Condorcet's Theory of Voting H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Generalization of the Minisum and Minimax Voting Methods
A Generalization of the Minisum and Minimax Voting Methods Shankar N. Sivarajan Undergraduate, Department of Physics Indian Institute of Science Bangalore 560 012, India [email protected] Faculty Advisor: Prof. Y. Narahari Deparment of Computer Science and Automation Revised Version: December 4, 2017 Abstract In this paper, we propose a family of approval voting-schemes for electing committees based on the preferences of voters. In our schemes, we calcu- late the vector of distances of the possible committees from each of the ballots and, for a given p-norm, choose the one that minimizes the magni- tude of the distance vector under that norm. The minisum and minimax methods suggested by previous authors and analyzed extensively in the literature naturally appear as special cases corresponding to p = 1 and p = 1; respectively. Supported by examples, we suggest that using a small value of p; such as 2 or 3, provides a good compromise between the minisum and minimax voting methods with regard to the weightage given to approvals and disapprovals. For large but finite p; our method reduces to finding the committee that covers the maximum number of voters, and this is far superior to the minimax method which is prone to ties. We also discuss extensions of our methods to ternary voting. 1 Introduction In this paper, we consider the problem of selecting a committee of k members out of n candidates based on preferences expressed by m voters. The most common way of conducting this election is to allow each voter to select his favorite candidate and vote for him/her, and we select the k candidates with the most number of votes. -
1 Introduction 2 Condorcet and Borda Tallies
1 Introduction General introduction goes here. 2 Condorcet and Borda Tallies 2.1 Definitions We are primarily interested in comparing the behaviors of two information aggregation methods, namely the Condorcet and Borda tallies. This interest is motivated by both historical and practical concerns: the relative merits of the two methods have been argued since the 18th century, and, although variations on the Borda tally are much more common in practice, there is a significant body of theoretical evidence that the Condorcet tally is in many cases superior. To begin, we provide formal definitions of both of these methods, and of a generalized information aggregation problem. An information aggregation problem, often referred to simply as a voting problem, is a problem which involves taking information from a number of disparate sources, and using this information to produce a single output. Problems of this type arise in numerous domains. In political science, they are common, occurring whenever voters cast votes which are used to decide 1 the outcome of some issue. Although less directly, they also occur in fields as diverse as control theory and cognitive science. Wherever there is a system which must coalesce information from its subsystems, there is potentially the need to balance conflicting information about a single topic. In any such circumstance, if there is not reason to trust any single source more than the others, the problem can be phrased as one of information aggregation. 2.1.1 Information Aggregation Problems To facilitate the formalization of these problems, we only consider cases in which a finite number of information sources (which shall henceforth be re- ferred to as voters) provide information regarding some contested issue. -
THE SINGLE-MEMBER PLURALITY and MIXED-MEMBER PROPORTIONAL ELECTORAL SYSTEMS : Different Concepts of an Election
THE SINGLE-MEMBER PLURALITY AND MIXED-MEMBER PROPORTIONAL ELECTORAL SYSTEMS : Different Concepts of an Election by James C. Anderson A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Arts in Political Science Waterloo, Ontario, Canada, 2006 © James C. Anderson 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Library and Bibliotheque et Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A 0N4 Ottawa ON K1A 0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-23700-7 Our file Notre reference ISBN: 978-0-494-23700-7 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce,Canada de reproduire, publier, archiver, publish, archive, preserve, conserve,sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet,distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform,et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. -
Absolute Voting Rules Adrian Vermeule
University of Chicago Law School Chicago Unbound Coase-Sandor Working Paper Series in Law and Coase-Sandor Institute for Law and Economics Economics 2005 Absolute Voting Rules Adrian Vermeule Follow this and additional works at: https://chicagounbound.uchicago.edu/law_and_economics Part of the Law Commons Recommended Citation Adrian Vermeule, "Absolute Voting Rules" (John M. Olin Program in Law and Economics Working Paper No. 257, 2005). This Working Paper is brought to you for free and open access by the Coase-Sandor Institute for Law and Economics at Chicago Unbound. It has been accepted for inclusion in Coase-Sandor Working Paper Series in Law and Economics by an authorized administrator of Chicago Unbound. For more information, please contact [email protected]. CHICAGO JOHN M. OLIN LAW & ECONOMICS WORKING PAPER NO. 257 (2D SERIES) Absolute Voting Rules Adrian Vermeule THE LAW SCHOOL THE UNIVERSITY OF CHICAGO August 2005 This paper can be downloaded without charge at: The Chicago Working Paper Series Index: http://www.law.uchicago.edu/Lawecon/index.html and at the Social Science Research Network Electronic Paper Collection: http://ssrn.com/abstract_id=791724 Absolute Voting Rules Adrian Vermeule* The theory of voting rules developed in law, political science, and economics typically compares simple majority rule with alternatives, such as various types of supermajority rules1 and submajority rules.2 There is another critical dimension to these questions, however. Consider the following puzzles: $ In the United States Congress, the votes of a majority of those present and voting are necessary to approve a law.3 In the legislatures of California and Minnesota,4 however, the votes of a majority of all elected members are required. -
Stable Voting
Stable Voting Wesley H. Hollidayy and Eric Pacuitz y University of California, Berkeley ([email protected]) z University of Maryland ([email protected]) September 12, 2021 Abstract In this paper, we propose a new single-winner voting system using ranked ballots: Stable Voting. The motivating principle of Stable Voting is that if a candidate A would win without another candidate B in the election, and A beats B in a head-to-head majority comparison, then A should still win in the election with B included (unless there is another candidate A0 who has the same kind of claim to winning, in which case a tiebreaker may choose between A and A0). We call this principle Stability for Winners (with Tiebreaking). Stable Voting satisfies this principle while also having a remarkable ability to avoid tied outcomes in elections even with small numbers of voters. 1 Introduction Voting reform efforts in the United States have achieved significant recent successes in replacing Plurality Voting with Instant Runoff Voting (IRV) for major political elections, including the 2018 San Francisco Mayoral Election and the 2021 New York City Mayoral Election. It is striking, by contrast, that Condorcet voting methods are not currently used in any political elections.1 Condorcet methods use the same ranked ballots as IRV but replace the counting of first-place votes with head- to-head comparisons of candidates: do more voters prefer candidate A to candidate B or prefer B to A? If there is a candidate A who beats every other candidate in such a head-to-head majority comparison, this so-called Condorcet winner wins the election. -
Single-Winner Voting Method Comparison Chart
Single-winner Voting Method Comparison Chart This chart compares the most widely discussed voting methods for electing a single winner (and thus does not deal with multi-seat or proportional representation methods). There are countless possible evaluation criteria. The Criteria at the top of the list are those we believe are most important to U.S. voters. Plurality Two- Instant Approval4 Range5 Condorcet Borda (FPTP)1 Round Runoff methods6 Count7 Runoff2 (IRV)3 resistance to low9 medium high11 medium12 medium high14 low15 spoilers8 10 13 later-no-harm yes17 yes18 yes19 no20 no21 no22 no23 criterion16 resistance to low25 high26 high27 low28 low29 high30 low31 strategic voting24 majority-favorite yes33 yes34 yes35 no36 no37 yes38 no39 criterion32 mutual-majority no41 no42 yes43 no44 no45 yes/no 46 no47 criterion40 prospects for high49 high50 high51 medium52 low53 low54 low55 U.S. adoption48 Condorcet-loser no57 yes58 yes59 no60 no61 yes/no 62 yes63 criterion56 Condorcet- no65 no66 no67 no68 no69 yes70 no71 winner criterion64 independence of no73 no74 yes75 yes/no 76 yes/no 77 yes/no 78 no79 clones criterion72 81 82 83 84 85 86 87 monotonicity yes no no yes yes yes/no yes criterion80 prepared by FairVote: The Center for voting and Democracy (April 2009). References Austen-Smith, David, and Jeffrey Banks (1991). “Monotonicity in Electoral Systems”. American Political Science Review, Vol. 85, No. 2 (June): 531-537. Brewer, Albert P. (1993). “First- and Secon-Choice Votes in Alabama”. The Alabama Review, A Quarterly Review of Alabama History, Vol. ?? (April): ?? - ?? Burgin, Maggie (1931). The Direct Primary System in Alabama. -
A Canadian Model of Proportional Representation by Robert S. Ring A
Proportional-first-past-the-post: A Canadian model of Proportional Representation by Robert S. Ring A thesis submitted to the School of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Arts Department of Political Science Memorial University St. John’s, Newfoundland and Labrador May 2014 ii Abstract For more than a decade a majority of Canadians have consistently supported the idea of proportional representation when asked, yet all attempts at electoral reform thus far have failed. Even though a majority of Canadians support proportional representation, a majority also report they are satisfied with the current electoral system (even indicating support for both in the same survey). The author seeks to reconcile these potentially conflicting desires by designing a uniquely Canadian electoral system that keeps the positive and familiar features of first-past-the- post while creating a proportional election result. The author touches on the theory of representative democracy and its relationship with proportional representation before delving into the mechanics of electoral systems. He surveys some of the major electoral system proposals and options for Canada before finally presenting his made-in-Canada solution that he believes stands a better chance at gaining approval from Canadians than past proposals. iii Acknowledgements First of foremost, I would like to express my sincerest gratitude to my brilliant supervisor, Dr. Amanda Bittner, whose continuous guidance, support, and advice over the past few years has been invaluable. I am especially grateful to you for encouraging me to pursue my Master’s and write about my electoral system idea. -
Incentivising Participation in Liquid Democracy with Breadth-First Delegation
King’s Research Portal Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Kotsialou, G., & Riley, L. (Accepted/In press). Incentivising Participation in Liquid Democracy with Breadth-First Delegation . In International Conference on Autonomous Agents and Multi-Agent Systems 2020: Social Choice and Cooperative Game Theory Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. -
Chapter 9:Social Choice: the Impossible Dream
Chapter 9:Social Choice: The Impossible Dream September 18, 2013 Chapter 9:Social Choice: The Impossible Dream Last Time Last time we talked about Voting systems Majority Rule Condorcet's Method Plurality Borda Count Sequential Pairwise Voting Chapter 9:Social Choice: The Impossible Dream Condorcet's Method Definition A ballot consisting of such a rank ordering of candidates is called a preference list ballot because it is a statement of the preferences of the individual who is voting. Description of Condorcet's Method With the voting system known as Condorcet's method, a candidate is a winner precisely when he or she would, on the basis of the ballots cast, defeat every other candidate in a one-on-one contest using majority rule. Chapter 9:Social Choice: The Impossible Dream Example Consider the following set of preference lists: Number of Voters(9) Rank 3 1 1 1 1 1 1 First A A B B C C D Second D C C C B D B Third C B D A D B C Fourth B D A D A A A Winner: C Chapter 9:Social Choice: The Impossible Dream Pros and Cons of Condorcet's Method Pro: Takes all preferences into account. Con: Condorcet's Voting Paradox With three or more candidates, there are elections in which Condorcet's method yields no winners. In particular, the following ballots constitute an election in which Condorcet's method yields no winner. Chapter 9:Social Choice: The Impossible Dream Plurality Voting Plurality Voting Each voter pick their top choice. Chapter 9:Social Choice: The Impossible Dream Example Consider the following set of preference lists: Number of Voters(9) Rank 3 1 1 1 1 1 1 First A A B B C C D Second D B C C B D C Third B C D A D B B Fourth C D A D A A A Winner: A Chapter 9:Social Choice: The Impossible Dream Pros and Cons of Plurality Voting May's Theorem Among all two-candidate voting systems that never result in a tie, majority rule is the only one that treats all voters equally, treats both candidates equally, and is monotone. -
How to Choose a Winner: the Mathematics of Social Choice
Snapshots of modern mathematics № 9/2015 from Oberwolfach How to choose a winner: the mathematics of social choice Victoria Powers Suppose a group of individuals wish to choose among several options, for example electing one of several candidates to a political office or choosing the best contestant in a skating competition. The group might ask: what is the best method for choosing a winner, in the sense that it best reflects the individual pref- erences of the group members? We will see some examples showing that many voting methods in use around the world can lead to paradoxes and bad out- comes, and we will look at a mathematical model of group decision making. We will discuss Arrow’s im- possibility theorem, which says that if there are more than two choices, there is, in a very precise sense, no good method for choosing a winner. This snapshot is an introduction to social choice theory, the study of collective decision processes and procedures. Examples of such situations include • voting and election, • events where a winner is chosen by judges, such as figure skating, • ranking of sports teams by experts, • groups of friends deciding on a restaurant to visit or a movie to see. Let’s start with two examples, one from real life and the other made up. 1 Example 1. In the 1998 election for governor of Minnesota, there were three candidates: Norm Coleman, a Republican; Skip Humphrey, a Democrat; and independent candidate Jesse Ventura. Ventura had never held elected office and was, in fact, a professional wrestler. The voting method used was what is called plurality: each voter chooses one candidate, and the candidate with the highest number of votes wins. -
Liquid Democracy: an Algorithmic Perspective
Journal of Artificial Intelligence Research 70 (2021) 1223-1252 Submitted 11/2020; published 03/2021 Liquid Democracy: An Algorithmic Perspective Anson Kahng [email protected] Computer Science Department Carnegie Mellon University Simon Mackenzie [email protected] University of New South Wales Ariel D. Procaccia [email protected] School of Engineering and Applied Sciences Harvard University Abstract We study liquid democracy, a collective decision making paradigm that allows voters to transitively delegate their votes, through an algorithmic lens. In our model, there are two alternatives, one correct and one incorrect, and we are interested in the probability that the majority opinion is correct. Our main question is whether there exist delegation mechanisms that are guaranteed to outperform direct voting, in the sense of being always at least as likely, and sometimes more likely, to make a correct decision. Even though we assume that voters can only delegate their votes to better-informed voters, we show that local delegation mechanisms, which only take the local neighborhood of each voter as input (and, arguably, capture the spirit of liquid democracy), cannot provide the foregoing guarantee. By contrast, we design a non-local delegation mechanism that does provably outperform direct voting under mild assumptions about voters. 1. Introduction Liquid democracy is a modern approach to voting in which voters can either vote directly or delegate their vote to other voters. In contrast to the classic proxy voting paradigm (Miller, 1969), the key innovation underlying liquid democracy is that proxies | who were selected by voters to vote on their behalf | may delegate their own vote to a proxy, and, in doing so, further delegate all the votes entrusted to them. -
Incentivising Participation in Liquid Democracy with Breadth-First Delegation∗
Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand Incentivising Participation in Liquid Democracy with Breadth-First Delegation∗ Grammateia Kotsialou Luke Riley Political Economy - King’s College London Informatics - King’s College London, Quant Network London, United Kingdom London, United Kingdom [email protected] luke.riley@{kcl.ac.uk,quant.network} ABSTRACT Party in Argentina and Partido de Internet in Spain have been ex- Liquid democracy allows members of an electorate to either directly perimenting with liquid democracy implementations. Additionally, vote over alternatives, or delegate their voting rights to someone the local governments of the London Southwark borough and the they trust. Most of the liquid democracy literature and implementa- Italian cities Turino and San Dona di Piave are working on integrat- tions allow each voter to nominate only one delegate per election. ing liquid democracy for community engagement processes (Boella However, if that delegate abstains, the voting rights assigned to et al. [2018]). In the technology domain, the online platform Liq- her are left unused. To minimise the number of unused delegations, uidFeedback uses a liquid democracy system where a user selects it has been suggested that each voter should declare a personal a single guru for different topics (Behrens et al. [2014]; Kling etal. ranking over voters she trusts. In this paper, we show that even if [2015]). Another prominent online example is GoogleVotes (Hardt personal rankings over voters are declared, the standard delegation and Lopes [2015]), where each user wishing to delegate can select method of liquid democracy remains problematic. More specifically, a ranking over other voters.