Connectivity and Exploitation of Acanthurus Triostegus

Total Page:16

File Type:pdf, Size:1020Kb

Connectivity and Exploitation of Acanthurus Triostegus Connectivity and exploitation of Acanthurus triostegus and Acanthurus leucosternon in the Indian Ocean: Application of genetics and single stock assessment to aid coral reef management A dissertation submitted by Levy Michael Otwoma to the Faculty 2 (Biology and Chemistry) University of Bremen, in partial fulfillment of the requirements for the degree of Doctor of Natural Sciences (Dr. rer. nat), September 2018, Bremen i This thesis was conducted between April 2015 and September 2018 at the Leibniz Centre for Tropical Marine Research (ZMT) in Bremen, Germany Examination committee 1. Reviewer: Prof. Dr. Martin Zimmer University of Bremen, Germany Leibniz Centre for Tropical Marine Research (ZMT), Bremen 2. Reviewer: PD. Dr. Hauke Reuter University of Bremen, Germany Leibniz Centre for Tropical Marine Research (ZMT), Bremen Additional examiners 1. Examiner: Prof. Dr. Wilhelm Hagen University of Bremen, Germany 2. Examiner: Dr. Achim Meyer Leibniz Centre for Tropical Marine Research (ZMT) Attending students 1. Rebecca Borges Ph.D. student at the Leibniz Centre for Tropical Marine Research University of Bremen, Germany 2. Anna Feuring Masters Student (Marine Biology), University of Bremen ii Abstract Extrinsic/abiotic and intrinsic/biotic factors can influence the connectivity and exploitation of reef fish. Coral reef fish from the genus Acanthurus have evolved different life history characteristics that can affect their connectivity and exploitation. The aim of this thesis is to explore the population genetic structure and growth parameters of Acanthurus triostegus and Acanthurus leucosternon in the Indian Ocean, to determine the influence of biotic and abiotic factors on the connectivity and exploitation of coral reef species. First, a 491bp fragment of cytochrome b and microsatellite loci was used to show that the long pelagic larval duration of acanthurids can confer widespread genetic connectivity to A. leucosternon in the Eastern Africa region. Although the global AMOVA (Analysis of Molecular Variance) involving all A. leucosternon Eastern African population is significant, the hierarchical AMOVA and STRUCTURE does not show any genetic breaks consistent with known Eastern African oceanographic and biogeographical barriers to dispersal. Second, a mitochondrial DNA fragment spanning the ATPase8 and ATPase6 gene regions is used to demonstrate that the genetic differentiation of A. triostegus is correlated with geographic distance throughout the Indo-Pacific. In addition, this study shows that populations of A. triostegus are significantly differentiated in the Indian Ocean (Western Indian Ocean and East Indian Ocean), but not in the Pacific Ocean (West, Central, and East Pacific). Third, using syntopic sampling of the spawning aggregating A. triostegus and monogamous pairing A. leucosternon this study determined the influence of mating behaviour on the connectivity of these two Acanthurus species. Contrary to expectations, DAPC (discriminant analysis of principal components), hierarchical AMOVA, and pairwise comparisons showed that the divergent mating behaviour does not lead to differences in the connectivity patterns of A. leucosternon and A. triostegus, but the two species experienced differences in their demographic history. A detailed analysis in BEAST (Bayesian Evolutionary analysis Sampling Trees) showed iii that A. leucosternon which is often restricted to coral reef habitats had a faster and more recent demographic expansion than the habitat generalist A. triostegus. Finally, the growth parameters and mortality of A. triostegus and A. leucosternon were estimated, to determine whether differences in mating behaviour can lead to differences in exploitation rate. Consistent with expectations, the length-based stock assessment showed that the A. triostegus, the species that often forms spawning aggregation has a higher exploitation rate than the monogamous pairing A. leucosternon, supporting previous studies indicating that spawning aggregation may increase the susceptibility of coral reef fish to fishing. iv Zusammenfassung Extrinsische/abiotische und intrinsische biotische Faktoren können die Konnektivität und Nutzung von Rifffischen beeinflussen. Die Konnektivität und Nutzung von Doktorfischen der Gattung Acanthurus wird durch verschiedene biologische Merkmale und ihren Lebenszyclus bestimmt. Ziel dieser Arbeit ist es die Populationsstruktur und Wachstumsparameter von Acanthurus triostegus und Acanthurus leucosternon im Indischen Ozean zu ermitteln, um den jeweiligen Einfluß der biotischen und abiotischen Faktoren auf Korallenriff Organismen festzustellen. Zunächst wurde mit einem 491bp großen Fragment der Cytochrome b Oxidase und genomischen Mikrosatelliten gezeigt, dass die lange pelagische Larvalphase A. leucosternon eine weitreichende genetische Konnektivität in der Ostafrikanischen Region verleiht. Obwohl die globale Analyse der molekularen Varianz (AMOVA) in der Ostafrikanischen Population von A. leucosternon signifikant ist, konnte mit der hierarchischen AMOVA und dem Programm STRUCTURE keine genetische Trennlinie gefunden werden, die mit bekannten ozeanographischen oder biogeographischen Verbreitungsgrenzen im Einklang steht. Zweitens zeigt das mitochondrielle Fragment der Gene ATPase8 und ATPase6, dass die genetische Differenzierung bei A. triostegus mit der geographischen Distanz im Indopazifik korreliert. Zusätzlich wird gezeigt dass A. triostegus im Indischen Ozean (westlichen und östlichen Indischen Ozean) signifikant differenziert ist, im Gegensatz zu der Population im Pazifischen Ozean (West-, Zentral- und Ost-Pazifik). Drittends wurde durch ein syntopes Sampeln des in Gruppen laichenden A. triostegus und des paarlaichenden A. leucosternon der Einfluß des unterschiedlichen Paarungsverhaltens auf die Konnektivität dieser beiden Acanthurus Arten untersucht. Entgegen der Erwartungen konnte weder die DAPC (discriminant analysis of principal components), hierarchische AMOVA oder v paarweise Vergleiche Unterschiede der genetischen Konnektivität bei A. triostegus und A. leucosternon aufzeigen, aber die beiden Arten weisen Unterschiede in ihrer demographischen Entwicklung auf. Eine genaue Analyse in BEAST (Bayesian Evolutionary Analysis Sampling Trees) zeigte, dass A. leucosternon, dessen Vorkommen auf Korallenriffe beschränkt ist, eine jüngere und schnellere demographische Expansion aufweist als der Generalist A. triostegus. Zum Abschluss wurden Wachstumsparameter und Mortalität von A. triostegus und A. leucosternon bestimmt um festzustellen, ob die Unterschiede im Paarungsverhalten zu Unterschieden in Nutzungsraten führen. In Übereinstimmung mit den Erwartungen zeigte A. triostegus bei der längenbasierten Bestandsabschätzung eine stärkere Befischung als der paarbildende A. leucosternon. Dieses Ergebnis steht im Einklang mit früheren Studien die darauf hindeuten, dass in Gruppen laichende Korallenfische einer stärkeren Nutzung ausgesetzt sind. vi Contents Abstract ......................................................................................................................................................... iii Zusammenfassung .......................................................................................................................................... v Table of figures .............................................................................................................................................. x List of tables .................................................................................................................................................. xi 1. CHAPTER - General introduction ........................................................................................................ 1 1.1. Connectivity of reef species ............................................................................................................... 1 1.2. Estimators of connectivity in reef species .......................................................................................... 2 1.3. Population genetics of reef species ..................................................................................................... 4 1.4. Factors affecting the genetic connectivity of reef species .................................................................. 6 1.4.1. Extrinsic factors ........................................................................................................................... 7 1.4.2. Intrinsic factors ............................................................................................................................ 8 1.5. Study genus: Acanthurus .................................................................................................................... 9 1.6. Exploitation status of Acanthurus .................................................................................................... 11 1.7. Study region background: Indian Ocean .......................................................................................... 11 1.8. Aims and thesis structure ................................................................................................................. 13 2. CHAPTER - Connectivity of Acanthurus leucosternon...................................................................... 16 2.1. Introduction ...................................................................................................................................... 18 2.2. Materials and methods .....................................................................................................................
Recommended publications
  • Zoology Marine Ornamental Fish Biodiversity of West Bengal ABSTRACT
    Research Paper Volume : 4 | Issue : 8 | Aug 2015 • ISSN No 2277 - 8179 Zoology Marine Ornamental Fish Biodiversity of KEYWORDS : Marine fish, ornamental, West Bengal diversity, West Bengal. Principal Scientist and Scientist-in-Charge, ICAR-Central Institute of Fisheries Education, Dr. B. K. Mahapatra Salt Lake City, Kolkata-700091, India Director and Vice-Chancellor, ICAR-Central Institute of Fisheries Education, Versova, Dr. W. S. Lakra Mumbai- 400 061, India ABSTRACT The State of West Bengal, India endowed with 158 km coast line for marine water resources with inshore, up-shore areas and continental shelf of Bay of Bengal form an important fishery resource and also possesses a rich wealth of indigenous marine ornamental fishes.The present study recorded a total of 113 marine ornamental fish species, belonging to 75 genera under 45 families and 10 orders.Order Perciformes is represented by a maximum of 26 families having 79 species under 49 genera followed by Tetraodontiformes (5 family; 9 genus and 10 species), Scorpaeniformes (2 family; 3 genus and 6 species), Anguilliformes (2 family; 3 genus and 4 species), Syngnathiformes (2 family; 3 genus and 3 species), Pleuronectiformes (2 family; 2 genus and 4 species), Siluriformes (2 family; 2 genus and 3 species), Beloniformes (2 family; 2 genus and 2 species), Lophiformes (1 family; 1 genus and 1 species), Beryciformes(1 family; 1 genus and 1 species). Introduction Table 1: List of Marine ornamental fishes of West Bengal Ornamental fishery, which started centuries back as a hobby, ORDER 1: PERCIFORMES has now started taking the shape of a multi-billion dollar in- dustry.
    [Show full text]
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Summer 8-22-2020 Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade Bryce Risley University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Marine Biology Commons Recommended Citation Risley, Bryce, "Senders, Receivers, and Spillover Dynamics: Understanding Transformative Forces of Aquaculture in the Marine Aquarium Trade" (2020). Electronic Theses and Dissertations. 3314. https://digitalcommons.library.umaine.edu/etd/3314 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SENDERS, RECEIVERS, AND SPILLOVER DYNAMICS: UNDERSTANDING TRANSFORMATIVE FORCES OF AQUACULTURE IN THE MARINE AQUARIUM TRADE By Bryce Risley B.S. University of New Mexico, 2014 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Marine Policy and Marine Biology) The Graduate School The University of Maine May 2020 Advisory Committee: Joshua Stoll, Assistant Professor of Marine Policy, Co-advisor Nishad Jayasundara, Assistant Professor of Marine Biology, Co-advisor Aaron Strong, Assistant Professor of Environmental Studies (Hamilton College) Christine Beitl, Associate Professor of Anthropology Douglas Rasher, Senior Research Scientist of Marine Ecology (Bigelow Laboratory) Heather Hamlin, Associate Professor of Marine Biology No photograph in this thesis may be used in another work without written permission from the photographer.
    [Show full text]
  • First Record of Acanthurus Chirurgus (Bloch, 1787) from the Central Mediterranean, with Notes on Other Acanthuridae Recorded in the Region
    BioInvasions Records (2017) Volume 6, Issue 2: 105–109 Open Access DOI: https://doi.org/10.3391/bir.2017.6.2.03 © 2017 The Author(s). Journal compilation © 2017 REABIC Rapid Communication A bevy of surgeons: first record of Acanthurus chirurgus (Bloch, 1787) from the central Mediterranean, with notes on other Acanthuridae recorded in the region Julian Evans1,*, Reno Tonna2 and Patrick J. Schembri1 1Department of Biology, University of Malta, Msida MSD2080, Malta 2Namaste Flat 5, Triq il-Merzuq, Birzebbuga, Malta Author e-mails: [email protected] (JE), [email protected] (RT), [email protected] (PJS) *Corresponding author Received: 16 November 2016 / Accepted: 13 December 2016 / Published online: 24 January 2017 Handling editor: Ernesto Azzurro Abstract The doctorfish Acanthurus chirurgus (Bloch, 1787) is reported for the first time from the central Mediterranean, based on a specimen caught in Maltese waters during August 2016. Since the only previous Mediterranean record of this species was based on a single individual observed in the Tyrrhenian Sea, the present record likely represents an independent introduction that may have occurred through the aquarium trade or via shipping. Two other surgeonfish species, Acanthurus coeruleus Bloch and Schneider, 1801 and Acanthurus monroviae Steindachner, 1876, were previously recorded from the central Mediterranean. While A. coeruleus may have established a population in the Levantine Sea, like A. chirurgus it has only been reported once from Malta (and from the central Mediterranean in general); both A. coeruleus and A. chirurgus are, therefore, considered to be casual species in Maltese waters. In contrast, A. monroviae was reported from several Mediterranean countries including Tunisia and Malta in the central Mediterranean.
    [Show full text]
  • First Records of the Fish Abudefduf Sexfasciatus (Lacepède, 1801) and Acanthurus Sohal (Forsskål, 1775) in the Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 2: 205–210 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.14 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication First records of the fish Abudefduf sexfasciatus (Lacepède, 1801) and Acanthurus sohal (Forsskål, 1775) in the Mediterranean Sea Ioannis Giovos1,*, Giacomo Bernardi2, Georgios Romanidis-Kyriakidis1, Dimitra Marmara1 and Periklis Kleitou1,3 1iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece 2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA 3Marine and Environmental Research (MER) Lab Ltd., Limassol, Cyprus *Corresponding author E-mail: [email protected] Received: 26 October 2017 / Accepted: 16 January 2018 / Published online: 14 March 2018 Handling editor: Ernesto Azzurro Abstract To date, the Mediterranean Sea has been subjected to numerous non-indigenous species’ introductions raising the attention of scientists, managers, and media. Several introduction pathways contribute to these introduction, including Lessepsian migration via the Suez Canal, accounting for approximately 100 fish species, and intentional or non-intentional aquarium releases, accounting for at least 18 species introductions. In the context of the citizen science project of iSea “Is it alien to you?… Share it”, several citizens are engaged and regularly report observations of alien, rare or unknown marine species. The project aims to monitor the establishment and expansion of alien species in Greece. In this study, we present the first records of two popular high-valued aquarium species, the scissortail sergeant, Abudefduf sexfasciatus and the sohal surgeonfish, Acanthurus sohal, in along the Mediterranean coastline of Greece. The aggressive behaviour of the two species when in captivity, and the absence of records from areas close to the Suez Canal suggest that both observations are the result of aquarium intentional releases, rather than a Lessepsian migration.
    [Show full text]
  • Larvae of the Moorish Idol, Zanclus Cornutus, Including a Comparison with Other Larval Acanthuroids
    BULLETIN OF MARINE SCIENCE. 40(3): 494-511. 1987 CORAL REEF PAPER LARVAE OF THE MOORISH IDOL, ZANCLUS CORNUTUS, INCLUDING A COMPARISON WITH OTHER LARVAL ACANTHUROIDS G. David Johnson and Betsy B. Washington ABSTRACT The larvae of Zane/us carnutus are described and illustrated based on one postflexion and several preflexion specimens. In addition to general morphology and pigmentation, bony ornamentation ofthe head bones and other osteological features are described in detail. Head bones and the associated ornamentation are illustrated for larval Zane/us, Siganus. Luvarus and Nasa. These and other aspects of the morphology of larval acanthuroids are compared and discussed within the context of a phylogenetic hypothesis proposed in other current work. Larval characters corroborate the monophyly of the Acanthuroidei and the phyletic sequence, Siganidae, Luvaridae, Zanc1idae, Acanthuridae. The Acanthuridae is represented by three distinct larval forms. The moorish idol, Zane/us cornutus (Linnaeus), Family Zanclidae, occurs in tropical waters of the Indo-Pacific and eastern Pacific. Like the closely related Acanthuridae, adult Zane/us are reef-associated fishes, but the young are spe- cialized for a relatively prolonged pelagic existence. The specialized pelagic pre- juvenile is termed the "acronurus" stage, and, at least in acanthurids, may reach a length of 60 mm or more before settling (Leis and Rennis, 1983). Strasburg (1962) briefly described 13.4 and 16.0-mm SL specimens ofthe monotypic Zan- e/us and illustrated the larger specimens. Eggs, preflexion larvae and small post- flexion larvae of Zane/us have not been described (Leis and Richards, 1984). The primary purposes of this paper are to describe a 9.S-mm SL postflexion larva of Zane/us and to compare its morphology to that of postflexion larvae of other acanthuroids in a phylogenetic context.
    [Show full text]
  • First Record of Acanthurus Chirurgus (Perciformes: Acanthuridae) in the Mediterranean Sea, with Some Distributional Notes on Mediterranean Acanthuridae
    Mediterranean Marine Science Vol. 16, 2015 First record of Acanthurus chirurgus (Perciformes: Acanthuridae) in the Mediterranean Sea, with some distributional notes on Mediterranean Acanthuridae LANGENECK J. University of Pisa, Department of Biology BOYER M. De CECCO P. LUCIANI C. MARCELLI M. VACCHI M. http://dx.doi.org/10.12681/mms.1239 Copyright © 2015 To cite this article: LANGENECK, J., BOYER, M., De CECCO, P., LUCIANI, C., MARCELLI, M., & VACCHI, M. (2015). First record of Acanthurus chirurgus (Perciformes: Acanthuridae) in the Mediterranean Sea, with some distributional notes on Mediterranean Acanthuridae. Mediterranean Marine Science, 16(2), 427-431. doi:http://dx.doi.org/10.12681/mms.1239 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 20/12/2018 20:07:51 | Short Communication Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net DOI: http://dx.doi.org/10.12681/mms.1239 First record of Acanthurus chirurgus (Perciformes: Acanthuridae) in the Mediterranean Sea, with some distributional notes on Mediterranean Acanthuridae J. LANGENECK1, M. BOYER2, P. G. DE CECCO3, C. LUCIANI3, M. MARCELLI4 and M. VACCHI5 1 Dipartimento di Biologia, Università di Pisa, via Derna 1, 56126, Pisa, Italy 2 via Sanda 236, 17015 Celle Ligure (SV), Italy 3 Biodivers, c/o Residence Capobianco, Località Reale, 57036, Porto Azzurro (LI), Italy 4 Bioscience Research Center, Aurelia Vecchia 32, 58015 Orbetello (GR), Italy 5 Institute for Environmental Protection and Research (ISPRA) c/o Institute of Marine Sciences (ISMAR), National Research Council, Genoa, Italy Corresponding author: [email protected] Handling Editor: Murat Bilecenoglu Received: 2 February 2015; Accepted: 9 April 2015; Published on line: 15 July 2015.
    [Show full text]
  • The Genome of the Gulf Pipefish Enables Understanding of Evolutionary Innovations C
    Small et al. Genome Biology (2016) 17:258 DOI 10.1186/s13059-016-1126-6 RESEARCH Open Access The genome of the Gulf pipefish enables understanding of evolutionary innovations C. M. Small1†, S. Bassham1†, J. Catchen1,2†, A. Amores3, A. M. Fuiten1, R. S. Brown1,4, A. G. Jones5 and W. A. Cresko1* Abstract Background: Evolutionary origins of derived morphologies ultimately stem from changes in protein structure, gene regulation, and gene content. A well-assembled, annotated reference genome is a central resource for pursuing these molecular phenomena underlying phenotypic evolution. We explored the genome of the Gulf pipefish (Syngnathus scovelli), which belongs to family Syngnathidae (pipefishes, seahorses, and seadragons). These fishes have dramatically derived bodies and a remarkable novelty among vertebrates, the male brood pouch. Results: We produce a reference genome, condensed into chromosomes, for the Gulf pipefish. Gene losses and other changes have occurred in pipefish hox and dlx clusters and in the tbx and pitx gene families, candidate mechanisms for the evolution of syngnathid traits, including an elongated axis and the loss of ribs, pelvic fins, and teeth. We measure gene expression changes in pregnant versus non-pregnant brood pouch tissue and characterize the genomic organization of duplicated metalloprotease genes (patristacins) recruited into the function of this novel structure. Phylogenetic inference using ultraconserved sequences provides an alternative hypothesis for the relationship between orders Syngnathiformes and Scombriformes. Comparisons of chromosome structure among percomorphs show that chromosome number in a pipefish ancestor became reduced via chromosomal fusions. Conclusions: The collected findings from this first syngnathid reference genome open a window into the genomic underpinnings of highly derived morphologies, demonstrating that de novo production of high quality and useful reference genomes is within reach of even small research groups.
    [Show full text]
  • Reproductive Biology of Acanthurus Coeruleus (Bloch & Schneider, 1801) (Perciformes: Acanthuridae) in the North Coast of the State of Pernambuco, Brazil
    Reproductive biology of Acanthurus coeruleus (Bloch & Schneider, 1801) (Perciformes: Acanthuridae) in the north coast of the State of Pernambuco, Brazil RAILMA MARIA VILANOVA QUEIROZ1, MARIANA GOMEZ DO RÊGO2, FABIO HISSA VIEIRA HAZIN1 & PAULO GUILHERME VASCONCELOS DE OLIVEIRA1 1 Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aqüicultura, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil. 2 Universidade Federal Rural de Pernambuco, Departamento de Morfologia e Fisiologia Animal, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil. *Corresponding author: [email protected] Abstract. The objective of this work was to determine aspects of reproductive biology of Blue tang surgeonfish, Acanthurus coeruleus. 496 specimens were sampled, between January 2013 and December 2015, out of which, 235 were male and 261 were female. Sexual ratio did not significanlty differ among genders, and a ratio of 1.11 females per 1 male was found. Total length frequency distribution ranged from 14 to 41.7 cm with predominance of females in the 24-32 cm classes and of males in the 26- 32 cm classes. The estimated allometric coefficient (2.7695), suggests that the species presents negative allometric growth. According to the GSI and the gonads histological analysis, the reproductive period of the species occurs from June to January with periods of greater reproductive activity from August. The oocyte diameter-frequency distribution analysis revealed a multimodal distribution, confirming the evidence of multiple spawning and batch fecundity varied from 20000 to 55000 oocytes. Spawning frequency estimates, based on the hydrated oocytes (HO) method indicated that the species spawns once every 3.8 days, while the estimates based on the post-ovulatory follicle (POF) method indicated a spawning every 3.4 days, during a 6-month spawning season lasting from August to January.
    [Show full text]
  • Effects of Coral Bleaching on Coral Reef Fish Assemblages
    Effects of Coral Bleaching on Coral Reef Fish Assemblages Nicholas A J Graham A Thesis submitted to Newcastle University for the Degree of Doctor of Philosophy School of Marine Science and Technology Supervisors: Professor Nicholas V C Polunin Professor John C Bythell Examiners: Professor Matthew G Bentley Dr Magnus Nyström First submitted: 1st July 2008 Viva-Voce: 1st September 2008 Abstract Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of climate warming to the loss of live coral cover has been well documented, the associated effects on fish have not. Such information is important as coral reef fish assemblages provide critical contributions to ecosystem function and services. This thesis assesses the medium to long term impacts of coral loss on fish assemblages in the western Indian Ocean. Feeding observations of corallivorous butterflyfish demonstrates that considerable feeding plasticity occurs among habitat types, but strong relationships exist between degree of specialisation and declines in abundance following coral loss. Furthermore, obligate corallivores are lost fairly rapidly following decline in coral cover, whereas facultative corallivores are sustained until the structure of the dead coral begins to erode. Surveys of benthic and fish assemblages in Mauritius spanning 11 years highlight small changes in both benthos and fish through time, but strong spatial trends associated with dredging and inter-specific competition. In Seychelles, although there was little change in biomass of fishery target species above size of first capture, size spectra analysis of the entire assemblage revealed a loss of smaller individuals (<30cm) and an increase in the larger individuals (>45cm).
    [Show full text]
  • BIOT Field Report
    ©2015 Khaled bin Sultan Living Oceans Foundation. All Rights Reserved. Science Without Borders®. All research was completed under: British Indian Ocean Territory, The immigration Ordinance 2006, Permit for Visit. Dated 10th April, 2015, issued by Tom Moody, Administrator. This report was developed as one component of the Global Reef Expedition: BIOT research project. Citation: Global Reef Expedition: British Indian Ocean Territory. Field Report 19. Bruckner, A.W. (2015). Khaled bin Sultan Living Oceans Foundation, Annapolis, MD. pp 36. The Khaled bin Sultan Living Oceans Foundation (KSLOF) was incorporated in California as a 501(c)(3), public benefit, Private Operating Foundation in September 2000. The Living Oceans Foundation is dedicated to providing science-based solutions to protect and restore ocean health. For more information, visit http://www.lof.org and https://www.facebook.com/livingoceansfoundation Twitter: https://twitter.com/LivingOceansFdn Khaled bin Sultan Living Oceans Foundation 130 Severn Avenue Annapolis, MD, 21403, USA [email protected] Executive Director Philip G. Renaud Chief Scientist Andrew W. Bruckner, Ph.D. Images by Andrew Bruckner, unless noted. Maps completed by Alex Dempsey, Jeremy Kerr and Steve Saul Fish observations compiled by Georgia Coward and Badi Samaniego Front cover: Eagle Island. Photo by Ken Marks. Back cover: A shallow reef off Salomon Atoll. The reef is carpeted in leather corals and a bleached anemone, Heteractis magnifica, is visible in the fore ground. A school of giant trevally, Caranx ignobilis, pass over the reef. Photo by Phil Renaud. Executive Summary Between 7 March 2015 and 3 May 2015, the Khaled bin Sultan Living Oceans Foundation conducted two coral reef research missions as components of our Global Reef Expedition (GRE) program.
    [Show full text]
  • Cerritos Library Aquarium - Current Fish Residents
    Cerritos Library Aquarium - Current Fish Residents Blue Tang (Paracanthurus hepatus) Location: Indo-Pacific, seen in reefs of the Philippines, Indonesia, Japan, the Great Barrier Reef of Australia, New Caledonia, Samoa, East Africa, and Sri Lanka Length: Up to 12 inches Food: Omnivores, feed on plankton and algae Characteristics: Live in pairs, or in small groups. Belong to group of fish called surgeonfish due to sharp spines on caudal peduncle (near tailfin). Spines are used only as a method of protection against aggressors Naso Tang (Naso lituratus) Other Names: Orangespine Unicornfish, Lipstick Tang, Tricolor Tang Location: Indo-Pacific reefs Length: Up to 2 feet Food: Primarily herbivores, mostly feed on algae with some plankton Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Mata tang (Acanthurus mata) Other Names: Elongate Surgeonfish, Pale Surgeonfish Location: Central Pacific, Eastern Asia Length: Up to 20 inches Food: Primarily herbivorous; diet includes algae, seaweed; occasionally carnivorous Characteristics: Like other surgeonfish, have a scalpel- like spine at the base of the tail for protection against aggressors. Yellow Tang (Zebrasoma flavescens) Other Names: Yellow Sailfin Tang, Lemon Surgeonfish, Yellow Surgeonfish Location: Hawaiian islands Length: Up to 8 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Males have a patch of raised scales that resemble tiny white, fuzzy spikes to the rear of the spine; females do not Mustard tang (Acanthurus guttatus) Other Names: White spotted Surgeonfish Location: Shallow waters on reefs in the Indo-Pacific Length: Up to 12 inches Food: Primarily herbivorous; diet includes algae, seaweed Characteristics: Rarely seen; hide under shallow reefs to protect themselves from predators.
    [Show full text]