Biostatistics Correlation and Regression
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists
Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists Seong Ho Park, MD1 The receiver operating characteristic (ROC) curve, which is defined as a plot of Jin Mo Goo, MD1 test sensitivity as the y coordinate versus its 1-specificity or false positive rate Chan-Hee Jo, PhD2 (FPR) as the x coordinate, is an effective method of evaluating the performance of diagnostic tests. The purpose of this article is to provide a nonmathematical introduction to ROC analysis. Important concepts involved in the correct use and interpretation of this analysis, such as smooth and empirical ROC curves, para- metric and nonparametric methods, the area under the ROC curve and its 95% confidence interval, the sensitivity at a particular FPR, and the use of a partial area under the ROC curve are discussed. Various considerations concerning the collection of data in radiological ROC studies are briefly discussed. An introduc- tion to the software frequently used for performing ROC analyses is also present- ed. he receiver operating characteristic (ROC) curve, which is defined as a Index terms: plot of test sensitivity as the y coordinate versus its 1-specificity or false Diagnostic radiology positive rate (FPR) as the x coordinate, is an effective method of evaluat- Receiver operating characteristic T (ROC) curve ing the quality or performance of diagnostic tests, and is widely used in radiology to Software reviews evaluate the performance of many radiological tests. Although one does not necessar- Statistical analysis ily need to understand the complicated mathematical equations and theories of ROC analysis, understanding the key concepts of ROC analysis is a prerequisite for the correct use and interpretation of the results that it provides. -
Epidemiology and Biostatistics (EPBI) 1
Epidemiology and Biostatistics (EPBI) 1 Epidemiology and Biostatistics (EPBI) Courses EPBI 2219. Biostatistics and Public Health. 3 Credit Hours. This course is designed to provide students with a solid background in applied biostatistics in the field of public health. Specifically, the course includes an introduction to the application of biostatistics and a discussion of key statistical tests. Appropriate techniques to measure the extent of disease, the development of disease, and comparisons between groups in terms of the extent and development of disease are discussed. Techniques for summarizing data collected in samples are presented along with limited discussion of probability theory. Procedures for estimation and hypothesis testing are presented for means, for proportions, and for comparisons of means and proportions in two or more groups. Multivariable statistical methods are introduced but not covered extensively in this undergraduate course. Public Health majors, minors or students studying in the Public Health concentration must complete this course with a C or better. Level Registration Restrictions: May not be enrolled in one of the following Levels: Graduate. Repeatability: This course may not be repeated for additional credits. EPBI 2301. Public Health without Borders. 3 Credit Hours. Public Health without Borders is a course that will introduce you to the world of disease detectives to solve public health challenges in glocal (i.e., global and local) communities. You will learn about conducting disease investigations to support public health actions relevant to affected populations. You will discover what it takes to become a field epidemiologist through hands-on activities focused on promoting health and preventing disease in diverse populations across the globe. -
Simple Linear Regression with Least Square Estimation: an Overview
Aditya N More et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (6) , 2016, 2394-2396 Simple Linear Regression with Least Square Estimation: An Overview Aditya N More#1, Puneet S Kohli*2, Kshitija H Kulkarni#3 #1-2Information Technology Department,#3 Electronics and Communication Department College of Engineering Pune Shivajinagar, Pune – 411005, Maharashtra, India Abstract— Linear Regression involves modelling a relationship amongst dependent and independent variables in the form of a (2.1) linear equation. Least Square Estimation is a method to determine the constants in a Linear model in the most accurate way without much complexity of solving. Metrics where such as Coefficient of Determination and Mean Square Error is the ith value of the sample data point determine how good the estimation is. Statistical Packages is the ith value of y on the predicted regression such as R and Microsoft Excel have built in tools to perform Least Square Estimation over a given data set. line The above equation can be geometrically depicted by Keywords— Linear Regression, Machine Learning, Least Squares Estimation, R programming figure 2.1. If we draw a square at each point whose length is equal to the absolute difference between the sample data point and the predicted value as shown, each of the square would then represent the residual error in placing the I. INTRODUCTION regression line. The aim of the least square method would Linear Regression involves establishing linear be to place the regression line so as to minimize the sum of relationships between dependent and independent variables. -
Biostatistics (EHCA 5367)
The University of Texas at Tyler Executive Health Care Administration MPA Program Spring 2019 COURSE NUMBER EHCA 5367 COURSE TITLE Biostatistics INSTRUCTOR Thomas Ross, PhD INSTRUCTOR INFORMATION email - [email protected] – this one is checked once a week [email protected] – this one is checked Monday thru Friday Phone - 828.262.7479 REQUIRED TEXT: Wayne Daniel and Chad Cross, Biostatistics, 10th ed., Wiley, 2013, ISBN: 978-1- 118-30279-8 COURSE DESCRIPTION This course is designed to teach students the application of statistical methods to the decision-making process in health services administration. Emphasis is placed on understanding the principles in the meaning and use of statistical analyses. Topics discussed include a review of descriptive statistics, the standard normal distribution, sampling distributions, t-tests, ANOVA, simple and multiple regression, and chi-square analysis. Students will use Microsoft Excel or other appropriate computer software in the completion of assignments. COURSE LEARNING OBJECTIVES Upon completion of this course, the student will be able to: 1. Use descriptive statistics and graphs to describe data 2. Understand basic principles of probability, sampling distributions, and binomial, Poisson, and normal distributions 3. Formulate research questions and hypotheses 4. Run and interpret t-tests and analyses of variance (ANOVA) 5. Run and interpret regression analyses 6. Run and interpret chi-square analyses GRADING POLICY Students will be graded on homework, midterm, and final exam, see weights below. ATTENDANCE/MAKE UP POLICY All students are expected to attend all of the on-campus sessions. Students are expected to participate in all online discussions in a substantive manner. If circumstances arise that a student is unable to attend a portion of the on-campus session or any of the online discussions, special arrangements must be made with the instructor in advance for make-up activity. -
Biostatistics
Biostatistics As one of the nation’s premier centers of biostatistical research, the Department of Biostatistics is dedicated to addressing high priority public health and biomedical issues and driving scientific discovery through specialized analytic techniques and catalyzing interdisciplinary research. Our world-renowned experts are engaged in developing novel statistical methods to break new ground in current research frontiers. The Department has become a leader in mission the analysis and interpretation of complex data in genetics, brain science, clinical trials, and personalized medicine. Our mission is to improve disease prevention, In these and other areas, our faculty play key roles in diagnosis, treatment, and the public’s health by public health, mental health, social science, and biomedical developing new theoretical results and applied research as collaborators and conveners. Current research statistical methods, collaborating with scientists in is wide-ranging. designing informative experiments and analyzing their data to weigh evidence and obtain valid Examples of our work: findings, and educating the next generation of biostatisticians through an innovative and relevant • Researching efficient statistical methods using large-scale curriculum, hands-on experience, and exposure biomarker data for disease risk prediction, informing to the latest in research findings and methods. clinical trial designs, discovery of personalized treatment regimes, and guiding new and more effective interventions history • Analyzing data to -
Biostatistics (BIOSTAT) 1
Biostatistics (BIOSTAT) 1 This course covers practical aspects of conducting a population- BIOSTATISTICS (BIOSTAT) based research study. Concepts include determining a study budget, setting a timeline, identifying study team members, setting a strategy BIOSTAT 301-0 Introduction to Epidemiology (1 Unit) for recruitment and retention, developing a data collection protocol This course introduces epidemiology and its uses for population health and monitoring data collection to ensure quality control and quality research. Concepts include measures of disease occurrence, common assurance. Students will demonstrate these skills by engaging in a sources and types of data, important study designs, sources of error in quarter-long group project to draft a Manual of Operations for a new epidemiologic studies and epidemiologic methods. "mock" population study. BIOSTAT 302-0 Introduction to Biostatistics (1 Unit) BIOSTAT 429-0 Systematic Review and Meta-Analysis in the Medical This course introduces principles of biostatistics and applications Sciences (1 Unit) of statistical methods in health and medical research. Concepts This course covers statistical methods for meta-analysis. Concepts include descriptive statistics, basic probability, probability distributions, include fixed-effects and random-effects models, measures of estimation, hypothesis testing, correlation and simple linear regression. heterogeneity, prediction intervals, meta regression, power assessment, BIOSTAT 303-0 Probability (1 Unit) subgroup analysis and assessment of publication -
Generalized Linear Models
Generalized Linear Models Advanced Methods for Data Analysis (36-402/36-608) Spring 2014 1 Generalized linear models 1.1 Introduction: two regressions • So far we've seen two canonical settings for regression. Let X 2 Rp be a vector of predictors. In linear regression, we observe Y 2 R, and assume a linear model: T E(Y jX) = β X; for some coefficients β 2 Rp. In logistic regression, we observe Y 2 f0; 1g, and we assume a logistic model (Y = 1jX) log P = βT X: 1 − P(Y = 1jX) • What's the similarity here? Note that in the logistic regression setting, P(Y = 1jX) = E(Y jX). Therefore, in both settings, we are assuming that a transformation of the conditional expec- tation E(Y jX) is a linear function of X, i.e., T g E(Y jX) = β X; for some function g. In linear regression, this transformation was the identity transformation g(u) = u; in logistic regression, it was the logit transformation g(u) = log(u=(1 − u)) • Different transformations might be appropriate for different types of data. E.g., the identity transformation g(u) = u is not really appropriate for logistic regression (why?), and the logit transformation g(u) = log(u=(1 − u)) not appropriate for linear regression (why?), but each is appropriate in their own intended domain • For a third data type, it is entirely possible that transformation neither is really appropriate. What to do then? We think of another transformation g that is in fact appropriate, and this is the basic idea behind a generalized linear model 1.2 Generalized linear models • Given predictors X 2 Rp and an outcome Y , a generalized linear model is defined by three components: a random component, that specifies a distribution for Y jX; a systematic compo- nent, that relates a parameter η to the predictors X; and a link function, that connects the random and systematic components • The random component specifies a distribution for the outcome variable (conditional on X). -
Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy
Review Good Statistical Practices for Contemporary Meta-Analysis: Examples Based on a Systematic Review on COVID-19 in Pregnancy Yuxi Zhao and Lifeng Lin * Department of Statistics, Florida State University, Tallahassee, FL 32306, USA; [email protected] * Correspondence: [email protected] Abstract: Systematic reviews and meta-analyses have been increasingly used to pool research find- ings from multiple studies in medical sciences. The reliability of the synthesized evidence depends highly on the methodological quality of a systematic review and meta-analysis. In recent years, several tools have been developed to guide the reporting and evidence appraisal of systematic reviews and meta-analyses, and much statistical effort has been paid to improve their methodological quality. Nevertheless, many contemporary meta-analyses continue to employ conventional statis- tical methods, which may be suboptimal compared with several alternative methods available in the evidence synthesis literature. Based on a recent systematic review on COVID-19 in pregnancy, this article provides an overview of select good practices for performing meta-analyses from sta- tistical perspectives. Specifically, we suggest meta-analysts (1) providing sufficient information of included studies, (2) providing information for reproducibility of meta-analyses, (3) using appro- priate terminologies, (4) double-checking presented results, (5) considering alternative estimators of between-study variance, (6) considering alternative confidence intervals, (7) reporting predic- Citation: Zhao, Y.; Lin, L. Good tion intervals, (8) assessing small-study effects whenever possible, and (9) considering one-stage Statistical Practices for Contemporary methods. We use worked examples to illustrate these good practices. Relevant statistical code Meta-Analysis: Examples Based on a is also provided. -
Lecture 18: Regression in Practice
Regression in Practice Regression in Practice ● Regression Errors ● Regression Diagnostics ● Data Transformations Regression Errors Ice Cream Sales vs. Temperature Image source Linear Regression in R > summary(lm(sales ~ temp)) Call: lm(formula = sales ~ temp) Residuals: Min 1Q Median 3Q Max -74.467 -17.359 3.085 23.180 42.040 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -122.988 54.761 -2.246 0.0513 . temp 28.427 2.816 10.096 3.31e-06 *** --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 35.07 on 9 degrees of freedom Multiple R-squared: 0.9189, Adjusted R-squared: 0.9098 F-statistic: 101.9 on 1 and 9 DF, p-value: 3.306e-06 Some Goodness-of-fit Statistics ● Residual standard error ● R2 and adjusted R2 ● F statistic Anatomy of Regression Errors Image Source Residual Standard Error ● A residual is a difference between a fitted value and an observed value. ● The total residual error (RSS) is the sum of the squared residuals. ○ Intuitively, RSS is the error that the model does not explain. ● It is a measure of how far the data are from the regression line (i.e., the model), on average, expressed in the units of the dependent variable. ● The standard error of the residuals is roughly the square root of the average residual error (RSS / n). ○ Technically, it’s not √(RSS / n), it’s √(RSS / (n - 2)); it’s adjusted by degrees of freedom. R2: Coefficient of Determination ● R2 = ESS / TSS ● Interpretations: ○ The proportion of the variance in the dependent variable that the model explains. -
Chapter 2 Simple Linear Regression Analysis the Simple
Chapter 2 Simple Linear Regression Analysis The simple linear regression model We consider the modelling between the dependent and one independent variable. When there is only one independent variable in the linear regression model, the model is generally termed as a simple linear regression model. When there are more than one independent variables in the model, then the linear model is termed as the multiple linear regression model. The linear model Consider a simple linear regression model yX01 where y is termed as the dependent or study variable and X is termed as the independent or explanatory variable. The terms 0 and 1 are the parameters of the model. The parameter 0 is termed as an intercept term, and the parameter 1 is termed as the slope parameter. These parameters are usually called as regression coefficients. The unobservable error component accounts for the failure of data to lie on the straight line and represents the difference between the true and observed realization of y . There can be several reasons for such difference, e.g., the effect of all deleted variables in the model, variables may be qualitative, inherent randomness in the observations etc. We assume that is observed as independent and identically distributed random variable with mean zero and constant variance 2 . Later, we will additionally assume that is normally distributed. The independent variables are viewed as controlled by the experimenter, so it is considered as non-stochastic whereas y is viewed as a random variable with Ey()01 X and Var() y 2 . Sometimes X can also be a random variable. -
Pubh 7405: REGRESSION ANALYSIS
PubH 7405: REGRESSION ANALYSIS Review #2: Simple Correlation & Regression COURSE INFORMATION • Course Information are at address: www.biostat.umn.edu/~chap/pubh7405 • On each class web page, there is a brief version of the lecture for the day – the part with “formulas”; you can review, preview, or both – and as often as you like. • Follow Reading & Homework assignments at the end of the page when & if applicable. OFFICE HOURS • Instructor’s scheduled office hours: 1:15 to 2:15 Monday & Wednesday, in A441 Mayo Building • Other times are available by appointment • When really needed, can just drop in and interrupt me; could call before coming – making sure that I’m in. • I’m at a research facility on Fridays. Variables • A variable represents a characteristic or a class of measurement. It takes on different values on different subjects/persons. Examples include weight, height, race, sex, SBP, etc. The observed values, also called “observations,” form items of a data set. • Depending on the scale of measurement, we have different types of data. There are “observed variables” (Height, Weight, etc… each takes on different values on different subjects/person) and there are “calculated variables” (Sample Mean, Sample Proportion, etc… each is a “statistic” and each takes on different values on different samples). The Standard Deviation of a calculated variable is called the Standard Error of that variable/statistic. A “variable” – sample mean, sample standard deviation, etc… included – is like a “function”; when you apply it to a target element in its domain, the result is a “number”. For example, “height” is a variable and “the height of Mrs. -
1 Simple Linear Regression I – Least Squares Estimation
1 Simple Linear Regression I – Least Squares Estimation Textbook Sections: 18.1–18.3 Previously, we have worked with a random variable x that comes from a population that is normally distributed with mean µ and variance σ2. We have seen that we can write x in terms of µ and a random error component ε, that is, x = µ + ε. For the time being, we are going to change our notation for our random variable from x to y. So, we now write y = µ + ε. We will now find it useful to call the random variable y a dependent or response variable. Many times, the response variable of interest may be related to the value(s) of one or more known or controllable independent or predictor variables. Consider the following situations: LR1 A college recruiter would like to be able to predict a potential incoming student’s first–year GPA (y) based on known information concerning high school GPA (x1) and college entrance examination score (x2). She feels that the student’s first–year GPA will be related to the values of these two known variables. LR2 A marketer is interested in the effect of changing shelf height (x1) and shelf width (x2)on the weekly sales (y) of her brand of laundry detergent in a grocery store. LR3 A psychologist is interested in testing whether the amount of time to become proficient in a foreign language (y) is related to the child’s age (x). In each case we have at least one variable that is known (in some cases it is controllable), and a response variable that is a random variable.