Alphabetical Listing by Common Name
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Psme 46 Douglas-Fir-Incense
PSME 46 DOUGLAS-FIR-INCENSE-CEDAR/PIPER'S OREGONGRAPE Pseudotsuga menziesii-Calocedrus decurrens/Berberis piperiana PSME-CADE27/BEPI2 (N=18; FS=18) Distribution. This Association occurs on the Applegate, Ashland, and Prospect Ranger Districts, Rogue River National Forest, and the Tiller and North Umpqua Ranger Districts, Umpqua National Forest. It may also occur on the Butte Falls Ranger District, Rogue River National Forest and adjacent Bureau of Land Management lands. Distinguishing Characteristics. This is a drier, cooler Douglas-fir association. White fir is frequently present, but with relatively low covers. Piper's Oregongrape and poison oak, dry site indicators, are also frequently present. Soils. Parent material is mostly schist, welded tuff, and basalt, with some andesite, diorite, and amphibolite. Average surface rock cover is 8 percent, with 8 percent gravel. Soils are generally deep, but may be moderately deep, with an average depth of greater than 40 inches. PSME 47 Environment. Elevation averages 3000 feet. Aspects vary. Slope averages 35 percent and ranges between 12 and 62 percent. Slope position ranges from the upper one-third of the slope down to the lower one-third of the slope. This Association may also occur on benches and narrow flats. Vegetation Composition and Structure. Total species richness is high for the Series, averaging 44 percent. The overstory is dominated by Douglas-fir and ponderosa pine, with sugar pine and incense-cedar common associates. Douglas-fir dominates the understory. Incense-cedar, white fir, and Pacific madrone frequently occur, generally with covers greater than 5 percent. Sugar pine is common. Frequently occurring shrubs include Piper's Oregongrape, baldhip rose, poison oak, creeping snowberry, and Pacific blackberry. -
Phytophthora Ramorum Sudden Oak Death Pathogen
NAME OF SPECIES: Phytophthora ramorum Sudden Oak Death pathogen Synonyms: Common Name: Sudden Oak Death pathogen A. CURRENT STATUS AND DISTRIBUTION I. In Wisconsin? 1. YES NO X 2. Abundance: 3. Geographic Range: 4. Habitat Invaded: 5. Historical Status and Rate of Spread in Wisconsin: 6. Proportion of potential range occupied: II. Invasive in Similar Climate YES NO X Zones United States: In 14 coastal California Counties and in Curry County, Oregon. In nursery in Washington. Canada: Nursery in British Columbia. Europe: Germany, the Netherlands, the United Kingdom, Poland, Spain, France, Belgium, and Sweden. III. Invasive in Similar Habitat YES X NO Types IV. Habitat Affected 1. Habitat affected: this disease thrives in cool, wet climates including areas in coastal California within the fog belt or in low- lying forested areas along stream beds and other bodies of water. Oaks associated with understory species that are susceptible to foliar infections are at higher risk of becoming infected. 2. Host plants: Forty-five hosts are regulated for this disease. These hosts have been found naturally infected by P. ramorum and have had Koch’s postulates completed, reviewed and accepted. Approximately fifty-nine species are associated with Phytophthora ramorum. These species are found naturally infected; P. ramorum has been cultured or detected with PCR but Koch’s postulates have not been completed or documented and reviewed. Northern red oak (Quercus rubra) is considered an associated host. See end of document for complete list of plant hosts. National Risk Model and Map shows susceptible forest types in the mid-Atlantic region of the United States. -
American Materia Medica, Therapeutics and Pharmacognosy
American Materia Medica, Therapeutics and Pharmacognosy Developing the Latest Acquired Knowledge of Drugs, and Especially of the Direct Action of Single Drugs Upon Exact Conditions of Disease, with Especial Reference of the Therapeutics of the Plant Drugs of the Americas. By FINLEY ELLINGWOOD, M.D. 1919 Late Professor of Materia Medica and Therapeutics in Bennett Medical College, Chicago; Professor of Chemistry in Bennett Medical College 1884-1898; Author, and Editor of Ellingwood's Therapeutist; Member National Eclectic Medical Association; American Medical Editors' Association. Abridged to include only the botanical entries, and arranged in alphabetical order by latin names Southwest School of Botanical Medicine P.O. Box 4565, Bisbee, AZ 85603 www.swsbm.com ABIES. Abies canadensis Synonym—Hemlock spruce. CONSTITUENTS— Tannic acid, resin, volatile oil. Canada pitch, or gum hemlock, is the prepared concrete juice of the pinus canadensis. The juice exudes from the tree, and is collected by boiling the bark in water, or boiling the hemlock knots, which are rich in resin. It is composed of one or more resins, and a minute quantity of volatile oil. Canada pitch of commerce is in reddish-brown, brittle masses, of a faint odor, and slight taste. Oil of hemlock is obtained by distilling the branches with water. It is a volatile liquid, having a terebinthinate odor and taste. PREPARATIONS— Canada Pitch Plaster Tincture of the fresh hemlock boughs Tincture of the fresh inner bark. Specific Medicine Pinus. Dose, from five to sixty minims. The hemlock spruce produces three medicines; the gum, used in the form of a plaster as a rubifacient in rheumatism and kindred complaints; the volatile oil—oil of hemlock—or a tincture of the fresh boughs, used as a diuretic in diseases of the urinary organs, and wherever a terebinthinate remedy is indicated; and a tincture of the fresh inner bark, an astringent with specific properties, used locally, and internally in catarrh. -
Acacia Melanoxylon Have Been Reported
Plants of South Eastern New South Wales Flowering stems. Australian Plant Image Index, photographer D Kelly, Canberra Flowering stem. Photographer Don Wood, near Sassafras, north east of Nerriga Pods and seeds showing the red arils. Australian Plant Image Index, photographer Murray Fagg, Australian National Botanic Gardens, Canberra Tree. Australian Plant Image Index, photographer Murray Fagg, Mongarlowe, east of Braidwood Line drawings. b. branch with 'leaf' detail; flower cluster; seed..M Moir, M., National Herbarium of Victoria, © 2021 Royal Botanic Gardens Board Common name Blackwood, Hickory, Sally wattle, Lightwood, Tasmanian blackwood, Black wattle, Black sally Family Fabaceae Where found Forest, forest regrowth, roadsides, along streams, moist slopes, and gullies. Widespread. Notes Tree to 45 m tall, sometimes a shrub 1.5-3 m tall. Fleshy seed stalks. Bark rough, hard, fissured and somewhat scaly. Branchlets angled or flattened, hairy, becoming hairless. 'Leaves' alternating up the stems, 4-16 cm long, 6-30 mm wide, straight to almost strongly curved, surfaces hairless, 3–5 or more longitudinal veins prominent, tips pointed to blunt with a mucro, 1 marginal gland near the base. Flower heads white to yellow, globular, 30-56 flowered (easiest seen in late buds), 5-10 mm in diameter, in 2-8 flowered clusters. Flowers mostly July to Dec. Pods long and narrow, coiled when ripe. Seeds glossy, black, with a pink or orange to deep red seed stalk which encircles the seed. Family was Mimosaceae. Regarded as indigenous and naturalised in the ACT. All native plants on unleased land in the ACT are protected. Possible hybrids between Acacia implexa and Acacia melanoxylon have been reported. -
Evergreen Trees Agonis Flexuosa
Evergreen Trees Agonis flexuosa – Peppermint Willow Graceful willow-like evergreen tree (but without the willows voracious root system) with reddish-brown, deeply furrowed bark to 25’-30’. New leaves and twigs have an attractive reddish cast; clustered small white flowers and brownish fruits are not particularly ornamental. Casaurina stricta – Beefwood Pendulous gray branches; resembles a pine somewhat; tolerates drought, heat, wind, fog. Growth to 20’- 30’. Cinnamomum camphora - Camphor Evergreen trees to 40 feet, with 20-foot spread.. In winter foliage is a shiny yellow green. In early spring new foliage may be pink, red or bronze, depending on tree. Unusually strong structure. Clusters of tiny, fragrant yellow flowers in profusion in May. Geijera parviflora- Australian Willow Evergreen trees with graceful, fine-textured leaves, to 30 feet, 20 feet wide. Main branches weep up and out; little branches hang down. Much of the grace of a willow, much of the toughness of eucalyptus, moderate growth and deep non-invasive roots. Laurus nobilis – Grecian Laurel Slow growth 12-40’. Natural habit is compact, broad-based, often multi-stemmed, gradually tapering cone. Leaves lethery, aromatic. Clusters of small yellow flowers followed by black or purple berries. Magnolia Grandiflora – ‘Little Gem’- Dwarf Southern Magnolia Small tree to 20’ in height. Showy white flowers in the summer. Green glossy leaves. Maytenous boaria - Mayten Evergreen tree with slow to moderate growth to an eventual 30-50 feet, with a 15-foot spread, with long and pendulous branchlets hanging down from branches, giving tree a graceful look. Habit and leaves somewhat like a small scale weeping willow. -
DOUGLAS's Datasheet
DOUGLAS Page 1of 4 Family: PINACEAE (gymnosperm) Scientific name(s): Pseudotsuga menziesii Commercial restriction: no commercial restriction Note: Coming from North West of America, DOUGLAS FIR is often used for reaforestation in France and in Europe. Properties of european planted trees (young and with a rapid growth) which are mentionned in this sheet are different from those of the "Oregon pine" (old and with a slow growth) coming from its original growing area. WOOD DESCRIPTION LOG DESCRIPTION Color: pinkish brown Diameter: from 50 to 80 cm Sapwood: clearly demarcated Thickness of sapwood: from 5 to 10 cm Texture: medium Floats: pointless Grain: straight Log durability: low (must be treated) Interlocked grain: absent Note: Heartwood is pinkish brown with veins, the large sapwood is yellowish. Wood may show some resin pockets, sometimes of a great dimension. PHYSICAL PROPERTIES MECHANICAL AND ACOUSTIC PROPERTIES Physical and mechanical properties are based on mature heartwood specimens. These properties can vary greatly depending on origin and growth conditions. Mean Std dev. Mean Std dev. Specific gravity *: 0,54 0,04 Crushing strength *: 50 MPa 6 MPa Monnin hardness *: 3,2 0,8 Static bending strength *: 91 MPa 6 MPa Coeff. of volumetric shrinkage: 0,46 % 0,02 % Modulus of elasticity *: 16800 MPa 1550 MPa Total tangential shrinkage (TS): 6,9 % 1,2 % Total radial shrinkage (RS): 4,7 % 0,4 % (*: at 12% moisture content, with 1 MPa = 1 N/mm²) TS/RS ratio: 1,5 Fiber saturation point: 27 % Musical quality factor: 110,1 measured at 2971 Hz Stability: moderately stable NATURAL DURABILITY AND TREATABILITY Fungi and termite resistance refers to end-uses under temperate climate. -
Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies. -
Invasive Trees of Georgia Pub10-14
Pub. No. 39 October 2016 Invasive Trees of Georgia by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Georgia has many species of trees. Some are native trees and some have been introduced from outside the state, nation, or continent. Most of Georgia’s trees are well- behaved and easily develop into sustainable shade and street trees. A few tree species have an extrodinary ability to upsurp resources and take over sites from other plants. These trees are called invasive because they effectively invade sites, many times eliminat- ing other species of plants. There are a few tree species native to Georgia which are considered invasive in other parts of the country. These native invasives, may be well-behaved in Georgia, but reproduce and take over sites elsewhere, and so have gained an invasive status from at least one other invasive species list. Table 1. There are hundreds of trees which have been introduced to Georgia landscapes. Some of these exotic / naturalized trees are considered invasive. The selected list of Georgia invasive trees listed here are notorious for growing rampantly and being difficult to eradicate. Table 2. Table 1: Native trees considered invasive in other parts of the country. scientific name common name scientific name common name Acacia farnesiana sweet acacia Myrica cerifera Southern bayberry Acer negundo boxelder Pinus taeda loblolly pine Acer rubrum red maple Populus deltoides Eastern cottonwood Fraxinus americana white ash Prunus serotina black cherry Fraxinus pennsylvanica green ash Robinia pseudoacacia black locust Gleditsia triacanthos honeylocust Toxicodendron vernix poison sumac Juniperus virginiana eastern redcedar The University of Georgia is committed to principles of equal opportunity and affirmative action. -
Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................ -
Status and Protection of Globally Threatened Species in the Caucasus
STATUS AND PROTECTION OF GLOBALLY THREATENED SPECIES IN THE CAUCASUS CEPF Biodiversity Investments in the Caucasus Hotspot 2004-2009 Edited by Nugzar Zazanashvili and David Mallon Tbilisi 2009 The contents of this book do not necessarily reflect the views or policies of CEPF, WWF, or their sponsoring organizations. Neither the CEPF, WWF nor any other entities thereof, assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product or process disclosed in this book. Citation: Zazanashvili, N. and Mallon, D. (Editors) 2009. Status and Protection of Globally Threatened Species in the Caucasus. Tbilisi: CEPF, WWF. Contour Ltd., 232 pp. ISBN 978-9941-0-2203-6 Design and printing Contour Ltd. 8, Kargareteli st., 0164 Tbilisi, Georgia December 2009 The Critical Ecosystem Partnership Fund (CEPF) is a joint initiative of l’Agence Française de Développement, Conservation International, the Global Environment Facility, the Government of Japan, the MacArthur Foundation and the World Bank. This book shows the effort of the Caucasus NGOs, experts, scientific institutions and governmental agencies for conserving globally threatened species in the Caucasus: CEPF investments in the region made it possible for the first time to carry out simultaneous assessments of species’ populations at national and regional scales, setting up strategies and developing action plans for their survival, as well as implementation of some urgent conservation measures. Contents Foreword 7 Acknowledgments 8 Introduction CEPF Investment in the Caucasus Hotspot A. W. Tordoff, N. Zazanashvili, M. Bitsadze, K. Manvelyan, E. Askerov, V. Krever, S. Kalem, B. Avcioglu, S. Galstyan and R. Mnatsekanov 9 The Caucasus Hotspot N. -
Downloaded from Brill.Com10/08/2021 11:33:23AM Via Free Access 116 IAWA Bulletin N.S., Vol
1AWA Bulletin n.s., Vol. 11 (2), 1990: 115-140 IAWA·IUFRO WOOD ANATOMY SYMPOSIUM 1990 The third Euro-African regional wood anatomy symposium organised by the Wood Science and Technology Laboratories of the ETH (Swiss Federal Institute ofTechnology), Zürich, Switzerland, July 22-27, 1990. Organising Committee Prof. Dr. H.H. Bosshard, Honorary President Dr. L.J. Kucera, Executive Secretary and Local Host Ms. C. Dominquez, Symposium Office Secretary Dr. K. J. M. Bonsen, Deputy Executive Secretary lng. B.J.H. ter Welle, on behalf ofIAWA Prof. Dr. P. Baas, on behalf of IUFRO S 5.01 ABSTRACfS OF PAPERS AND POSTERS C. ANGELACCIO, A. SCffiRONE and B. SCHI MARIAN BABIAK, 1GOR CuNDERLfK and JO RONE, Dipartimento di Scienze deli' Ambiente ZEF KUDELA, Faculty of Wood Technology, Forestale e delle Sue Risorse, Facolta di University of Forestry and Wood Technol Agraria, Universita degli Studi della Tuscia, ogy, Department of Wood Science and Me Via S. Camillo de Lellis, 01100 Viterbo, chanical Wood, 96053 Zvolen, Czechoslo 1taly. - Wood anatomy of Quercus cre· vakia. - Permeability and structure of nata Lam. beech wood. Quercus crenata Lam. (Q. pseudosuber Flow of water and other liquids through G. Santi) is a natural hybrid between Q. cer beech wood (Fagus sylvatica L.) caused by ris x Q. suber. The species is widespread in the external pressure gradient is described by the mediterrane an basin, from France to Al the steady-state Darcy's law. The validity of bania. 1t occurs throughout Italy, usually as the law was proved up to a critical value. The single trees recognisable by their evergreen critical external pressure gradient obtained in and polymorphous leaves; the bark and acorn our experiments was 0.15 MPa/cm. -
Guideline 410 Prohibited Plant List
VENTURA COUNTY FIRE PROTECTION DISTRICT FIRE PREVENTION BUREAU 165 DURLEY AVENUE CAMARILLO, CA 93010 www.vcfd.org Office: 805-389-9738 Fax: 805-388-4356 GUIDELINE 410 PROHIBITED PLANT LIST This list was first published by the VCFD in 2014. It has been updated as of April 2019. It is intended to provide a list of plants and trees that are not allowed within a new required defensible space (DS) or fuel modification zone (FMZ). It is highly recommended that these plants and trees be thinned and or removed from existing DS and FMZs. In certain instances, the Fire Department may require the thinning and or removal. This list was prepared by Hunt Research Corporation and Dudek & Associates, and reviewed by Scott Franklin Consulting Co, VCFD has added some plants and has removed plants only listed due to freezing hazard. Please see notes after the list of plants. For questions regarding this list, please contact the Fire Hazard reduction Program (FHRP) Unit at 085-389-9759 or [email protected] Prohibited plant list:Botanical Name Common Name Comment* Trees Abies species Fir F Acacia species (numerous) Acacia F, I Agonis juniperina Juniper Myrtle F Araucaria species (A. heterophylla, A. Araucaria (Norfolk Island Pine, Monkey F araucana, A. bidwillii) Puzzle Tree, Bunya Bunya) Callistemon species (C. citrinus, C. rosea, C. Bottlebrush (Lemon, Rose, Weeping) F viminalis) Calocedrus decurrens Incense Cedar F Casuarina cunninghamiana River She-Oak F Cedrus species (C. atlantica, C. deodara) Cedar (Atlas, Deodar) F Chamaecyparis species (numerous) False Cypress F Cinnamomum camphora Camphor F Cryptomeria japonica Japanese Cryptomeria F Cupressocyparis leylandii Leyland Cypress F Cupressus species (C.