Algae Culturing

Total Page:16

File Type:pdf, Size:1020Kb

Algae Culturing ' ki^ Editeilgr |OHN S. BURIEW CARNEGIE INSTITUTION OF WASHINGTON PUBLICATION 600 WASHINGTON, D. C ALGAL CULTURE FROM LABORATORY TO PILOT PLANT Edited by JOHN S. BURLEW CARNEGIE INSTITUTION OF WASHINGTON PUBLICATION 600 WASHINGTON, D. C. This book first published July 15,1953 Second printing June 1955 Third printing March 1961 Fourth printing July 1.964 Fifth printing "May 1976 ISBN 0-87279-611-6 FOREWORD The Carnegie Institution's project on the mass culture of algae is a collateral development or offshoot of its program of research on photo- synthesis. One part of this program was concerned with the nature of the products which the plant makes in the photosynthetic process [200]. Several widely different species of plants were used in these investiga- tions, but particular attention was paid to the unicellular alga Chlorella pyrenoidosa [201], because of the broad range of environmental condi- tions under which it can grow, and because this organism has been ex- tensively used as a subject of study of many other aspects of the photo- synthetic problem. The experience gained in the culture of Chloreila was applied to a wartime investigation, namely, the search for an antibacterial substance that might be isolated from the culture solution in which Chlorella was grown [202]. It turned out that the antibiotic activity resulted from a complex photooxidation of the unsaturated fatty acids in the Chlorella itself, and that a similar reaction could be induced in fatty acids from a variety of sources [203, 204, 152]. After the war the investigation of the influence of environmental fac- tors on the chemical composition of Chlorella was resumed. The con- ditions for varying the protein and fat content over wide ranges were established [151]. The nature of the lipides in the Chlorella was also in- vestigated [91], By the winter of 1947-1948 the possibility of growing Chlorella on a large scale for food was being considered seriously. H. A. Spoehr and Harold W. Milner prepared a preliminary analysis of the problem for publication in Carnegie Institution of Washington Year Book No. 47 [206]. The sort of development that they suggested, involving applied research and engineering, lay outside the scope of the Institution's usual activities. The Institution therefore turned over this aspect of the problem to Re- search Corporation of New York, continuing its own fundamental scien- tific, studies on photosynthesis. Research Corporation contracted with Stanford Research Institute in September 1948 for an engineering study of the factors involved in the design of a pilot plant. The small culture unit that was constructed and operated at Stanford showed that continuous culture of Chlorella was possible; but the results were not conclusive enough for Research Corporation to feel justified in financing further experimentation. The work at Stanford Research Insti- tute was therefore terminated in the spring of 1950. During the latter part of 1950 the American Research and Develop- ment Corporation in Boston^ Massachusetts, became interested in the subject of algal culture and made a careful review of the economic as- pects of the subject on the basis of the experiments at Stanford Research Institute. This review showed clearly that there was still much uncer- tainty as to whether large-scale culture was economically feasible. iii iv FOREWORD It was generally agreed at that time that further work of a fundamental sort was needed, and that it was especially desirable to discover whether any new problems would be introduced by a large increase in the size of a culture unit. It was essential also to obtain larger quantities of the alga than had so far been available, so that its potential usefulness could be evaluated. In order to accomplish these purposes, the Carnegie Corpora- tion of New York joined with the Institution in making funds available for Arthur D. Little, Inc., a consulting research and development organiza- tion in Cambridge, Massachusetts, to set up a pilot plant for the culture of Chlorella. The staff of the Department of Plant Biology turned its attention to the problem of the factors that affect the rate of growth of Chlorella as one aspect of its program of fundamental research on photosynthesis. The Institution also sponsored laboratory investigations of algal culture at the University of Texas by Dr. Jack Myers, who spent the summer of 1951 as a visiting investigator at the Department of Plant Biology. The Institution also, in July 1951, granted a fellowship to Dr. Robert W. Krauss, of the University of Maryland, extending him support for his fundamental re- search on algal nutrition. In addition to this research, Dr. Krauss is collaborating with the Institution in culturing a variety of different algae. By no means all the problems involved in algal culture have been solved; but partial answers to the principal questions have been obtained. The alga Chlorella has been grown and harvested continuously on a large scale; it has nutritive value in animal feeding; possibly it or one of the other algae contains useful chemical raw materials; and estimates have been made as to possible yields of Chlorella in commercial quantities, based on the best data at present available. At this stage of our program it is desirable to publish a fairly com- plete account of the work to date, so that our accumulated experience may be conveniently available. Such an account should be an aid to all the workers in the field and especially should help any organizations that may be interested in setting up pilot plants for the culture of algae. Most of the present monograph is made up of reports of investigations under the auspices of the Carnegie Institution of Washington. We are privileged, however, to include also accounts of some parallel investi- gations in other countries. It is hoped that, as a progress report of a rapidly developing field of science and engineering, this book will serve to stimulate even more interest in the subject, and will result in increased progress toward the large-scale culture of algae. The manuscripts of the chapters originally planned for this monograph were received during the first quarter of 1952. The first chapter, which summarizes them, was also written at that time. Later that year the Car- negie Institution had the privilege of having Professor H. Tamiya as a guest worker at its Department of Plant Biology, through a fellowship supported by the Office of Naval Research of the United States Government. Profes- sor Tamiya has prepared an account of studies of the growth of algae in mass culture that he and his colleagues had performed at the Tokugawa FOREWORD v Institute for Biological Research, Tokyo. A delay in the publication of the monograph made it possible to include this new material, which is present- ed as chapters 16 and 18. It was not possible, however, to incorporate a discussion of it in the summary. Furthermore, it was not feasible to ask the other authors to revise their respective chapters so as to include more recent results. Active participation by other groups is essential for the ultimate suc- cess of the development of algal culture. The Carnegie Institution has felt that it had an obligation to lead the way in exploring the new field, for a discovery of great potential importance to humanity had been made through the fundamental research in one of its laboratories, and this discovery might have remained unused for many years unless further action was taken. Indeed, exactly this had happened much earlier in the case of hybrid corn. The basic knowledge concerning hybrid corn was published by George H. Shull, of the Institution's Department of Experimental Evolution, in 1909, but almost ten years went by before any effort was made to apply that knowledge for the benefit of man. Rather than let the development of algal culture proceed by chance, the Institution has been actively carrying it on to the point where enough in- formation is at hand to assess it fairly. At this stage we are not able to recommend any particular type of installation or to state positively the economic possibilities of this method of producing foodstuffs. The ramifi- cations of the subject are so wide that we cannot yet be sure what form the future development may take. The need of the world for additional sources of high-protein food is so great, especially in overpopulated areas, that serious effort in tracking down every promising lead is certainly warranted. Such great advances in technology have already come from the coupling of engineering with biology that it seems inevitable that the production of food, at least in certain areas, will eventually be carried out by "process" industries. The large-scale culture of algae may well become the first of them. In regions of the world where population is especially dense, and fertile land is limited, it is entirely possible that process-industry methods of pro- ducing food may furnish a respite from the threat of famine and so con- tribute toward more salutary conditions for civilized living. If algal cul- ture can serve such a purpose, it is well worth development for that rea- son alone. It is hoped that such a development may take the form ultimately of a multitude of individually owned, relatively small establishments, combin- ing the culture of algae perhaps with utilization of the product for animal feeding on the spot. The new industry that would result would thus enter into our economic life in such a manner as not to produce disruption, but rather to strengthen individual enterprise. Whatever form an algal culture industry takes eventually, the programs for its commercial development may need patent protection in order that venture capital may be secured for necessary risks.
Recommended publications
  • Super Green Superfoods
    [Plant-Based Ingredients] Vol. 17 No. 12 December 2012 Super Green Superfoods By Celeste Sepessy, Associate Editor Once the secret of Birkenstock-wearing progressives, green foods are now filling the shopping carts of informed—if not guilty—conventional consumers. Nutrient-dense greens date back millions of years, and humans in the know have been eating them for centuries; green foods manufacturers commonly tout their ingredients as the energy food of ancient Mesoamericans, namely the Aztecs. The term "green foods" encompasses a range of raw materials including algae (chlorella, spirulina, etc.), grasses (alfalfa, barley grass, wheat grass, etc.) and common green vegetables (broccoli, spinach, etc.). Though each ingredient boasts its own benefits, they all pack a well-rounded nutritional punch not often found elsewhere. "Spirulina is nature's multivitamin," said John Blanco, president of AnMar International, noting the microalgae has 60-percent protein, unsaturated fatty acids and vitamin precursors, such as amino acids and proenzymes. "It's not a complete 100-percent balanced vitamin tablet, but it's pretty close." And this nutritional breakdown is similar across the green board, as the ingredients are densely filled with phytonutrients, antioxidants, vitamins, minerals and nucleic acid, among other nutrients. Consumers of all demographics are becoming more aware of the benefits of eating these green superfoods; Guinevere Lynn, director of business development at Sun Chlorella, pointed to the media for the industry's popularity surge. "Mass media has certainly played a major role in this 'green renaissance,' " she explained, citing Dr. Oz's help in particular. The television medical personality is a huge proponent of green foods, and Dr.
    [Show full text]
  • Effects of Chlorella Vulgaris As a Feed Ingredient on the Quality and Nutritional Value of Weaned Piglets’ Meat
    foods Article Effects of Chlorella vulgaris as a Feed Ingredient on the Quality and Nutritional Value of Weaned Piglets’ Meat Cátia F. Martins 1,2 , José M. Pestana 1, Cristina M. Alfaia 1 ,Mónica Costa 1 , David M. Ribeiro 2 , Diogo Coelho 1 , Paula A. Lopes 1 , André M. Almeida 2, João P. B. Freire 2 and José A. M. Prates 1,* 1 CIISA—Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal; [email protected] (C.F.M.); [email protected] (J.M.P.); [email protected] (C.M.A.); [email protected] (M.C.); [email protected] (D.C.); [email protected] (P.A.L.) 2 LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal; [email protected] (D.M.R.); [email protected] (A.M.A.); [email protected] (J.P.B.F.) * Correspondence: [email protected] Abstract: Chlorella vulgaris (CH) is usually considered a feed supplement in pig nutrition, and its use as an ingredient is poorly studied. Among many interesting characteristics, this microalga has high protein levels and can be a putative alternative for soybean meal. Our aim was to study the effect of a 5% CH incorporation in the diet, individually or combined with two carbohydrases, on meat quality traits and nutritional value. Forty-four post-weaned male piglets individually housed, with an initial live weight of 11.2 ± 0.46 kg, were randomly distributed into four experimental groups: Citation: Martins, C.F.; Pestana, J.M.; control (n = 11, without CH) and three groups fed with 5% CH incorporation, plain (n = 10), with Alfaia, C.M.; Costa, M.; Ribeiro, D.M.; 0.005% Rovabio® Excel AP (n = 10), and with 0.01% of a pre-selected four-CAZyme mixture (n = 11).
    [Show full text]
  • Outer Continental Shelf Environmental Assessment Program, Final Reports of Principal Investigators. Volume 71
    Outer Continental Shelf Environmental Assessment Program Final Reports of Principal Investigators Volume 71 November 1990 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Ocean Service Office of Oceanography and Marine Assessment Ocean Assessments Division Alaska Office U.S. DEPARTMENT OF THE INTERIOR Minerals Management Service Alaska OCS Region OCS Study, MMS 90-0094 "Outer Continental Shelf Environmental Assessment Program Final Reports of Principal Investigators" ("OCSEAP Final Reports") continues the series entitled "Environmental Assessment of the Alaskan Continental Shelf Final Reports of Principal Investigators." It is suggested that reports in this volume be cited as follows: Horner, R. A. 1981. Bering Sea phytoplankton studies. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 1-149. McGurk, M., D. Warburton, T. Parker, and M. Litke. 1990. Early life history of Pacific herring: 1989 Prince William Sound herring egg incubation experiment. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 151-237. McGurk, M., D. Warburton, and V. Komori. 1990. Early life history of Pacific herring: 1989 Prince William Sound herring larvae survey. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 239-347. Thorsteinson, L. K., L. E. Jarvela, and D. A. Hale. 1990. Arctic fish habitat use investi- gations: nearshore studies in the Alaskan Beaufort Sea, summer 1988. U.S. Dep. Commer., NOAA, OCSEAP Final Rep. 71: 349-485. OCSEAP Final Reports are published by the U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Ocean Assessments Division, Alaska Office, Anchorage, and primarily funded by the Minerals Management Service, U.S. Department of the Interior, through interagency agreement.
    [Show full text]
  • Development of a Quantitative PCR Assay for the Detection And
    bioRxiv preprint doi: https://doi.org/10.1101/544247; this version posted February 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). Key words:Ciguatera fish poisoning, Gambierdiscus lapillus, Quantitative PCR assay, Great Barrier Reef Kretzschmar, A.L.1,2, Verma, A.1, Kohli, G.S.1,3, Murray, S.A.1 1Climate Change Cluster (C3), University of Technology Sydney, Ultimo, 2007 NSW, Australia 2ithree institute (i3), University of Technology Sydney, Ultimo, 2007 NSW, Australia, [email protected] 3Alfred Wegener-Institut Helmholtz-Zentrum fr Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany Abstract Ciguatera fish poisoning is an illness contracted through the ingestion of seafood containing ciguatoxins. It is prevalent in tropical regions worldwide, including in Australia. Ciguatoxins are produced by some species of Gambierdiscus. Therefore, screening of Gambierdiscus species identification through quantitative PCR (qPCR), along with the determination of species toxicity, can be useful in monitoring potential ciguatera risk in these regions. In Australia, the identity, distribution and abundance of ciguatoxin producing Gambierdiscus spp. is largely unknown. In this study we developed a rapid qPCR assay to quantify the presence and abundance of Gambierdiscus lapillus, a likely ciguatoxic species. We assessed the specificity and efficiency of the qPCR assay. The assay was tested on 25 environmental samples from the Heron Island reef in the southern Great Barrier Reef, a ciguatera endemic region, in triplicate to determine the presence and patchiness of these species across samples from Chnoospora sp., Padina sp.
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • As Source of Fermentable Sugars Via Cell Wall Enzymatic Hydrolysis
    SAGE-Hindawi Access to Research Enzyme Research Volume 2011, Article ID 405603, 5 pages doi:10.4061/2011/405603 Research Article Evaluation of Chlorella (Chlorophyta) as Source of Fermentable Sugars via Cell Wall Enzymatic Hydrolysis Marcoaurelio´ Almenara Rodrigues1 and Elba Pinto da Silva Bon2 1 Laboratory of Studies Applicable to Photosynthesis (LEAF), Biochemistry Department, Center of Technology, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Bloco A, Avenida Athos da Silveira Ramos 149, Ilha do Fundao,˜ 21 941-909 Rio de Janeiro, RJ, Brazil 2 Enzyme Technology Laboratory (ENZITEC), Biochemistry Department, Center of Technology, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Bloco A, Avenida Athos da Silveira Ramos 149, Ilha do Fundao,˜ 21 941-909 Rio de Janeiro, RJ, Brazil Correspondence should be addressed to Marcoaurelio´ Almenara Rodrigues, [email protected] Received 23 December 2010; Accepted 28 February 2011 Academic Editor: Mohamed Kheireddine Aroua Copyright © 2011 M. A. Rodrigues and E. P. D. S. Bon. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ThecellwallofChlorella is composed of up to 80% carbohydrates including cellulose. In this study, Chlorella homosphaera and Chlorella zofingiensis were evaluated as source of fermentable sugars via their cell wall enzymatic degradation. The algae were cultivated in inorganic medium, collected at the stationary growth phase and centrifuged. The cell pellet was suspended in citrate buffer, pH 4.8 and subjected to 24 hours hydrolysis at 50◦C using a cellulases, xylanases, and amylases blend.
    [Show full text]
  • BROWN ALGAE [147 Species] (
    CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck
    [Show full text]
  • Marine Plankton Diatoms of the West Coast of North America
    MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E. CUPP UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1943 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA EDITORS: H. U. SVERDRUP, R. H. FLEMING, L. H. MILLER, C. E. ZoBELL Volume 5, No.1, pp. 1-238, plates 1-5, 168 text figures Submitted by editors December 26,1940 Issued March 13, 1943 Price, $2.50 UNIVERSITY OF CALIFORNIA PRESS BERKELEY, CALIFORNIA _____________ CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NEW SERIES, No. 190] PRINTED IN THE UNITED STATES OF AMERICA Taxonomy and taxonomic names change over time. The names and taxonomic scheme used in this work have not been updated from the original date of publication. The published literature on marine diatoms should be consulted to ensure the use of current and correct taxonomic names of diatoms. CONTENTS PAGE Introduction 1 General Discussion 2 Characteristics of Diatoms and Their Relationship to Other Classes of Algae 2 Structure of Diatoms 3 Frustule 3 Protoplast 13 Biology of Diatoms 16 Reproduction 16 Colony Formation and the Secretion of Mucus 20 Movement of Diatoms 20 Adaptations for Flotation 22 Occurrence and Distribution of Diatoms in the Ocean 22 Associations of Diatoms with Other Organisms 24 Physiology of Diatoms 26 Nutrition 26 Environmental Factors Limiting Phytoplankton Production and Populations 27 Importance of Diatoms as a Source of food in the Sea 29 Collection and Preparation of Diatoms for Examination 29 Preparation for Examination 30 Methods of Illustration 33 Classification 33 Key 34 Centricae 39 Pennatae 172 Literature Cited 209 Plates 223 Index to Genera and Species 235 MARINE PLANKTON DIATOMS OF THE WEST COAST OF NORTH AMERICA BY EASTER E.
    [Show full text]
  • Lecture21 Stramenopiles-Phaeophyceae.Pptx
    Stramenopiles IV (Ch. 14):! Phaeophyceae or Brown Algae" PHAEOPHYCEAE" •250 genera and +1500 spp" •Seaweeds: large, complex thalli (kelp); some filaments (no unicells or colonies)" •Almost all are marine (@ 5 FW genera)" •Chlorophylls a & c, #-carotene, fucoxanthin & violaxanthin " •PER " •Physodes (tannins = phenols)" •Walls: cellulose fibers with alginic acid (alginate)" •Storage products are:" • laminarin (#-1,3 glucan), " • mannitol (sap & “antifreeze”)" • lipids" •Flagella: Heterokont, of course!" •Fucans or fucoidins are sulfated sugars" How these algae grow?" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" • Single: Sphacelariales, Dictyotales, Fucales" • Marginal: Dictyotales" Dictyota! Padina! Sphacelaria! Fucus! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" Desmarestia! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" 3. Intercalary: Laminariales" Laminaria! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1.
    [Show full text]
  • Biosorption Potential of the Microchlorophyte Chlorella Vulgaris for Some
    lizers & rti P e e F s f Hussein et al., J Fertil Pestic 2017, 8:1 t o i c l i a d e n DOI: 10.4172/2471-2728.1000177 r s u o J Journal of Fertilizers & Pesticides ISSN: 2471-2728 Research Article Open Access Biosorption Potential of the Microchlorophyte Chlorella vulgaris for Some Pesticides Mervat H Hussein1, Ali M Abdullah2*, Noha I Badr El Din1 and El Sayed I Mishaqa2 1Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt 2Reference Laboratory for Drinking Water, Holding Company for Water and Wastewater, Cairo, Egypt Abstract Nowadays, pollution of either surface or ground water with pesticides is considered as one of the greatest challenges facing Humanity and being a national consideration in Egypt. Agricultural activities are the point source of pesticides that polluting water bodies. The present study investigated the potentiality of Chlorella vulgaris for bioremoval of pesticides mixture of 0.1 mg/mL for each component (Atrazine, Molinate, Simazine, Isoproturon, Propanil, Carbofuran, Dimethoate, Pendimethalin, Metoalcholar, Pyriproxin) either as free cells or immobilized in alginate. Two main experiments were conducted including short- term study having 60 min contact time using fresh free and lyophilized cells and other long-term study having five days incubation period using free and immobilized cells. In the short-term study, the presence of living cells led to bioremoval percentage ranged from 86 to 89 and the lyophilized algal biomass achieved bioremoval ranged from 96% to 99%. In long-term study, the presence of growing algae resulted in pesticides bioremoval ranged from 87% to 96.5%.
    [Show full text]
  • Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP
    The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library 12-2012 Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP. Emily R. Lyczkowski Follow this and additional works at: http://digitalcommons.library.umaine.edu/etd Part of the Oceanography Commons Recommended Citation Lyczkowski, Emily R., "Assessing Allelopathic Effects of Alexandrium Fundyense on Thalassiosira SP." (2012). Electronic Theses and Dissertations. 1861. http://digitalcommons.library.umaine.edu/etd/1861 This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. ASSESSING ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski B.A. Colby College, 2008 A THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) The Graduate School The University of Maine December, 2012 Advisory Committee: Lee Karp-Boss, Associate Research Professor of Marine Sciences, Advisor Mary-Jane Perry, Professor of Marine Sciences David Townsend, Professor of Oceanography Mark Wells, Professor of Marine Sciences i ASSESSMENT OF ALLELOPATHIC EFFECTS OF ALEXANDRIUM FUNDYENSE ON THALASSIOSIRA SP. By Emily R. Lyczkowski Thesis Advisor: Dr. Lee Karp-Boss An Abstract of the Thesis Presented in Partial Fulfillment of the Requirements for the Degree of Master of Science (in Oceanography) December, 2012 Production of allelopathic chemicals by the toxic dinoflagellate Alexandrium fundyense is one suggested mechanism by which this relatively slow grower outcompetes other phytoplankton, particularly diatoms. Despite well documented allelopathic potential of Alexandrium spp., the potency is variable.
    [Show full text]
  • 2004 University of Connecticut Storrs, CT
    Welcome Note and Information from the Co-Conveners We hope you will enjoy the NEAS 2004 meeting at the scenic Avery Point Campus of the University of Connecticut in Groton, CT. The last time that we assembled at The University of Connecticut was during the formative years of NEAS (12th Northeast Algal Symposium in 1973). Both NEAS and The University have come along way. These meetings will offer oral and poster presentations by students and faculty on a wide variety of phycological topics, as well as student poster and paper awards. We extend a warm welcome to all of our student members. The Executive Committee of NEAS has extended dormitory lodging at Project Oceanology gratis to all student members of the Society. We believe this shows NEAS members’ pride in and our commitment to our student members. This year we will be honoring Professor Arthur C. Mathieson as the Honorary Chair of the 43rd Northeast Algal Symposium. Art arrived with his wife, Myla, at the University of New Hampshire in 1965 from California. Art is a Professor of Botany and a Faculty in Residence at the Jackson Estuarine Laboratory of the University of New Hampshire. He received his Bachelor of Science and Master’s Degrees at the University of California, Los Angeles. In 1965 he received his doctoral degree from the University of British Columbia, Vancouver, Canada. Over a 43-year career Art has supervised many undergraduate and graduate students studying the ecology, systematics and mariculture of benthic marine algae. He has been an aquanaut-scientist for the Tektite II and also for the FLARE submersible programs.
    [Show full text]