WHI Quarterly Report June 2020

Total Page:16

File Type:pdf, Size:1020Kb

WHI Quarterly Report June 2020 Quarterly Update • JUNE 2020 We are delighted to welcome the Alaska Department of Fish and Game to the Wild Harvest Initiative® Partnership Alliance! Mourning Doves fare very well in human-altered habitats. Numbers are thought to have increased greatly with increasing settlement of North America. Harvest Profile – Pigeons and harvested in one province: British Conservation Status Doves Columbia. Of the seven harvested species of Harvest in the United States and Between 2014 and 2016, a total of pigeons and doves reported in the Canada 35,098,446 pigeons and doves were WHI database, four are native to harvested in the US and Canada. This North America: the Mourning Dove, ® The Wild Harvest Initiative includes 18,081,177 in 2014/15 and Band-tailed Pigeon, White-winged Database reports seven distinct 17,017,269 in 2015/16. This Dove and White-tipped Dove; while species of pigeons and doves that are represents a live weight of 9,751,479 three were introduced: the Eurasian harvested in the US and Canada: pounds harvested from 2014 to 2016, Collared-dove, the Barred Dove and Band-tailed Pigeon (Patagioenas or a dressed weight of 6,509,671 the Spotted Dove. fasciata), Barred Dove (Geopelia pounds. maugei), Eurasian Collared-dove Of these birds, the Mourning Dove is (Streptopelia decaocto), Mourning Dove In terms of what this means for food, probably the most recognized and is (Zenaida macroura), Spotted Dove this harvest represents 4,960,663 one of the most abundant and wide- (Spilopelia chinensis), White-winged pounds of consumable pigeon and ranging bird species in North America. Dove (Zenaida asiatica) and White- dove meat harvested in this two-year This is largely owing to its ability to tipped Dove (Leptotila verreauxi). period, or an average of 2,480,331 effectively adapt and thrive in human- pounds per year. Overall, this altered environments. Indeed, it is Pigeons and doves are widely translates to a total of 13,228,433 estimated that their numbers have in harvested in the US, with 41 states meals (based on a 6-oz serving) or fact increased as human settlements reporting harvest figures. Conversely, 6,614,217 meals annually. on the continent have grown. in Canada, these species are only Species Profile: Mourning Dove • Scientific name: Zenaida macroura • The Mourning Dove is one of the most plentiful bird species in North America. The US population is estimated at 350 million. • Mourning Doves are found in a variety of ecosystems across the US. They are often spotted on the bare ground, in fields or on overhead branches and telephone wires. • The birds get their name from the tell-tale ‘mourning’ call they make by puffing up their throat. Mourning Doves are also prolific a population numbering in the billions. be overexploited, ultimately led to breeders, hatching up to six nests a It would travel in large flocks, the extinction of this bird. While the year, enabling them to achieve resembling clouds of thunderous wing loss of the passenger pigeon substantial population growth year- beats, which would blot out the sky as represents a true tragedy, its demise on-year. It is estimated that the they flew overhead. As a blossoming has been recognized as a spark that population of Mourning Doves in the commercial industry for passenger ignited contemporary conservation US alone totals 350 million. pigeons emerged, however, this efforts in North America, spurring the species began a downward spiral first wildlife-protection law in the US, Remembering the Passenger Pigeon towards extinction and by the late which prohibited interstate shipping When considering the conservation 1890s their populations were of unlawfully harvested game. estimated to have plummeted to just a status of North American pigeons and The history of the passenger pigeon doves, it is important that we recall few thousand. The last known should be a strong reminder of the the now extinct passenger pigeon passenger pigeon died in 1914. importance of well-regulated hunting (Ectopistes migratorius). This species It has been widely acknowledged that was once thought to be the most and a sustainable conservation model over-hunting, driven by the belief that that is built on science-based policy abundant bird species in North such an abundant species could never America and possibly the world, with decisions and a respect for all wildlife. Pigeon and Dove Harvests in the United States and Canada (2014/15-2015/16) Live Weight of Consumable Weight of Number of Meals Harvest Harvest (based on 6-oz serving) 9,751,479 lbs 4,960,663 lbs 13,228,433 . Figure 1: Pigeon and Dove Harvests in the US and Canada by Weight and Number of Meals (2014-16) Pigeon and Dove Species Harvested in the US and Canada (2014-16) 30,000,000 25,000,000 20,000,000 15,000,000 10,000,000 5,000,000 - Figure 2: Number of Pigeons and Doves Harvested by Species in the US and Canada (2014-2016) Progress reporting gather and compile harvest records each harvested species. This will from the last three years (2016–19) facilitate the extraction and analysis of Wild Harvest Initiative® have begun. data related to replacement costs of wild harvested meat. Database Economic Valuation Hunting and Angling Harvest Data Economic valuations of wild Wild Meat Sharing and Analyses harvested protein are now being Consumption Index compiled into an economic Quality Assurance Testing for Species’ A report on the findings from the equivalence framework. Weights Texas Wild Meat Sharing and Once the wild meat economic Consumption Index Survey is now Weight data for all freshwater and valuations are completed, a full being finalized with the Texas Parks marine fish species reported by the replacement cost analysis will be and Wildlife Department. This report WHI database are being finalized. undertaken. will be formally released to WHI References are being cross-checked partners and to the general public and compiled in a methodology paper Database Updates next quarter. for future use. Once the economic equivalence Discussions are now underway with Updating harvest records framework is completed, the WHI Alaska, Arizona and Nevada to database will be expanded to undertake similar sharing surveys in Outreach efforts to state, provincial, those states. and territorial wildlife agencies to incorporate this additional metric for Wild Harvest Initiative® These posts were made available to partners for comment. This factsheet, Partnership Alliance partners to share through their once finalized, is expected to be the respective social media channels. first in a larger series; each sheet will Welcoming New Partners represent a different species or Links to WHI Website species group and will capture We are delighted to welcome the A WHI "code block" was shared with relevant population, harvest and Alaska Department of Fish and Game biological data. to the Wild Harvest Initiative® partners to be integrated within Partnership Alliance! websites, electronic newsletters, and Podcasts other relevant communications ® Communications materials. This code block will The Wild Harvest Initiative featured present as a link/button to readers, on two podcasts this past quarter – Covid-19 and social media posts which will encourage traffic to visit The Hunting Collective and Coast to and engage with the Wild Harvest Coast: The WHI team developed social Initiative website: media posts and memes using popular The Hunting Collective: hashtags related to the current Covid- https://thewildharvestinitiative.com 19 pandemic in order to advance key https://bit.ly/2ZKbgHj Factsheet messaging related to the importance Coast to Coast: of wild harvest during the present A factsheet on white-tailed deer has global crisis. Examples of these posts been drafted and shared with WHI https://bit.ly/36DgMga can be found below. The Wild Harvest Initiative® partnership Alliance Not pictured are Sean Olmstead and Richard A. “Dick” Corbett .
Recommended publications
  • Band-Tailed Pigeon (Patagioenas Fasciata)
    Band-tailed Pigeon (Patagioenas fasciata) NMPIF level: Species Conservation Concern, Level 2 (SC2) NMPIF assessment score: 15 NM stewardship responsibility: Low National PIF status: Watch List New Mexico BCRs: 16, 34, 35 Primary breeding habitat(s): Ponderosa Pine Forest, Mixed Conifer Forest Other habitats used: Spruce-Fir Forest, Madrean Pine-Oak Woodland Summary of Concern Band-tailed Pigeon is a summer resident of montane forests in New Mexico. Both locally and across its wide geographic range the species has shown sharp population declines since the 1960s. Prior to that time, extensive commercial hunting may have significantly reduced the population from historic levels. It is not known if current declines are the result of continuing hunting pressure, habitat changes, or other factors. Associated Species Northern Goshawk, Long-eared Owl, Lewis's Woodpecker (SC1), Acorn Woodpecker, Hairy Woodpecker, Olive-sided Flycatcher (BC2), Greater Pewee (BC2), Steller's Jay, Red-faced Warbler (SC1). Distribution A Pacific coast population of Band-tailed Pigeon breeds from central California north to Canada and Alaska, extending south to Baja California in the winter. In the interior, a migratory population breeds in upland areas of southern Utah, Colorado, Arizona and New Mexico. The species occurs year-round throughout the highlands of central Mexico, south to Central and South America. In New Mexico, Band-tailed Pigeon breeds in forest habitat throughout the state, west of the plains. It is perhaps most common in the southwest (Parmeter et al. 2002). Ecology and Habitat Requirements In the Southwest, Band-tailed Pigeons inhabit montane forests dominated by pines and oaks, sometimes extending upward in elevation to timberline.
    [Show full text]
  • Checklistccamp2016.Pdf
    2 3 Participant’s Name: Tour Company: Date#1: / / Tour locations Date #2: / / Tour locations Date #3: / / Tour locations Date #4: / / Tour locations Date #5: / / Tour locations Date #6: / / Tour locations Date #7: / / Tour locations Date #8: / / Tour locations Codes used in Column A Codes Sample Species a = Abundant Red-lored Parrot c = Common White-headed Wren u = Uncommon Gray-cheeked Nunlet r = Rare Sapayoa vr = Very rare Wing-banded Antbird m = Migrant Bay-breasted Warbler x = Accidental Dwarf Cuckoo (E) = Endemic Stripe-cheeked Woodpecker Species marked with an asterisk (*) can be found in the birding areas visited on the tour outside of the immediate Canopy Camp property such as Nusagandi, San Francisco Reserve, El Real and Darien National Park/Cerro Pirre. Of course, 4with incredible biodiversity and changing environments, there is always the possibility to see species not listed here. If you have a sighting not on this list, please let us know! No. Bird Species 1A 2 3 4 5 6 7 8 Tinamous Great Tinamou u 1 Tinamus major Little Tinamou c 2 Crypturellus soui Ducks Black-bellied Whistling-Duck 3 Dendrocygna autumnalis u Muscovy Duck 4 Cairina moschata r Blue-winged Teal 5 Anas discors m Curassows, Guans & Chachalacas Gray-headed Chachalaca 6 Ortalis cinereiceps c Crested Guan 7 Penelope purpurascens u Great Curassow 8 Crax rubra r New World Quails Tawny-faced Quail 9 Rhynchortyx cinctus r* Marbled Wood-Quail 10 Odontophorus gujanensis r* Black-eared Wood-Quail 11 Odontophorus melanotis u Grebes Least Grebe 12 Tachybaptus dominicus u www.canopytower.com 3 BirdChecklist No.
    [Show full text]
  • Pigeon, Band-Tailed
    Pigeons and Doves — Family Columbidae 269 Band-tailed Pigeon Patagioenas fasciata California’s only native large pigeon can be seen year round in San Diego’s mountains, sometimes in large flocks, sometimes as only scattered individu- als. Elderberries and acorns are its staple foods, so the Band-tailed Pigeon frequents woodland with abundant oaks. Though it inhabits all the mountains where the black and canyon live oaks are common, its distribution is oddly patchy in foothill woodland dominated by the coast live oak. Both migratory and nomadic, the Band-tailed Pigeon may be common in some areas in some years and absent in others; it shows up occasionally in all regions of the county as Photo by Anthony Mercieca a vagrant. Breeding distribution: As its name in Spanish suggests, ries in dry scrub. Eleanor Beemer noted this movement Palomar Mountain is the center of Band-tailed Pigeon at Pauma Valley in the 1930s, and it continues today. abundance in San Diego County (paloma = pigeon or Some of our larger summer counts, including the largest, dove). The pigeons move up and down the mountain, were in elderberries around the base of Palomar: 35 near descending to the base in summer to feed on elderber- Rincon (F13) 7 July 2000 (M. B. Mosher); 110 in Dameron Valley (C16) 23 June 2001 (K. L. Weaver). Most of the birds nest in the forested area high on the mountain, but some nest around the base, as shown by a fledgling in Pauma Valley (E12) 19 May 2001 (E. C. Hall) and an occupied nest near the West Fork Conservation Camp (E17) 12 May 2001 (J.
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Bird) Species List
    Aves (Bird) Species List Higher Classification1 Kingdom: Animalia, Phyllum: Chordata, Class: Reptilia, Diapsida, Archosauria, Aves Order (O:) and Family (F:) English Name2 Scientific Name3 O: Tinamiformes (Tinamous) F: Tinamidae (Tinamous) Great Tinamou Tinamus major Highland Tinamou Nothocercus bonapartei O: Galliformes (Turkeys, Pheasants & Quail) F: Cracidae Black Guan Chamaepetes unicolor (Chachalacas, Guans & Curassows) Gray-headed Chachalaca Ortalis cinereiceps F: Odontophoridae (New World Quail) Black-breasted Wood-quail Odontophorus leucolaemus Buffy-crowned Wood-Partridge Dendrortyx leucophrys Marbled Wood-Quail Odontophorus gujanensis Spotted Wood-Quail Odontophorus guttatus O: Suliformes (Cormorants) F: Fregatidae (Frigatebirds) Magnificent Frigatebird Fregata magnificens O: Pelecaniformes (Pelicans, Tropicbirds & Allies) F: Ardeidae (Herons, Egrets & Bitterns) Cattle Egret Bubulcus ibis O: Charadriiformes (Sandpipers & Allies) F: Scolopacidae (Sandpipers) Spotted Sandpiper Actitis macularius O: Gruiformes (Cranes & Allies) F: Rallidae (Rails) Gray-Cowled Wood-Rail Aramides cajaneus O: Accipitriformes (Diurnal Birds of Prey) F: Cathartidae (Vultures & Condors) Black Vulture Coragyps atratus Turkey Vulture Cathartes aura F: Pandionidae (Osprey) Osprey Pandion haliaetus F: Accipitridae (Hawks, Eagles & Kites) Barred Hawk Morphnarchus princeps Broad-winged Hawk Buteo platypterus Double-toothed Kite Harpagus bidentatus Gray-headed Kite Leptodon cayanensis Northern Harrier Circus cyaneus Ornate Hawk-Eagle Spizaetus ornatus Red-tailed
    [Show full text]
  • Issn 0972- 1800
    ISSN 0972- 1800 VOLUME 21, NO. 4 QUARTERLY OCTOBER-DECEMBER, 2019 Date of Publication: 28th December, 2019 BIONOTES A Quarterly Newsletter for Research Notes and News On Any Aspect Related with Life Forms BIONOTES articles are abstracted/indexed/available in the Indian Science Abstracts, INSDOC; Zoological Record; Thomson Reuters (U.S.A); CAB International (U.K.); The Natural History Museum Library & Archives, London: Library Naturkundemuseum, Erfurt (Germany) etc. and online databases. Founder Editor Published by Dr. R.K. Varshney, A Biologists Dr. R.K. Varshney, Confrerie, Raj Bhawan, Manik Chowk, Ex- Additional Director, Aligarh (up to volume 20 (2018)) R.N.I. Zoological Survey of India, Kolkata Registration No. 71669/99. Manuscripts: Publication Policy: Please E-mail to [email protected]. Information, statements or findings published Guidelines for Authors: BIONOTES are the views of its author/ source only. publishes short notes on any aspect of Page Charges: biology. Usually submissions are reviewed by one or two reviewers. First page or part thereof: Rs.250/-. Subsequent pages or part thereof: Rs. 200/- Kindly submit a manuscript after studying the each. format used in this journal (http://www.entosocindia.org/).Editor Payments: reserves the right to reject articles that do not Please send a bank draft/Multi City Cheque in adhere to our format. Please provide a contact the name of 'BUTTERFLY RESEARCH TRUST' payable at BHIMTAL to the address telephone number. Photographs may be given below. For sending money by NEFT, included in the E-edition of the journal. No bank particulars are Butterfly Research Trust, proofs will be supplied. Authors will be IDBI BANK, BHIMTAL branch IFSC provided with a pdf file of their IBLK0000404 A/C No.
    [Show full text]
  • Alpha Codes for 2168 Bird Species (And 113 Non-Species Taxa) in Accordance with the 62Nd AOU Supplement (2021), Sorted Taxonomically
    Four-letter (English Name) and Six-letter (Scientific Name) Alpha Codes for 2168 Bird Species (and 113 Non-Species Taxa) in accordance with the 62nd AOU Supplement (2021), sorted taxonomically Prepared by Peter Pyle and David F. DeSante The Institute for Bird Populations www.birdpop.org ENGLISH NAME 4-LETTER CODE SCIENTIFIC NAME 6-LETTER CODE Highland Tinamou HITI Nothocercus bonapartei NOTBON Great Tinamou GRTI Tinamus major TINMAJ Little Tinamou LITI Crypturellus soui CRYSOU Thicket Tinamou THTI Crypturellus cinnamomeus CRYCIN Slaty-breasted Tinamou SBTI Crypturellus boucardi CRYBOU Choco Tinamou CHTI Crypturellus kerriae CRYKER White-faced Whistling-Duck WFWD Dendrocygna viduata DENVID Black-bellied Whistling-Duck BBWD Dendrocygna autumnalis DENAUT West Indian Whistling-Duck WIWD Dendrocygna arborea DENARB Fulvous Whistling-Duck FUWD Dendrocygna bicolor DENBIC Emperor Goose EMGO Anser canagicus ANSCAN Snow Goose SNGO Anser caerulescens ANSCAE + Lesser Snow Goose White-morph LSGW Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Intermediate-morph LSGI Anser caerulescens caerulescens ANSCCA + Lesser Snow Goose Blue-morph LSGB Anser caerulescens caerulescens ANSCCA + Greater Snow Goose White-morph GSGW Anser caerulescens atlantica ANSCAT + Greater Snow Goose Intermediate-morph GSGI Anser caerulescens atlantica ANSCAT + Greater Snow Goose Blue-morph GSGB Anser caerulescens atlantica ANSCAT + Snow X Ross's Goose Hybrid SRGH Anser caerulescens x rossii ANSCAR + Snow/Ross's Goose SRGO Anser caerulescens/rossii ANSCRO Ross's Goose
    [Show full text]
  • Band-Tailed Pigeon, Photo by ©Robert Shantz Size Inches 8; Nests More Likely Where Canopy Closure and Tree Height Are Greater Than Average for the Area 10
    Breeding Habitat Use Profile Habitats Used in Arizona Primary: Mixed Conifer Forest Secondary: Pine Forest and Madrean Pine-Oak Woodlands Key Habitat Parameters Plant Composition Mixed conifer and pine-oak, including white fir, Douglas fir, ponderosa pine, Gambel oak; Madrean pine-oak: evergreen oaks, Chihuahua and Apache pines8 Plant Density and 60 – 200 trees/ac 9; typical DBH 6 – 12 Band-tailed Pigeon, photo by ©Robert Shantz Size inches 8; nests more likely where canopy closure and tree height are greater than average for the area 10 Conservation Profile Microhabitat Berry-producing shrubs and oaks enhance Species Concerns Features habitat; but well-developed shrub under- story not required 8 Catastrophic Fires Conservation Status Lists Landscape Wide-ranging or nomadic; may forage long distances from nest; area requirements USFWS 1 No unknown AZGFD 2 Tier 1C Elevation Range in Arizona 3 DoD No 11 BLM 4 No 4,800 – 9,400 feet PIF Watch List 5b Yellow List Density Estimate PIF Regional Concern 5a None Home range: 750 – 450,000 acres (reported in Oregon) 8 Migratory Bird Treaty Act Density: unknown Covered PIF Breeding Population Size Estimates 6 Arizona 40,000 ◑ Natural History Profile Global 6,100,000 ◑ Seasonal Distribution in Arizona Percent in Arizona .65% Breeding Mid-April – August 11; occasionally later PIF Population Goal 5b Migration April – May; September – October Reverse Decline Winter Irregular or absent November – March Trends in Arizona Nest and Nesting Habits Historical (pre-BBS) Unknown 8 Type of Nest Platform 7 BBS
    [Show full text]
  • Experimental Infections of Wild Birds with West Nile Virus
    Viruses 2014, 6, 752-781; doi:10.3390/v6020752 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review Experimental Infections of Wild Birds with West Nile Virus Elisa Pérez-Ramírez *, Francisco Llorente and Miguel Ángel Jiménez-Clavero Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos (Madrid), 28130, Spain; E-Mails: [email protected] (F.L.); [email protected] (M.A.J.-C.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-91-6202300; Fax: +34-91-6202247. Received: 2 December 2013; in revised form: 4 February 2014 / Accepted: 4 February 2014 / Published: 13 February 2014 Abstract: Avian models of West Nile virus (WNV) disease have become pivotal in the study of infection pathogenesis and transmission, despite the intrinsic constraints that represents this type of experimental research that needs to be conducted in biosecurity level 3 (BSL3) facilities. This review summarizes the main achievements of WNV experimental research carried out in wild birds, highlighting advantages and limitations of this model. Viral and host factors that determine the infection outcome are analyzed in detail, as well as recent discoveries about avian immunity, viral transmission, and persistence achieved through experimental research. Studies of laboratory infections in the natural host will help to understand variations in susceptibility and reservoir competence among bird species, as well as in the epidemiological patterns found in different affected areas. Keywords: West Nile virus; wild birds; experimental infection; pathogenesis; transmission; immunity; host competence 1. Introduction West Nile virus (WNV, Flaviviridae, Flavivirus) is an emerging zoonotic arbovirus (arthropod- borne virus) widely distributed throughout the world and with considerable impact both on public health and on animal health [1].
    [Show full text]
  • WORLD LIST Updated 28 June 2019 Bird-Window Collision Species
    1305 species WORLD LIST Updated 28 June 2019 Bird-window Collision Species Family scientific name Common name Genus Species 1 Tinamidae Brown Tinamou Crypturellus obsoletus 2 Cracidae Black Guan Chamaepetes unicolor 3 Plain Chachalaca Ortalis vetula 4 Grey-headed Chachalaca Ortalis cinereiceps 5 Speckled Chachalaca Ortalis guttata 6 Odontophoridae Mountain Quail Oreortyx pictus 7 Northern Bobwhite Colinus virginianus 8 Crested Bobwhite Colinus cristatus 9 Elegant Quail Callipepla douglasii 10 Gambel's Quail Callipepla gambelii 11 California Quail Callipepla californica 12 Spotted Wood-quail Odontophorus guttatus 13 Phasianidae Common Quail Coturnix coturnix 14 Japanese Quail Coturnix japonica 15 Harlequin Quail Coturnix delegorguei 16 Stubble Quail Coturnix pectoralis 17 Brown Quail Synoicus ypsilophorus 18 Rock Partridge Alectoris graeca 19 Barbary Partridge Alectoris barbara 20 Red-legged Partridge Alectoris rufa 21 Chinese Bamboo-partridge Bambusicola thoracicus 22 Copper Pheasant Syrmaticus soemmerringii 23 Common Pheasant Phasianus colchicus 24 Grey Partridge Perdix perdix 25 Wild Turkey Meleagris gallopavo 26 Ruffed Grouse Bonasa umbellus 27 Hazel Grouse Bonasa bonasia 28 Willow Grouse Lagopus lagopus 29 Rock Ptarmigan Lagopus muta 30 Spruce Grouse Falcipennis canadensis 31 Western Capercaillie Tetrao urogallus 32 Black Grouse Lyrurus tetrix 33 Anatidae Ruddy Duck Oxyura jamaicensis 34 Pink-eared Duck Malacorhynchus membranaceus 35 Black Swan Cygnus atratus 36 Mute Swan Cygnus olor 37 Greater White-fronted Goose Anser albifrons 38
    [Show full text]
  • UNC-11, a Caenorhabditis Elegans AP180 Homologue, Regulates The
    The Auk 118(4):874-887, 2001 A MOLECULAR PHYLOGENY OF THE DOVE GENERA STREPTOPELIA AND COLUMBA K ev in P. Jo h n so n ,1-3-5 S elv in o de K o r t ,2 K a ren D in w o o d ey ,3 A. C. M a tem a n ,4 C a r el ten C a t e ,2 C. M . L essells,4 a n d D a le H. C la y to n 3 1Illinois Natural History Survey, Champaign, Illinois 61820, USA; institute of Evolutionary and Ecological Sciences, Leiden University, Leiden, The Netherlands; departm en t o f Biology, University o f Utah, Salt Lake City, Utah 84112, USA; and Netherlands Institute of Ecology, Heteren, The Netherlands A b s t r a c t . — Evolutionary history of the dove genus Streptopelia has not been examined with rigorous phylogenetic methods. We present a study of phylogenetic relationships of Streptopelia based on over 3,600 base pairs of nuclear and mitochondrial gene sequences. To test for monophyly of Streptopelia, we used several other columbiform taxa, including Colum- ba (Old and New World), Macropygia, Reinwardtoena, and the enigmatic Pink Pigeon (Nesoenas mayeri). On the basis of our analyses, Streptopelia (as currently defined) is not monophyletic; Nesoenas mayeri is the sister species to S. picturata, resulting in paraphyly of Streptopelia. Three main clades of Streptopelia are identified: (1) S. chinensis plus S. senegalensis, (2) S. picturata plus Nesoenas mayeri, and (3) all other species of Streptopelia. It is unclear whether those clades form a monophyletic group to the exclusion of Old World Columba, but several analyses pro­ duce that result.
    [Show full text]
  • Evidence of Exposure of Laughing Doves (Spilopelia Senegalensis) to West Nile and Usutu Viruses in Southern Tunisian Oases
    Epidemiol. Infect. (2017), 145, 2808–2816. © Cambridge University Press 2017 doi:10.1017/S0950268817001789 Evidence of exposure of laughing doves (Spilopelia senegalensis) to West Nile and Usutu viruses in southern Tunisian oases T. AYADI1,A.HAMMOUDA1,A.POUX2,T.BOULINIER3, S. LECOLLINET2 1 AND S. SELMI * 1 Unité de Recherche ‘Ecologie de la Faune Terrestre’ (UR17ES44), Faculté des Sciences, Université de Gabès, Gabès, Tunisia 2 UPE, ANSES, Laboratoire de Santé Animale de Maisons-Alfort, UMR1161 Virologie, INRA, ANSES, ENVA, Maisons-Alfort, France 3 Centre d’Ecologie Fonctionnelle et Evolutive, CNRS-Université de Montpellier UMR 5175, France Received 28 March 2017; Final revision 3 July 2017; Accepted 17 July 2017; first published online 14 August 2017 SUMMARY It has previously been suggested that southern Tunisian oases may be suitable areas for the circulation of flaviviruses. In order to anticipate and prevent possible epidemiological spread of flaviviruses in humans and domestic animals, the ecology of their transmission in the oasis system needs to be better understood. Thus, the aim of this study was to assess the seroprevalence of anti-flavivirus antibodies in the laughing dove (Spilopelia senegalensis), an abundant resident bird in Tunisian oases. Anti-flavivirus antibodies were detected in 17% of sampled doves. Ten per cent of the total tested doves were West Nile virus (WNV) seropositive and 4% were Usutu virus (USUV) seropositive, which provides the first evidence of USUV circulation in Tunisian birds. We also found that the occurrence probability of anti-flavivirus antibodies in dove plasma increased with decreasing distance to coast, suggesting that doves inhabiting coastal oases were more exposed to flaviviruses compared with those inhabiting inland oases.
    [Show full text]