf das aktuelle Unendliche” (“Concerning Various Perspec- tives on the Actual Infinite”) (1885). I. he Philosophical Reception of Cantor’s Ideas. Georg Cantor’s dis- covery of transfinite numbers was revolutionary. Bertrand Russell Tdescribed it thus: The mathematical theory of infinity may almost be said to begin with Cantor. The infinitesimal Calculus, though it cannot wholly dispense with infinity, has as few dealings with it as possible, and contrives to hide it away before facing the world Cantor has abandoned this cowardly policy, and has brought the skeleton out of its cupboard. He has been emboldened on this course by denying that it is a skeleton. Indeed, like many other skeletons, it was wholly dependent on its cupboard, and vanished in the light of day.1 1Bertrand Russell, The Principles of Mathematics (London: Routledge, 1992 [1903]), 304.
    [Show full text]
  • Leibniz and the Infinite
    Quaderns d’Història de l’Enginyeria volum xvi 2018 LEIBNIZ AND THE INFINITE Eberhard Knobloch [email protected] 1.-Introduction. On the 5th (15th) of September, 1695 Leibniz wrote to Vincentius Placcius: “But I have so many new insights in mathematics, so many thoughts in phi- losophy, so many other literary observations that I am often irresolutely at a loss which as I wish should not perish1”. Leibniz’s extraordinary creativity especially concerned his handling of the infinite in mathematics. He was not always consistent in this respect. This paper will try to shed new light on some difficulties of this subject mainly analysing his treatise On the arithmetical quadrature of the circle, the ellipse, and the hyperbola elaborated at the end of his Parisian sojourn. 2.- Infinitely small and infinite quantities. In the Parisian treatise Leibniz introduces the notion of infinitely small rather late. First of all he uses descriptions like: ad differentiam assignata quavis minorem sibi appropinquare (to approach each other up to a difference that is smaller than any assigned difference)2, differat quantitate minore quavis data (it differs by a quantity that is smaller than any given quantity)3, differentia data quantitate minor reddi potest (the difference can be made smaller than a 1 “Habeo vero tam multa nova in Mathematicis, tot cogitationes in Philosophicis, tot alias litterarias observationes, quas vellem non perire, ut saepe inter agenda anceps haeream.” (LEIBNIZ, since 1923: II, 3, 80). 2 LEIBNIZ (2016), 18. 3 Ibid., 20. 11 Eberhard Knobloch volum xvi 2018 given quantity)4. Such a difference or such a quantity necessarily is a variable quantity.
    [Show full text]
  • Insight Into Pupils' Understanding of Infinity In
    INSIGHT INTO PUPILS’ UNDERSTANDING OF INFINITY IN A GEOMETRICAL CONTEXT Darina Jirotková Graham Littler Charles University, Prague, CZ University of Derby, UK Abstract. School students’ intuitive concepts of infinity are gained from personal experiences and in many cases the tacit models built up by them are inconsistent. The paper describes and analyses a series of tasks which were developed to enable the researchers to look into the mental processes used by students when they are thinking about infinity and to help the students to clarify their thoughts on the topic. INTRODUCTION Students’ understanding of infinity is determined by life experiences, on the base of which they have developed tacit models of infinity in their minds. These tacit models (Fischbein, 2001) deal with repeated, everlasting processes, such as going on forever, continued sub-division etc. which are considered mathematically as potential infinity, or by the consideration of a sequence Boero et al (2003) called sequential infinity. Basic concepts of mathematical analysis are usually introduced through limiting processes, which also reinforces the idea of infinity as a process. However, the symbol � is used as a number when tasks about limits and some other concepts of mathematical analysis are solved. When we consider the historical development of infinity, philosophers and mathematicians were dealing with this concept only in its potential form for over 1500 years. Moreno and Waldegg (1991) noted how a grammatical analysis of the use of infinity could be applied to Greek culture. The Greeks used the word ‘infinity’ in a mathematical context only as an adverb, indicating an infinitely continuing action, which is an expression of potential infinity and it was not until 1877that actual infinity, expressed as a noun in mathematics, was defined by Cantor.
    [Show full text]
  • On Cantor's Uncountability Proofs
    The Meaning of Infinity W. Mückenheim University of Applied Sciences, Baumgartnerstraße 16, D-86161 Augsburg, Germany [email protected] ____________________________________________________________________ Abstract. The notions of potential infinity (understood as expressing a direction) and actual infinity (expressing a quantity) are investigated. It is shown that the notion of actual infinity is inconsistent, because the set of all (finite) natural numbers which it is ascribed to, cannot contain an actually infinite ¡0 number of elements. Further the basic inequality of transfinite set theory ¡0 < 2 is found invalid, and, consequently, the set of real numbers is proven denumerable by enumerating it. 1. Introduction Infinity has fascinated philosophers and mathematicians at all times. So it is not surprising that the ideas concerning this problem evolved quite differently, not only with respect to the fundamental question whether its meaning is a potential one or an actual one, but also with respect to the rules to be observed in the infinite. The fathers of calculus had to struggle with infinitely small quantities which, however, were not zero, so that bishop Berkeley ironically remarked: "They are neither finite quantities, nor quantities infinitely small, nor yet nothing. May we not call them the ghosts of departed quantities?" But more than the infinitely small, which could successfully be dealt with, at least in applying the calculus, the infinitely large resisted the human mind. While, according to Galilei, the infinite should obey another arithmetic than the finite, Leibniz, on the contrary, expected the rules of finite mathematics to remain valid in the infinite. It seems reasonable, to a certain degree, to maintain approved rules because (1) this method always has turned out fruitful in history of mathematics when numbers and notions had to be generalised, and because (2) we have no a priori knowledge or imagination of the actual infinite, so we would be helpless without relying to the firm rules of finite mathematics.
    [Show full text]
  • 11. How Large Is Infinity?
    General Questions 25 • last expression, you need to divide a by a sequence bn with limit 0. But when a bn goes to zero, could go to +∞, if bn > 0, or to –∞, if bn < 0, or not exist bn a at all if bn alternates. Therefore, the expression must remain undefined. 0 Mathematicians call expressions like this “indeterminate forms.” In some cases, they can be thought of as having a certain value, while in other cases, as having another value or none at all. 11. HOW LARGE IS INFINITY? The first real opportunity where even young children can experience a “sense of wonder” in a mathematical context is when they make the basic observation that counting never ends. Typically, children are fascinated by very large numbers, and so was the 9-year-old Milton Sirotta, who became famous for inventing the name googol for the number 10100 in 1920. Later on, his uncle, the mathematician Edward Kasner (1878–1955), wrote about this in a book Mathematics and the Imagination, and still later, other imagi- native young fellows named their company Google after the number googol to indicate the large amount of data handled by Internet search engines. Although the number googol is already unimaginably large, we can eas- ily think of even larger numbers, for example, googol + 1 or 10googol (which has been called googolplex), or even the factorial of googol, or googolgoogol. The process of generating larger numbers from any given number obviously has no end. Therefore, the set of integers certainly cannot be finite. If it were, then there would be a largest number, which is impossible, because for any given number we can immediately find a bigger one just by adding 1.
    [Show full text]
  • Leibniz's Mathematical and Philosophical Approaches
    STUDIES IN LOGIC, GRAMMAR AND RHETORIC 4 (17) 2001 Witold Marciszewski University of Bia lystok LEIBNIZ’S MATHEMATICAL AND PHILOSOPHICAL APPROACHES TO ACTUAL INFINITY A CASE OF CULTURAL RESISTANCE The notion of cultural resistance, as introduced by Raymond L. Wilder in his treatment of the history of mathematics, is a reliable guide in any pursuit of the history of ideas. A trouble which afflicts historians of ideas is that they find inconsistencies where a perfect logic is expected, to wit with great thinkers. However, after a while of reflexion, rather something contrary to that should be expected, if a cultural resistance is taken into account. Let us dwell a while on that phenomenon. 1. Creative thought and cultural resistance 1.1. Greatness of one’s creative thought consists in surpassing the bounds of that cultural system in which one happened to be born and to live. But even the greatest mind is no supernatural being that would be able to easily overcome such confines. There must ever arise a tension between the existing paradigm and the drive of new original visions being characteristic of a genuine philosopher. This is a struggle which cannot end without victims, that is, uncertainties, changes of mind, even inconsistencies in the output of any original thinker. Thus, what a philosopher’s contemporaries firmly believe has to affect his mind, even most original and bold. Moreover, not only the beliefs which a philosopher encounters in the time he lives modify his original vision. There is even a more important factor, namely the invincible ignorance shared by him with his contemporaries.
    [Show full text]
  • On Some Philosophical Aspects of the Background to Georg Cantor's
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences CS 5 | 2005 Fonder autrement les mathématiques On Some Philosophical Aspects of the Background to Georg Cantor’s theory of sets Christian Tapp Electronic version URL: http://journals.openedition.org/philosophiascientiae/386 DOI: 10.4000/philosophiascientiae.386 ISSN: 1775-4283 Publisher Éditions Kimé Printed version Date of publication: 1 August 2005 Number of pages: 157-173 ISBN: 2-84174-372-1 ISSN: 1281-2463 Electronic reference Christian Tapp, “On Some Philosophical Aspects of the Background to Georg Cantor’s theory of sets”, Philosophia Scientiæ [Online], CS 5 | 2005, Online since 01 August 2008, connection on 15 January 2021. URL: http://journals.openedition.org/philosophiascientiae/386 ; DOI: https://doi.org/10.4000/ philosophiascientiae.386 Tous droits réservés On Some Philosophical Aspects of the Background to Georg Cantor’s theory of sets∗ Christian Tapp Résumé : Georg Cantor a cherché à assurer les fondements de sa théorie des ensembles. Cet article présente les différentiations cantoriennes concernant la notion d’infinité et une perspective historique de l’émergence de sa notion d’ensemble. Abstract: Georg Cantor sought secure foundations for his set theory. This article presents an account of Cantor’s differentiations concerning the notion of infinity and a tentative historical parsepctive on his notion of set. ∗I am indebted to Joseph W. Dauben for his helpful advise. — Comments to the author are welcome. Philosophia Scientiæ, cahier spécial 5, 2005, 157–173. 158 Christian Tapp 1Introduction Historical accounts of the life and work of Georg Cantor (1845-1918) have generally focused chiefly on his mathematical creations, i.
    [Show full text]
  • Actual Infinity and Human Imagination Conceptual Metaphor and the Cognitive Foundations of Mathematics: Actual Infinity and Human Imagination*
    Conceptual Metaphor and the Cognitive Foundations of Mathematics: Actual Infinity and Human Imagination Conceptual Metaphor and the Cognitive Foundations of Mathematics: Actual Infinity and Human Imagination* Rafael E. Núñez Department of Cognitive Science, University of California, San Diego, USA [email protected] The Infinite is one of the most intriguing ideas in which the human mind has ever engaged. Full of paradoxes and controversies, it has raised fundamental issues in domains as diverse and profound as theology, physics, and philosophy. The infinite, an elusive and counterintuitive idea, has even played a central role in defining mathematics, a fundamental field of human intellectual inquiry characterized by precision, certainty, objectivity, and effectiveness in modeling our real finite world. Particularly rich is the notion of actual infinity, that is, infinity seen as a “completed,” “realized” entity. This powerful notion has become so pervasive and fruitful in mathematics that if we decide to abolish it, most of mathematics as we know it would simply disappear, from infinitesimal calculus, to projective geometry, to set theory, to mention only a few. From the point of view of cognitive science, conceptual analysis, and cognitive semantics, the study of mathematics, and of infinity in particular, raises several intriguing questions: How do we grasp the infinite if, after all, our bodies are finite, and so are our experiences and everything we encounter with our bodies? Where does then the infinite come from? What cognitive mechanisms make it possible? How does an elusive and paradoxical idea such as the infinite structure an objective and precise field such as mathematics? Why do the various forms of infinities in mathematics have the exact conceptual structure they have? These, of course, are not simple questions.
    [Show full text]
  • Arxiv:1711.01603V1 [Math.HO] 5 Nov 2017 Bolzano's Infinite Quantities
    Bolzano’s Infinite Quantities Katerinaˇ Trlifajova´ November 7, 2017 Abstract In his Foundations of a General Theory of Manifolds, Georg Cantor praised Bernard Bolzano as a clear defender of actual infinity who had the courage to work with infinite numbers. At the same time, he sharply crit- icized the way Bolzano dealt with them. Cantor’s concept was based on the existence of a one-to-one correspondence, while Bolzano insisted on Euclid’s Axiom of the whole being greater than a part. Cantor’s set the- ory has eventually prevailed, and became a formal basis of contemporary mathematics, while Bolzano’s approach is generally considered a step in the wrong direction. In the present paper, we demonstrate that a fragment of Bolzano’s theory of infinite quantities retaining the part-whole principle can be extended to a consistent mathematical structure. It can be interpreted in several possible ways. We obtain either a linearly ordered ring of finite and infinitely great quantities, or a a partially ordered ring containing infinitely small, finite and infinitely great quantities. These structures can be used as a basis of the infinitesimal calculus similarly as in Non-standard Analysis, whether in its full version employing ultrafilters due to Abraham Robinson, or in the recent “cheap version” avoiding ultrafilters due to Terrence Tao. arXiv:1711.01603v1 [math.HO] 5 Nov 2017 1 Introduction 1.1 Existence of an actual infinity There are two major questions that anyone dealing with actual infinity has to ad- dress: 1. Is there any actual infinity? 2. If so, are there multiple infinities? How can we compare them? 1 An answer to the first question has been sought by many eminent thinkers, philosophers and mathematicians, starting from Aristotle, who formulated the question, to Cantor (Sebest´ıkˇ 1992).
    [Show full text]
  • Beyond Infinity: Georg Cantor and Leopold Kronecker's Dispute Over
    Beyond Infinity: Georg Cantor and Leopold Kronecker's Dispute over Transfinite Numbers Author: Patrick Hatfield Carey Persistent link: http://hdl.handle.net/2345/481 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2005 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College College of Arts and Sciences (Honors Program) Philosophy Department Advisor: Professor Patrick Byrne BEYOND INFINITY : Georg Cantor and Leopold Kronecker’s Dispute over Transfinite Numbers A Senior Honors Thesis by PATRICK CAREY May, 2005 Carey 2 Preface In the past four years , I have devoted a significant amount of time to the study of mathematics and philosophy. Since I was quite young, toying with mathematical abstractions interested me greatly , and , after I was introduced to the abstract realities of philosophy four years ago, I could not avoid pursuing it as well. As my interest in these abstract fields strengthened, I noticed myself focusing on the ‘big picture. ’ However, it was not until this past year that I discovered the natural apex of my studies. While reading a book on David Hilbert 1, I found myself fascinated with one facet of Hi lbert’s life and works in particular: his interest and admiration for the concept of ‘actual’ infinit y developed by Georg Cantor. After all, what ‘big ger picture’ is there than infinity? From there, and on the strong encouragement of my thesis advisor—Professor Patrick Byrne of the philosophy department at Boston College —the topic of my thesis formed naturally . The combination of my interest in the in finite and desire to write a philosophy thesis with a mathemati cal tilt led me inevitably to the incredibly significant philosophical dispute between two men with distinct views on the role of infinity in mathematics: Georg Cantor and Leopold Kronecker.
    [Show full text]
  • The Constructs of Phd Students About Infinity: an Application of Repertory Grids
    The Mathematics Enthusiast Volume 7 Number 1 Article 9 1-2010 The Constructs of PhD Students about Infinity: An Application of Repertory Grids Serdar Aztekin Ahmet Arikan Bharath Sriraman Follow this and additional works at: https://scholarworks.umt.edu/tme Part of the Mathematics Commons Let us know how access to this document benefits ou.y Recommended Citation Aztekin, Serdar; Arikan, Ahmet; and Sriraman, Bharath (2010) "The Constructs of PhD Students about Infinity: An Application of Repertory Grids," The Mathematics Enthusiast: Vol. 7 : No. 1 , Article 9. Available at: https://scholarworks.umt.edu/tme/vol7/iss1/9 This Article is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in The Mathematics Enthusiast by an authorized editor of ScholarWorks at University of Montana. For more information, please contact [email protected]. TMME, vol7, no.1, p .149 The Constructs of PhD Students about Infinity: An Application of Repertory Gridsi ii Serdar Aztekin1 Turkish Republic Ministry of National Education General Directorate of Educational Technologies Campus Ahmet Arikan Gazi University, Turkey Bharath Sriraman The University of Montana Abstract: Infinity has been one of the more difficult concepts for humanity to grasp. A major component of the research on mathematics education related to infinity has been the study of student’s conceptions and reasoning about calculus subjects, particularly limits and series. Some related studies are about Cantor’s ordinal and cardinal infinity. However since most students at the high school and college level are unfamiliar with symbolic representations and terminology, such as a set theoretic approach, a context (generally geometric) is used for investigating notions of infinity indirectly.
    [Show full text]