The Coral Reef Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What Is Coral Bleaching
Mote Marine Laboratory / Florida Keys National Marine Sanctuary Coral Bleaching Early Warning Network Current Conditions Report #20180727 Updated July 27, 2018 Summary: Based on climate predictions, current conditions, and field observations, the threat for mass coral bleaching within the FKNMS is currently MODERATE. NOAA Coral Reef Watch Current and 60% Probability Coral Bleaching Alert Outlook July 25, 2018 (experimental) June 30, 2015 (experimental) Figure 2. NOAA’s Experimental 5km Coral Bleaching HotSpot Map for Florida July 25, 2018. coralreefwatch.noaa.gov/vs/gauges/florida_keys.php Figure 1. NOAA’s 5 km Experimental Current and 60% Probability Coral Bleaching Alert Outlook Areas through October, 2018. Updated July 25, 2018. coralreefwatch.noaa.gov/vs/gauges/florida_keys.php Weather and Sea Temperatures According to the newly released NOAA Coral Reef Watch (CRW) experimental 5 kilometer (km) Satellite Current and 60% Probability Coral Bleaching Alert Area, most areas of the Florida Keys National Marine Sanctuary are under a bleaching Warning or Alert Level 1, which means bleaching is likely and potential for more bleaching warnings and alerts if sea Figure 3. NOAA’s Experimental 5km Degree Heating temperatures continue to increase in the next few weeks (Fig. 1). Weeks Map for Florida July 25, 2018. coralreefwatch.noaa.gov/vs/gauges/florida_keys.php Recent remote sensing analysis by NOAA’s CRW program indicates that most of the Florida Keys region is currently experiencing thermal stress. NOAA’s 35 new experimental 5 km Coral Bleaching HotSpot Map (Fig. 2), which 30 illustrates current sea surface temperatures compared to the average temperature for the warmest month, shows elevated temperatures for the 25 Florida Keys. -
CORAL REEF COMMUNITIES from NATURAL RESERVES in PUERTO RICO : a Quantitative Baseline Assessment for Prospective Monitoring Programs
Final Report CORAL REEF COMMUNITIES FROM NATURAL RESERVES IN PUERTO RICO : a quantitative baseline assessment for prospective monitoring programs Volume 2 : Cabo Rojo, La Parguera, Isla Desecheo, Isla de Mona by : Jorge (Reni) García-Sais Roberto L. Castro Jorge Sabater Clavell Milton Carlo Reef Surveys P. O. Box 3015, Lajas, P. R. 00667 [email protected] Final report submitted to the U. S. Coral Reef Initiative (CRI-NOAA) and DNER August, 2001 i PREFACE A baseline quantitative assessment of coral reef communities in Natural Reserves is one of the priorities of the U. S. Coral Reef Initiative Program (NOAA) for Puerto Rico. This work is intended to serve as the framework of a prospective research program in which the ecological health of these valuable marine ecosystems can be monitored. An expanded and more specialized research program should progressively construct a far more comprehensive characterization of the reef communities than what this initial work provides. It is intended that the better understanding of reef communities and the available scientific data made available through this research can be applied towards management programs designed at the protection of coral reefs and associated fisheries in Puerto Rico and the Caribbean. More likely, this is not going to happen without a bold public awareness program running parallel to the basic scientific effort. Thus, the content of this document is simplified enough as to allow application into public outreach and education programs. This is the second of three volumes providing quantitative baseline characterizations of coral reefs from Natural Reserves in Puerto Rico. ACKNOWLEDGEMENTS The authors want to express their sincere gratitude to Mrs. -
High Clonality in Acropora Palmata and Acropora Cervicornis Populations of Guadeloupe, French Lesser Antilles
CSIRO PUBLISHING Marine and Freshwater Research Short Communication http://dx.doi.org/10.1071/MF14181 High clonality in Acropora palmata and Acropora cervicornis populations of Guadeloupe, French Lesser Antilles A. JapaudA, C. BouchonA, J.-L. ManceauA and C. FauvelotB,C AUMR 7208 BOREA, LabEx CORAIL, Universite´ des Antilles et de la Guyane, BP 592, 97159 Pointe-a`-Pitre, Guadeloupe. BUMR 9220 ENTROPIE, LabEx CORAIL, Centre IRD de Noume´a, 101 Promenade Roger Laroque, BPA5, 98848 Noume´a, New Caledonia. CCorresponding author. Email: [email protected] Abstract. Since the 1980s, population densities of Acroporidae have dramatically declined in the Caribbean Sea. Quantitative censuses of Acroporidae provide information on the number of colonies (i.e. ramets), but not on the number of genetically distinct individuals (i.e. genets). In this context, the aim of our study was to provide an overview of the genetic status of Acropora populations in Guadeloupe by examining the genotypic richness of Acropora palmata and Acropora cervicornis. Using 14 microsatellite loci, we found extremely low genotypic richness for both species from Caye-a`-Dupont reef (i.e. 0.125 for A. palmata and nearly zero for A. cervicornis). Because genetic diversity contributes to the ability of organisms to evolve and adapt to new environmental conditions, our results are alarming in the context of ongoing global warming as long periods of clonal growth without sexual recruitment may lead to the extinction of these populations. Additional keywords: genotypic richness, Acroporidae, microsatellites, Caribbean Sea. Received 27 June 2014, accepted 5 November 2014, published online 19 March 2015 Introduction censuses of acroporid densities report on the number of ramets Stony corals of the Acroporidae (Class Anthozoa, Order Scler- (i.e. -
Mcginty Uta 2502D 11973.Pdf (2.846Mb)
A COMPARATIVE APPROACH TO ELUCIDATING THE PHYSIOLOGICAL RESPONSE IN SYMBIODINIUM TO CHANGES IN TEMPERATURE by ELIZABETH S. MCGINTY Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY THE UNIVERSITY OF TEXAS AT ARLINGTON December 2012 Copyright © by Elizabeth S. McGinty 2012 All Rights Reserved ACKNOWLEDGEMENTS A great many people have helped me reach this point, and I am so grateful for their kindness, generosity and, above all else, patience. My committee, Laura Mydlarz, Robert McMahon, Laura Gough, James Grover and Sophia Passy have been instrumental with their advice and guidance. Linda Taylor, Gloria Burlingham, Paulette Batten and Sherri Echols have made the often baffling maze of graduate school policies and protocols infinitely easier, and Ray Jones and Melissa Muenzler were an amazing resource in some of my most trying moments with technical equipment. My labmates through the years, Laura Hunt, Jorge Pinzón, Caroline Palmer, Jenna Pieczonka, and especially Whitney Mann, have been instrumental with their guidance, brainstorming, and research assistance. My friends and colleagues are too numerous to name, but the advice, support, cheery distractions and commiseration of Corey Rolke, Matt Steffenson, Claudia Marquez Jayme Walton, Michelle Green, Matt Mosely, and James Pharr have all been a crucial part of my success. The blood, sweat and tears we have shed together will bind this dissertation and remain strong in my memory long after the joys and pains we’ve faced have faded into a fuzzier version of reality. Finally, my family deserves much of the credit for where I am today. -
Coral Reef Fishes Which Forage in the Water Column
HelgotS.nder wiss. Meeresunters, 24, 292-306 (1973) Coral reef fishes which forage in the water column A review of their morphology, behavior, ecology and evolutionary implications W. P. DAVIS1, & R. S. BIRDSONG2 1 Mediterranean Marine Sorting Center; Khereddine, Tunisia, and 2 Department of Biology, Old Dominion University; Norfolk, Virginia, USA EXTRAIT: <<Fourrages. des poissons des r&ifs de coraux dans la colonne d'eau: Morpholo- gie, comportement, &ologie et ~volution. Dans un biotope ~t r&if de coraiI, des esp&es &roitement li~es peuvent servir d'exempIe de diff~renciatlon sur le plan de t'~volutlon. La radiation ~volutive de poissons repr&entant plusieurs familles du r~eif corallien tropical a conduit ~t plusieurs reprises ~t la formation de <dourragers dans la colonne d'eam>. Ce mode de vie comporte une s~rie de caract~res morphologiques et &hologiques d~finis. On trouve des ~xemples similaires dans I'eau douce et dans des habitats non tropicaux. Les traits distinctifs de cette sp&ialisation, la syst6matique, les caract~rlstiques &ologiques et celies se rapportant ~t l'6volution sont d&rits et discut~s. INTRODUCTION The rapid adoption of in situ studies to investigate lifeways of organisms in the oceans is succeeding in bringing the laboratory to the ocean. Before, the conclusions that observers and scientists were classically forced to accept oPcen represented in- accurate abstractions of things that could not be observed. During the past 10-20 years the cataloging of the fauna and flora of the coral reef habitats has been carried out at an escalated rate, coupled with the many and vast improvements in tools, allowing increased periods of continual observation under sea. -
Spatial and Temporal Distribution of the Demersal Fish Fauna in a Baltic Archipelago As Estimated by SCUBA Census
MARINE ECOLOGY - PROGRESS SERIES Vol. 23: 3143, 1985 Published April 25 Mar. Ecol. hog. Ser. 1 l Spatial and temporal distribution of the demersal fish fauna in a Baltic archipelago as estimated by SCUBA census B.-0. Jansson, G. Aneer & S. Nellbring Asko Laboratory, Institute of Marine Ecology, University of Stockholm, S-106 91 Stockholm, Sweden ABSTRACT: A quantitative investigation of the demersal fish fauna of a 160 km2 archipelago area in the northern Baltic proper was carried out by SCUBA census technique. Thirty-four stations covering seaweed areas, shallow soft bottoms with seagrass and pond weeds, and deeper, naked soft bottoms down to a depth of 21 m were visited at all seasons. The results are compared with those obtained by traditional gill-net fishing. The dominating species are the gobiids (particularly Pornatoschistus rninutus) which make up 75 % of the total fish fauna but only 8.4 % of the total biomass. Zoarces viviparus, Cottus gobio and Platichtys flesus are common elements, with P. flesus constituting more than half of the biomass. Low abundance of all species except Z. viviparus is found in March-April, gobies having a maximum in September-October and P. flesus in November. Spatially, P. rninutus shows the widest vertical range being about equally distributed between surface and 20 m depth. C. gobio aggregates in the upper 10 m. The Mytilus bottoms and the deeper soft bottoms are the most populated areas. The former is characterized by Gobius niger, Z. viviparus and Pholis gunnellus which use the shelter offered by the numerous boulders and stones. The latter is totally dominated by P. -
Checklist of Fish and Invertebrates Listed in the CITES Appendices
JOINTS NATURE \=^ CONSERVATION COMMITTEE Checklist of fish and mvertebrates Usted in the CITES appendices JNCC REPORT (SSN0963-«OStl JOINT NATURE CONSERVATION COMMITTEE Report distribution Report Number: No. 238 Contract Number/JNCC project number: F7 1-12-332 Date received: 9 June 1995 Report tide: Checklist of fish and invertebrates listed in the CITES appendices Contract tide: Revised Checklists of CITES species database Contractor: World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge, CB3 ODL Comments: A further fish and invertebrate edition in the Checklist series begun by NCC in 1979, revised and brought up to date with current CITES listings Restrictions: Distribution: JNCC report collection 2 copies Nature Conservancy Council for England, HQ, Library 1 copy Scottish Natural Heritage, HQ, Library 1 copy Countryside Council for Wales, HQ, Library 1 copy A T Smail, Copyright Libraries Agent, 100 Euston Road, London, NWl 2HQ 5 copies British Library, Legal Deposit Office, Boston Spa, Wetherby, West Yorkshire, LS23 7BQ 1 copy Chadwick-Healey Ltd, Cambridge Place, Cambridge, CB2 INR 1 copy BIOSIS UK, Garforth House, 54 Michlegate, York, YOl ILF 1 copy CITES Management and Scientific Authorities of EC Member States total 30 copies CITES Authorities, UK Dependencies total 13 copies CITES Secretariat 5 copies CITES Animals Committee chairman 1 copy European Commission DG Xl/D/2 1 copy World Conservation Monitoring Centre 20 copies TRAFFIC International 5 copies Animal Quarantine Station, Heathrow 1 copy Department of the Environment (GWD) 5 copies Foreign & Commonwealth Office (ESED) 1 copy HM Customs & Excise 3 copies M Bradley Taylor (ACPO) 1 copy ^\(\\ Joint Nature Conservation Committee Report No. -
Coral Feeding on Microalgae Assessed with Molecular Trophic Markers
Molecular Ecology (2013) doi: 10.1111/mec.12486 Coral feeding on microalgae assessed with molecular trophic markers MIGUEL C. LEAL,*† CHRISTINE FERRIER-PAGES,‡ RICARDO CALADO,* MEGAN E. THOMPSON,† MARC E. FRISCHER† and JENS C. NEJSTGAARD† *Departamento de Biologia & CESAM, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal, †Skidaway Institute of Oceanography, 10 Ocean Science Circle, 31411 Savannah, GA, USA, ‡Centre Scientifique de Monaco, Avenue St-Martin, 98000 Monaco, Monaco Abstract Herbivory in corals, especially for symbiotic species, remains controversial. To investi- gate the capacity of scleractinian and soft corals to capture microalgae, we conducted controlled laboratory experiments offering five algal species: the cryptophyte Rhodo- monas marina, the haptophytes Isochrysis galbana and Phaeocystis globosa, and the diatoms Conticribra weissflogii and Thalassiosira pseudonana. Coral species included the symbiotic soft corals Heteroxenia fuscescens and Sinularia flexibilis, the asymbiotic scleractinian coral Tubastrea coccinea, and the symbiotic scleractinian corals Stylophora pistillata, Pavona cactus and Oculina arbuscula. Herbivory was assessed by end-point PCR amplification of algae-specific 18S rRNA gene fragments purified from coral tissue genomic DNA extracts. The ability to capture microalgae varied with coral and algal species and could not be explained by prey size or taxonomy. Herbivory was not detected in S. flexibilis and S. pistillata. P. globosa was the only algal prey that was never captured by any coral. Although predation defence mechanisms have been shown for Phaeocystis spp. against many potential predators, this study is the first to suggest this for corals. This study provides new insights into herbivory in symbiotic corals and suggests that corals may be selective herbivorous feeders. -
Highly Variable Taxa-Specific Coral Bleaching Responses to Thermal
Vol. 648: 135–151, 2020 MARINE ECOLOGY PROGRESS SERIES Published August 27 https://doi.org/10.3354/meps13402 Mar Ecol Prog Ser OPEN ACCESS Highly variable taxa-specific coral bleaching responses to thermal stresses Timothy R. McClanahan1,*, Emily S. Darling1,2, Joseph M. Maina3, Nyawira A. Muthiga1, Stephanie D’agata1,3, Julien Leblond1, Rohan Arthur4,5, Stacy D. Jupiter1,6, Shaun K. Wilson7,8, Sangeeta Mangubhai1,6, Ali M. Ussi9, Mireille M. M. Guillaume10,11, Austin T. Humphries12,13, Vardhan Patankar14,15, George Shedrawi16,17, Julius Pagu18, Gabriel Grimsditch19 1Wildlife Conservation Society, Marine Program, Bronx, NY 10460, USA 2Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada 3Faculty of Science and Engineering, Department of Earth and Environmental Science, Macquarie University, Sydney, NSW 2109, Australia 4Nature Conservation Foundation, Amritha 1311, 12th Main, Vijaynagar 1st Stage Mysore 570017, India 5Center for Advanced Studies (CEAB), C. d’Acces Cala Sant Francesc, 14, 17300 Blanes, Spain 6Wildlife Conservation Society, Melanesia Program, 11 Ma’afu Street, Suva, Fiji 7Marine Science Program, Department of Biodiversity, Conservation and Attractions, Kensington, WA 6101, Australia 8Oceans Institute, University of Western Australia, Crawley, WA 6009, Australia 9Department of Natural Sciences, The State University of Zanzibar, Zanzibar, Tanzania 10Muséum National d’Histoire Naturelle, Aviv, Laboratoire BOREA MNHN-SU-UCN-UA-CNRS-IRD EcoFunc, 75005 Paris, France 11Laboratoire d’Excellence -
Cleaning Symbiosis Among California Inshore Fishes
CLEANING SYMBIOSIS AMONG CALIFORNIA INSHORE FISHES EDMUNDS. HOBSON' ABSTRACT Cleaning symbiosis among shore fishes was studied during 1968 and 1969 in southern California, with work centered at La Jolla. Three species are habitual cleaners: the seAoriF, Ozyjulis californica; the sharpnose seaperch, Phanerodon atripes; and the kelp perch, Brachyistius frenatus. Because of specific differences in habitat, there is little overlap in the cleaning areas of these three spe- cies. Except for juvenile sharpnose seaperch, cleaning is of secondary significance to these species, even though it may be of major significance to certain individuals. The tendency to clean varies between in- dividuals. Principal prey of most members of these species are free-living organisms picked from a substrate and from midwater-a mode of feeding that favors adaptations suited to cleaning. Because it is exceedingly abundant in a variety of habitats, the seiiorita is the predominant inshore cleaning fish in California. Certain aspects of its cleaning relate to the fact that only a few of the many seiioritas present at a given time will clean, and that this activity is not centered around well-defined cleaning stations, as has been reported for certain cleaning fishes elsewhere. Probably because cleaners are difficult to recognize among the many seiioritas that do not clean, other fishes.generally do not at- tempt to initiate-cleaning; rather, the activity is consistently initiated by the cleaner itself. An infest- ed fish approached by a cleaner generally drifts into an unusual attitude that advertises the temporary existence of the transient cleaning station to other fish in need of service, and these converge on the cleaner. -
Coral Species ID
Coral Species ID Colony shape (branching, mound, plates, column, crust, etc) Colony surface (bumpy, smooth, ridges) Polyp/Corallite Size (small, big) Polyp/Corallite shape (round/elliptical, irregular, y- shaped, „ innies vs outies‟ ridge/valley) Polyp color (green, brown, tan, yellow, olive, red) Different Corallite Shapes and Sizes Examples of Massive Stony Corals Montastraea Montastraea Suleimán © W.Harrigan © faveolata cavernosa S. © Diploria strigosa Porites astreoides © M. White© Montastraea faveolata MFAV Small, round polyps Form very large mounds, plates or crusts (to 4-5 m /12-15 ft) © S. ThorntonS. © Montastraea faveolata MFAV Surfaces smooth, ridged, or with bumps aligned in vertical rows © W. Harrigan © M. Weber © R. Steneck Montastraea faveolata MFAV Colonies are flattened, massive- plates with smooth surfaces under conditions of low light. Montastrea annularis MANN How similar to M. faveolata Small polyps Smooth surface How different Colonies are subdivided into numerous mounds or columns with live polyps at their summits. Plates at colony bases under low light conditions. (to 3-4 m/9-12 ft) Which is which? M. annularis M. faveolata MANN MFAV Montastrea franksi MFRA How similar to M. faveolata Small polyps and bumps Close-up How different Some polyps in bumps are larger, irregularly shaped, and may lack zooxanthellae. More aggressive spatial competitor. © P. Humann Montastrea franksi MFRA How similar to M. faveolata Form mounds, short columns, crusts, and/or plates. How different Bumps are scattered over colony surface. (to 3-4 m/9-12 ft) Montastrea franksi MFRA Flattened, massive plate morphology in low light conditions. Solenastrea bournoni SBOU How similar to M. annularis Small round polyps Mounds How different Lighter colors in life, Walls of some polyps are more distinct (“outies”) Bumpy colony surface (to ~1/2 m/<20 in) Solenastrea hyades SHYA How similar to S. -
Guide to the Identification of Precious and Semi-Precious Corals in Commercial Trade
'l'llA FFIC YvALE ,.._,..---...- guide to the identification of precious and semi-precious corals in commercial trade Ernest W.T. Cooper, Susan J. Torntore, Angela S.M. Leung, Tanya Shadbolt and Carolyn Dawe September 2011 © 2011 World Wildlife Fund and TRAFFIC. All rights reserved. ISBN 978-0-9693730-3-2 Reproduction and distribution for resale by any means photographic or mechanical, including photocopying, recording, taping or information storage and retrieval systems of any parts of this book, illustrations or texts is prohibited without prior written consent from World Wildlife Fund (WWF). Reproduction for CITES enforcement or educational and other non-commercial purposes by CITES Authorities and the CITES Secretariat is authorized without prior written permission, provided the source is fully acknowledged. Any reproduction, in full or in part, of this publication must credit WWF and TRAFFIC North America. The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, or the International Union for Conservation of Nature (IUCN). The designation of geographical entities in this publication and the presentation of the material do not imply the expression of any opinion whatsoever on the part of WWF, TRAFFIC, or IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership are held by WWF. TRAFFIC is a joint program of WWF and IUCN. Suggested citation: Cooper, E.W.T., Torntore, S.J., Leung, A.S.M, Shadbolt, T. and Dawe, C.