Takingthe Bait
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pacific Herring
THE MULTITUDINOUS PACIFIC HERRING by D. N. OUTRAM FISHERIES RESEARCH BOARD OF CANADA BIOLOGICAL STATION, NANAIMO, B. C. CIRCULAR NO. 6 3^*u DECEMBER, 1961 COVER PHOTOGRAPH: A mountain of herring covers the storage bin area of the reduction plant at Imperial Cannery, Steveston, B„ C„, awaiting processing into fish meal and oil. Photographs by Mr. C. Morley. THE MULTITUDINOUS PACIFIC HERRING . Vast Shoals of Protein-Rich Herring Rove the Temperate Coastal Waters Along Canada's Western Seabord N V By Donald N, Outram y ^v- _•• HISTORICAL BACKGROUND annually. While this fishery is. Fabulous numbers of herring first in landed weight and second (Fig. l) are found along the sea- to salmon in landed value, it is washed shores of Canada's most wes only worth about one-quarter as much terly province, Their migrations, as the salmon catch. their sudden abundance and their Fluctuations in the world price straggle to survive is an exciting of fish meal and oil cause the market study. Undoubtedly, herring were one value at about ten million dollars to of the first coastal fishes to be vary from year to year, utilized by man. In northern Europe, FISHING FOR HERRING particularly, they have been a source The British Columbia herring of food since before written history. fishery is a highly organized opera Herring and herring roe have been an tion utilizing modern shore plants and article of food or barter of the efficient fishing vessels . The seventy- coastal Indian tribes of British Col to eighty-foot long seine boats are umbia for ma.ny centuries, They were equipped with the very latest electronic not fished, however, on a commercial fish-detecting equipment, enabling the basis until 1877 when 75 tons were fishermen to "see" the shoals before caught. -
IMR/PINRO Nr. 2
IMR/PINRO J O 2 S I E N I T 2013 R E R E S P O R T $WODVRIWKH%DUHQWV6HDÀVKHV based on the winter survey Institute of Marine Research - IMR Polar Research Institute of Marine Fisheries and Oceanography - PINRO This report should be cited as: Wienerroither R., Johannesen E., Dolgov A., Byrkjedal I., Aglen A., Bjelland O., Drevetnyak K., Eriksen KB., Høines Å., Langhelle G., Langøy H., Murashko P., Prokhorova T., Prozorkevich D., Smirnov O., Wenneck T. 2013. 2013. Atlas of the Barents Sea Fishes based on the winter survey. IMR-PINRO Joint Report Series 2-2013. ISSN 1502-8828. 220 pp. Atlas of the Barents Sea Fishes based on the winter survey Authors: Rupert Wienerroither, Edda Johannesen, Herdis Langøy, Kirsti Børve Eriksen, Thomas de Lange Wenneck, Åge Høines, Otte Bjelland and Asgeir Aglen IMR Andrey Dolgov, Tatiana Prokhorova, Pavel Murashko, Dmitry Prozorkevich, Konstantin Drevetnyak and Oleg Smirnov PINRO Ingvar Byrkjedal and Gunnar Langhelle University Museum of Bergen Foreword This report is intended as a supplement to the “Atlas of the Barents Sea Fishes” (Wienerroither et al. 2011). The data used in the “Atlas of the Barents Sea Fishes” were gathered on the IMR-PINRO ecosystem survey (2004-2009). The maps presented in this supplement are based on data from February-March 2007-2012 that are gathered on the joint IMR PINRO winter survey. Differences between the two surveys and seasons and how these influence the spatial distributions presented in the maps are described in the introduction. The species descriptions are the same as in and the structure of this report is similar to the “Atlas of the Barents Sea Fishes”. -
What Are the Sustainable Development Goals?
MODULE 1: What are the Sustainable Development Goals? Youth Workers 4 Global Goals CAPACITY BUILDING IN THE FIELD OF YOUTH This project has been funded with support from the European Commission. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Module 1: What are the Sustainable Development Goals? Introduction ................................................................................................................ 2 I. What is Sustainable Development?.……………….…………….……………….....………………….3 Sustainability ............................................................................................................... 3 Development……………………………………………………………………………………………………….…..6 Sustainable development . ........................................................................................... 8 II. What are the Sustainable Development Goals (SDGs)? ......................................... 13 The Millennium Development Goals .......................................................................... 13 The Sustainable Development Goals ......................................................................... 15 1 INTRODUCTION In September 2015, the leaders of all 193 member states of the UN adopted Agenda 2030, a universal agenda that contains the Global Goals for Sustainable Development. The 17 Goals in turn hold 169 targets and 230 indicators. The Global Goals is the most ambitious agreement for sustainable development -
Atlantic Herring
Species Profile: Atlantic Herring New Stock Assessment Could Lead to Species Snapshot Management Changes Introduction Atlantic Herring Until recently, the Atlantic herring stock had been considered healthy and fully rebuilt from a Clupea harengus collapsed stock in the 1980s. However, the results of the 2018 benchmark stock assessment have raised new concerns about the Atlantic herring resource. While the stock remains not Management Unit: Maine through New Jersey overfished and was not experiencing overfishing in the terminal year (2017) of the assess- ment, the assessment did show very low levels of recruitment over the past five years. These Common Names: Sea herring, sardine, sild, results will likely have management implications for the species as regulators work to prevent common herring, Labrador herring, sperling overfishing from occurring in the coming years. Diminished stock size and, in turn, lowered catch limits will also impact fisheries that rely on Atlantic herring as an important source of Interesting Facts: bait, such as American lobster, blue crab, tuna, and striped bass fisheries. • Atlantic herring and other clupeid fish have exceptional hearing. They can detect sound Life History frequencies up to 40 kilohertz, beyond the Atlantic sea herring is one of 200 species in the clupeid family, which includes menhaden, range of most fish. This allows schooling fish shad, and river herring. It inhabits coastal waters of the U.S. from Cape Hatteras, North Caro- to communicate while avoiding detection by lina through Labrador, Canada, and off the coast of Europe. Herring form the base of the food predatory fish. web as a forage species for many animals, from starfish and whelk to economically import- • While most members of the clupeid family are ant fish such as haddock, cod, and flounder. -
Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-Rich, Geothermal Spring 2 3 Lewis M
bioRxiv preprint doi: https://doi.org/10.1101/428698; this version posted September 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Thermophilic Lithotrophy and Phototrophy in an Intertidal, Iron-rich, Geothermal Spring 2 3 Lewis M. Ward1,2,3*, Airi Idei4, Mayuko Nakagawa2,5, Yuichiro Ueno2,5,6, Woodward W. 4 Fischer3, Shawn E. McGlynn2* 5 6 1. Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138 USA 7 2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan 8 3. Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 9 91125 USA 10 4. Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, 11 Japan 12 5. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, 13 152-8551, Japan 14 6. Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth 15 Science and Technology, Natsushima-cho, Yokosuka 237-0061, Japan 16 Correspondence: [email protected] or [email protected] 17 18 Abstract 19 Hydrothermal systems, including terrestrial hot springs, contain diverse and systematic 20 arrays of geochemical conditions that vary over short spatial scales due to progressive interaction 21 between the reducing hydrothermal fluids, the oxygenated atmosphere, and in some cases 22 seawater. At Jinata Onsen, on Shikinejima Island, Japan, an intertidal, anoxic, iron- and 23 hydrogen-rich hot spring mixes with the oxygenated atmosphere and sulfate-rich seawater over 24 short spatial scales, creating an enormous range of redox environments over a distance ~10 m. -
Global Biomass Production Potentials Exceed Expected Future Demand Without the Need for Cropland Expansion
ARTICLE Received 24 Jul 2015 | Accepted 20 Oct 2015 | Published 12 Nov 2015 DOI: 10.1038/ncomms9946 OPEN Global biomass production potentials exceed expected future demand without the need for cropland expansion Wolfram Mauser1, Gernot Klepper2, Florian Zabel1, Ruth Delzeit2, Tobias Hank1, Birgitta Putzenlechner1 & Alvaro Calzadilla2 Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today’s cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers’ profit. By explicitly considering these two factors we show that, without expansion of cropland, today’s global biomass potentials substantially exceed pre- vious estimates and even 2050s’ demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification. 1 Department of Geography, Ludwig-Maximilians-University, Luisenstr. 37, 80333 Munich, Germany. 2 Kiel Institute for the World Economy, Kiellinie 66, 24105 Kiel, Germany. Correspondence and requests for materials should be addressed to W.M. (email: [email protected]). NATURE COMMUNICATIONS | 6:8946 | DOI: 10.1038/ncomms9946 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9946 lobal demand for biomass-based products will increase crop rotation patterns and the risk aversion of farmers in over the next decades. -
1969 Compassion and Care
Justice Holmes • Inflammation • Harry Widener MAY-JUNE 2019 • $4.95 Compassion 1969 and Care Physician-Poet Rafael Campo Reprinted from Harvard Magazine. For more information, contact Harvard Magazine, Inc. at 617-495-5746 May 2019 Dear Reader, In 1898, an association of Harvard graduates established the Harvard Alumni Bulletin, “to give selected and summarized Harvard news to graduates who want it” and “to serve as a medium for publishing promptly all notices and announcements of interest to graduates.” members and students extend the limits of discovery and human understanding—in service to an ever more far- ung, diverse group of alumni around the globe. Today, nearly a century and a quarter later, the name has changed, to Harvard Magazine (as have the look and contents), but the founding Your Harvard Magazine can capture alumni voices (see the letters responding to the March-April principles have not: feature on the events of April 1969, beginning on page 4 of this issue), dive deep into critical research (read the feature on the scientists exploring in ammation, and how their work contributes • e magazine exists to serve the interests of its readers (now including all University to understanding disease, on page 46), and keep you current on the critical issues facing higher alumni, faculty, and sta )—not any other agenda. education on campus and around the world (see John Harvard’s Journal, beginning on page 18). • Readers’ support is the most important underpinning of this commitment to high- Your contribution underwrites the journalism you are reading now, the expanded coverage quality, editorially independent journalism on readers’ behalf. -
Health Effects of Nutrients and Environmental Pollutants in Baltic Herring and Salmon: a Quantitative Beneft-Risk Assessment
Health effects of nutrients and environmental pollutants in Baltic herring and salmon: a quantitative benet-risk assessment Jouni T Tuomisto ( jouni.tuomisto@thl. ) Terveyden ja hyvinvoinnin laitos https://orcid.org/0000-0002-9988-1762 Arja Asikainen Terveyden ja hyvinvoinnin laitos Päivi Meriläinen Terveyden ja hyvinvoinnin laitos Päivi Haapasaari Helsingin Yliopisto Research article Keywords: Fish consumption, dioxins, methylmercury, benet-risk assessment, health impact, sperm concentration, Baltic Sea, knowledge crystal, food recommendation, European Food Safety Authority EFSA. Posted Date: December 16th, 2019 DOI: https://doi.org/10.21203/rs.2.16019/v4 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on January 15th, 2020. See the published version at https://doi.org/10.1186/s12889- 019-8094-1. Page 1/24 Abstract Background Health risks linked with dioxin in sh remain a complex policy issue. Fatty Baltic sh contain persistent pollutants, but they are otherwise healthy food. We studied the health benets and risks associated with Baltic herring and salmon in four countries to identify critical uncertainties and to facilitate an evidence-based discussion. Methods We performed an online survey investigating consumers' sh consumption and its motivation in Denmark, Estonia, Finland, and Sweden. Dioxin and methylmercury concentrations were estimated based on Finnish studies. Exposure-response functions for several health endpoints were evaluated and quantied based on the scientic literature. We also quantied the infertility risk of men based on a recent European risk assessment estimating childhood dioxin exposure and its effect on sperm concentration later in life. -
Atlantic Herring Atlantic
Atlantic herring Clupea harengus Image ©Scandinavian Fishing Yearbook / www.scandfish.com Atlantic Midwater trawl, Purse Seine November 17, 2014 Lindsey Feldman, Consulting researcher Disclaimer Seafood Watch® strives to have all Seafood Reports reviewed for accuracy and completeness by external scientists with expertise in ecology, fisheries science and aquaculture. Scientific review, however, does not constitute an endorsement of the Seafood Watch® program or its recommendations on the part of the reviewing scientists. Seafood Watch® is solely responsible for the conclusions reached in this report. 2 About Seafood Watch® Monterey Bay Aquarium’s Seafood Watch® program evaluates the ecological sustainability of wild- caught and farmed seafood commonly found in the United States marketplace. Seafood Watch® defines sustainable seafood as originating from sources, whether wild-caught or farmed, which can maintain or increase production in the long-term without jeopardizing the structure or function of affected ecosystems. Seafood Watch® makes its science-based recommendations available to the public in the form of regional pocket guides that can be downloaded from www.seafoodwatch.org. The program’s goals are to raise awareness of important ocean conservation issues and empower seafood consumers and businesses to make choices for healthy oceans. Each sustainability recommendation on the regional pocket guides is supported by a Seafood Report. Each report synthesizes and analyzes the most current ecological, fisheries and ecosystem science on a species, then evaluates this information against the program’s conservation ethic to arrive at a recommendation of “Best Choices,” “Good Alternatives” or “Avoid.” The detailed evaluation methodology is available upon request. In producing the Seafood Reports, Seafood Watch® seeks out research published in academic, peer-reviewed journals whenever possible. -
Implementing Sustainable Forest Management Using Six Concepts In
Journal of Sustainable Forestry, 29:79–108, 2010 Copyright © Taylor & Francis Group, LLC ISSN: 1054-9811 print/1540-756X online DOI: 10.1080/10549810903463494 WJSF1054-98111540-756XJournalImplementing of Sustainable Forestry,Forestry Vol. 29, No. 1, January-March 2009: pp. 0–0 Sustainable Forest Management Using Six Concepts in an Adaptive Management Framework ForestB. C. Foster in an etAdaptive al. Management Framework BRYAN C. FOSTER1, DEANE WANG1, WILLIAM S. KEETON1, and MARK S. ASHTON2 1Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA 2School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA Certification and principles, criteria and indicators (PCI) describe desired ends for sustainable forest management (SFM) but do not address potential means to achieve those ends. As a result, forest owners and managers participating in certification and employing PCI as tools to achieving SFM may be doing so inefficiently: achiev- ing results by trial-and-error rather than by targeted management practices; dispersing resources away from priority objectives; and passively monitoring outcomes rather than actively establishing quantitative goals. In this literature review, we propose six con- cepts to guide SFM implementation. These concepts include: Best Management Practices (BMPs)/Reduced Impact Logging (RIL), biodiversity conservation, forest protection, multi-scale planning, participatory forestry, and sustained forest production. We place Downloaded By: [Keeton, W. S.] At: 16:17 8 March 2010 these concepts within an iterative decision-making framework of planning, implementation, and assessment, and provide brief definitions of and practices delimited by each concept. A case study describing SFM in the neo-tropics illustrates a potential application of our six concepts. -
Atlantic Herring (Clupea Harengus)
European market observatory for fisheries and aquaculture products SPECIES PROFILE: ATLANTIC HERRING ATLANTIC HERRING (CLUPEA HARENGUS) BIOLOGY AND HABITAT • Species description (Read more) The Atlantic herring belongs to the family of Clupeidae. • Geographical distribution and habitat (Read more) The Atlantic herring lives in the North-East Atlantic (from Norwegian waters in the North to the Bay of Biscay in the South) and in the North-West Atlantic (from Greenland to South Carolina in the USA). RESOURCE, EXPLOITATION AND MANAGEMENT • Stocks and resource status/conservation measures (Read more) Minimum conservation sizes are: 18 cm of total length in Skagerrak and Kattegat and 20 cm in other fishing areas. • Production methods and fishing gears (Read more) The main fishing gears used are gillnets and similar nets, pots and traps, seines and trawls. Source : Information system on commercial designations European market observatory for fisheries and aquaculture products SPECIES PROFILE Atlantic herring CATCHES • The share of Atlantic herring in the global catches is 1,8% (FAO, 2018). • During the last decade (2009-2018), Atlantic herring catches have decreased by -28% at global level (related to the decrease of catches in Iceland by -63% over the same period) but have significantly increased at EU level (+64%). Evolution of world catches Others Norway EU-28 Catches (2018, 1.000 tonnes) 909 43 EU-28 3 771 90 Norway 579 512 453 94 646 593 497 448 430 99 Iceland 498 124 1 077 352 527 870 Canada 924 611 507 407 313 633 1.000 1.000 tonnes Faroe Islands 840 870 498 661 716 726 769 777 Russian 531 509 507 Federation USA 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Source: FAO Evolution of EU catches • In 2018, the EU provided 48% of the global Atlantic herring catches (vs. -
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc.