Integrability in Weakly Coupled Super Yang-Mills Theory: Form Factors, On-Shell Methods and Q-Operators

Total Page:16

File Type:pdf, Size:1020Kb

Integrability in Weakly Coupled Super Yang-Mills Theory: Form Factors, On-Shell Methods and Q-Operators Integrability in weakly coupled super Yang-Mills theory: form factors, on-shell methods and Q-operators Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von David Meidinger, M.Sc. Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Mathematisch-Naturwissenschaftlichen Fakultät Prof. Dr. Elmar Kulke Gutachter Prof. Dr. Matthias Staudacher Prof. Dr. Jan Plefka Prof. Dr. Dmytro Volin Tag der mündlichen Prüfung: 26.01.2018 Hiermit erkläre ich, die Dissertation selbstständig und nur unter Verwendung der angegebenen Hilfen und Hilfsmittel angefertigt zu haben. Ich habe mich anderwärts nicht um einen Doktorgrad beworben und besitze einen entsprechenden Doktorgrad nicht. Ich erkläre die Kenntnisnahme der dem Verfahren zugunde liegenden Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin vom 27. Juni 2012. ZUSAMMENFASSUNG Diese Arbeit untersucht die superkonforme N = 4 Yang-Mills-Theorie (N = 4 SYM) bei schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als Zustände des integrablen Modells, von dem vermutet wird, dass es der planaren Theorie zu Grunde zu liegt. Die Grundlage hierfür bilden moderne On-Shell-Methoden, insbesondere für Formfaktoren und nicht-planare On-Shell-Diagramme. Die Untersuchung von Streuam- plituden hat Verknüpfungen zwischen On-Shell-Methoden und der Yangschen Invarianz der Theorie aufgezeigt; die am besten vom Blickwinkel der Integrabilität aus verstande- nen Observablen sind hingegen die Zweipunktfunktionen zusammengesetzter Operatoren. Formfaktoren interpolieren zwischen diesen Größen und sind deshalb ein vielversprechen- der Untersuchungsgegenstand für eine einheitliche Beschreibung der integrablen Struktur der Theorie. Zu diesem Zweck leiten wir On-Shell-Diagramme für Formfaktoren des chiralen Energie- Impuls-Tensor-Multipletts aus der Britto-Cachazo-Feng-Witten-Rekursion her, und untersu- chen deren Eigenschaften. Sie erlauben die Herleitung eines Graßmannschen Integrals für diese Formfaktoren, d.h. einer Darstellung als Konturintegral in Graßmann-Mannigfaltig- keiten. Für Komponenten mit nächst-zu-maximaler Helizität (NMHV) bestimmen wir die entsprechende Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String- inspirierten Formulierung in Beziehung zu setzen. Mit Hilfe dieser On-Shell-Methoden zeigen wir dass sowohl Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts, als auch On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integ- rabler Transfermatrizen sind. Die entsprechenden Eigenwertgleichungen verallgemeinern die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin dass ein Teil der Yangschen Symmetrien trotz der Operatoreinfügung erhalten bleibt. Da die On-Shell-Diagramme von Formfaktoren in einem gewissen Sinne nichtplanar sind, er- weitern wir unsere Untersuchung auf allgemeine nichtplanare On-Shell-Funktionen. Wir zeigen dass diese Funktionen, obwohl sie erst in höheren Ordnungen der 1=N-Entwick- lung auftreten, einen Teil der Yangschen Symmetrien erhalten. Weitere, von Transfermatri- zen generierte Symmetrien können ebenfalls hergeleitet werden, und zeigen insbesondere dass Diagramme auf Zylindern als Intertwiner fungieren. Alle untersuchten Größen lassen sich als Graßmannsche Integrale darstellen, deren Integranden, wie wir zeigen, selbst als Zustände integabler Spinketten zu verstehen sind. On-Shell-Diagramme basieren auf Größen der führenden Ordnung der Störungsrech- nung. Als einen Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu höheren Schleifenordnungen untersuchen wir zusammengesetzte Operatoren. Hier erlaubt die Quanten-Spektral-Kurve (Quantum Spectral Curve, QSC) die nichtperturbative Berech- nung ihres Spektrums, liefert jedoch keine Information zur Form der Zustände selbst. Die QSC kann als algebraisches Q-System verstanden werden, welches in Operatorform durch Baxter Q-Operatoren formulierbar sein sollte. Diese Formulierung enthielte die vollständi- ge Information über die Eigenzustände. Um auf eine solche Operatorform der QSC hinzuar- beiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten, insbesondere jene welche N = 4 SYM zur führenden Schleifenordnung beschreibt. Wir entwickeln ein effiziente Methode zur Berechnung der Matrixelemente der Q-Operatoren. Dies erlaubt es das gesamte Q-System durch endliche Matrizen für jeden Anregungssektor zu realisieren, und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform. SUMMARY This thesis investigates weakly coupled N = 4 superconformal Yang-Mills theory (N = 4 SYM), aiming at a better understanding of on-shell and off-shell quantities as states of the integrable model that is conjectured to underlie the planar limit of the theory. The basis for this investigation are modern on-shell methods, in particular for form factors and non- planar on-shell functions. The study of scattering amplitudes has revealed links between on-shell methods and the Yangian symmetry of the model; the most well-understood ob- jects from the viewpoint of integrability however are the two-point correlators of composite operators. Form factor are quantities interpolating between off-shell correlation functions and on-shell scattering amplitudes, and are therefore a promising subject of study for a unified description of the integrable structure of the theory. We use the Britto-Cachazo-Feng-Witten recursion relations to develop on-shell diagrams for form factors of the chiral stress-tensor multiplet, and investigate their properties. The diagrams then allow to derive a Graßmannian integral for these form factors, i.e. a repre- sentation as a contour integral inside a Graßmannian. We show how to obtain the contour of this integral for next-to-maximally-helicity-violating (NMHV) form factors, and use this knowledge to relate the integral to a twistor string inspired formulation. Based on these on-shell methods, we show that both form factors of the chiral stress-tensor multiplet as well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable transfer matrices. The corresponding eigenvalue equations can be seen as symmetries gen- eralizing the Yangian invariance of amplitude on-shell functions. In addition, a part of these Yangian symmetries remain unbroken by the operator insertion. Motivated by the fact that on-shell diagrams of form factors can be understood as being nonplanar, we con- sider general nonplanar on-shell functions. Despite appearing in subleading contributions of the 1=N-expansion, we prove that these quantities exhibit a partial Yangian invariance, inherited from the integrability of the planar theory. We also derive symmetries generated by transfer matrices, and show that on-shell diagrams on cylinders can be understood as in- tertwiners. All these quantities can be written as Graßmannian integrals and interestingly, their integrands can be regarded as states of integrable spin chains themselves. On-shell diagrams involve quantities at lowest order in perturbation theory. To make progress towards the calculation of the higher loop eigenstates of the integrable model, we consider single trace operators, for which the Quantum Spectral Curve (QSC) exists as a beautiful and concise way of determining the spectrum of these states non-perturbatively. This formulation however carries no information about the form of the states. The QSC is an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should exist, containing the complete information on the eigenstates in addition to the eigenval- ues. To initiate the developments of an operatorial formulation of the QSC, we investigate the Q-operators of non-compact super spin chains, in particular those of the integable spin chain describing N =4 SYM at the one-loop level, and devise efficient methods to evaluate their matrix elements. This allows to obtain the entire Q-system in terms of finite dimen- sional matrices for each magnon sector. These can be used as input data for perturbative calculations using the QSC in operatorial form. CONTENTS 1 Introduction 3 Superconformal Yang-Mills theory and the AdS/CFT correspondence 3 Integrability in N =4 SYM 5 Scattering amplitudes: on-shell methods and integrability 8 Overview 10 I On-shell methods for form factors 2 On-shell methods for scattering amplitudes 17 Kinematics & on-shell superelds 17 Scattering amplitudes 21 On-shell techniques 24 On-shell diagrams 28 The Graßmannian integral 31 3 On-shell diagrams for form factors 35 Form factors 36 The chiral stress-tensor multiplet 37 From BCFW to on-shell diagrams 38 Inverse soft limits 39 Cyclicity and equivalence moves 40 A relation to amplitude diagrams 40 Multiple top-cell diagrams 42 Permutations 44 Leading singularities and on-shell functions 45 4 Form factors as Graßmannian integrals 47 Graßmannian geometry and the o-shell momentum 48 Gluing the operator into on-shell diagrams 49 Gluing the top-form 51 Twistor and momentum twistor space 55 More examples 60 5 The BCFW contour for NMHV 65 The NMHV top-forms 66 Extracting the geometry from diagrams 67 The contour in closed form 71 6 The Graßmannian and the connected prescription 75 Brief review of the connected prescription for form factors 76 Graßmannian integrals from the connected
Recommended publications
  • Amplitudes, Form Factors and the Dilatation Operator in $\Mathcal {N
    HU-MATH-2014-26 HU-EP-14/38 Amplitudes, Form Factors and the Dilatation Operator in N = 4 SYM Theory Matthias Wilhelm Institut f¨ur Mathematik und Institut f¨ur Physik Humboldt-Universit¨at zu Berlin IRIS Geb¨aude Zum Großen Windkanal 6 12489 Berlin [email protected] Abstract We study the form factor of a generic gauge-invariant local composite operator in = 4 SYM theory. At tree level and for a minimal number of external on-shell N super fields, we find that the form factor precisely yields the spin-chain picture of integrability in the language of scattering amplitudes. Moreover, we compute the cut- constructible part of the one-loop correction to this minimal form factor via generalised unitarity. From its UV divergence, we obtain the complete one-loop dilatation operator of = 4 SYM theory. Thus, we provide a field-theoretic derivation of a relation N between the one-loop dilatation operator and the four-point tree-level amplitude which was observed earlier. We also comment on the implications of our findings in the context of integrability. Keywords. PACS: 11.15.-q; 11.30.Pb; 11.25.Tq; 11.55.-m arXiv:1410.6309v3 [hep-th] 24 Mar 2015 Keywords: Super-Yang-Mills; Form factors; On-shell methods; Anomalous dimensions; Integrability Contents 1 Introduction 2 2 Form factors and spin chains 4 2.1 Composite operators and spin chains 5 2.2 Form factors in the free theory 9 3 One-loop form factors 14 3.1 The triangle coefficient from the triple cut 17 3.2 The bubble coefficient from the double cut 20 3.3 Summary of the result 23 4 Divergences, renormalisation and the dilatation operator 24 5 Conclusion and outlook 27 A Some facts about amplitudes 30 B Example calculations 31 B.1 su(2) subsector 31 B.2 sl(2) subsector 33 C Basis integrals 35 1 Introduction The maximally supersymmetric Yang-Mills theory ( = 4 SYM theory) in 3+1 dimensions N is frequently called the hydrogen atom of the 21st century, and it might be the first non- trivial quantum field theory that can be solved exactly.
    [Show full text]
  • UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Permalink https://escholarship.org/uc/item/8qh706tk Author Dzienkowski, Eric Michael Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Santa Barbara Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Eric Michael Dzienkowski Committee in charge: Professor David Berenstein, Chair Professor Joe Polchinski Professor David Stuart September 2015 The Dissertation of Eric Michael Dzienkowski is approved. Professor Joe Polchinski Professor David Stuart Professor David Berenstein, Committee Chair July 2015 Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Copyright c 2015 by Eric Michael Dzienkowski iii To my family, who endured my absense for the better part of nine long years while I attempted to understand the universe. iv Acknowledgements There are many people and entities deserving thanks for helping me complete my dissertation. To my advisor, David Berenstein, for the guidance, advice, and support over the years. With any luck, I have absorbed some of your unique insight and intuition to solving problems, some which I hope to apply to my future as a physicist or otherwise. A special thanks to my collaborators Curtis Asplund and Robin Lashof-Regas. Curtis, it has been and will continue to be a pleasure working with you. Ad- ditional thanks for various comments and discussions along the way to Yuhma Asano, Thomas Banks, Frederik Denef, Jim Hartle, Sean Hartnoll, Matthew Hastings, Gary Horowitz, Christian Maes, Juan Maldacena, John Mangual, Don Marolf, Greg Moore, Niels Obers, Joe Polchisnki, Jorge Santos, Edward Shuryak, Christoph Sieg, Eva Silverstein, Mark Srednicki, and Matthias Staudacher.
    [Show full text]
  • Black Hole Singularities in the Framework of Gauge/String Duality By
    Black Hole Singularities in the Framework of Gauge/String Duality by Guido Nicola Innocenzo Festuccia Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 2007 @ Guido Nicola Innocenzo Festuccia, MMVII. All rights reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part. Author ... Department of Physics 1May 18, 2007 Certified by. Hong Liu C Assistant Professor Thesis Supervisor Accepted by.............. ..............A p .m .. 2homas eytak Professor and Associate Department Head for Education ARCHIVES LIBRARIES Black Hole Singularities in the Framework of Gauge/String Duality by Guido Nicola Innocenzo Festuccia Submitted to the Department of Physics on May 18, 2007, in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract In this dissertation black hole singularities are studied using the AdS/CFT correspon- dence. These singularities show up in the CFT in the behavior of finite-temperature correlation functions. A direct relation is established between space-like geodesics in the bulk and momentum space Wightman functions of CFT operators of large dimen- sions. This allows to probe the regions inside the horizon and near the singularity using the CFT. Information about the black hole singularity is encoded in the expo- nential falloff of finite-temperature correlators at large imaginary frequency. We also find a UV/UV connection that governs physics inside the horizon. For the case the bulk theory lives in 5 dimensions the dual theory is an SU(N) Yang-Mills theory on a sphere, a bounded many-body system.
    [Show full text]
  • Statistical Physics Approach to M-Theory Integrals∗
    Nonperturbative Quantum Effects 2000 PROCEEDINGS Statistical Physics Approach to M-theory Integrals∗ Werner Krauth and Matthias Staudacher CNRS-Laboratoire de Physique Statistique, Ecole Normale Sup´erieure 24, rue Lhomond F-75231 Paris Cedex 05 E-mail: [email protected] Albert-Einstein-Institut, Max-Planck-Institut f¨ur Gravitationsphysik Am M¨uhlenberg 1 D-14476 Golm E-mail: [email protected] Abstract: We explain the concepts of computational statistical physics which have proven very help- ful in the study of Yang-Mills integrals, an ubiquitous new class of matrix models. Issues treated are: Absolute convergence versus Monte Carlo computability of near-singular integrals, singularity detec- tion by Markov-chain methods, applications to asymptotic eigenvalue distributions and to numerical evaluations of multiple bosonic and supersymmetric integrals. In many cases already, it has been possible to resolve controversies between conflicting analytical results using the methods presented here. Keywords: Monte Carlo Methods, M-theory, Matrix Models, Yang-Mills Theory. 1. Introduction theories. Furthermore, they appear in proposed formulations of string theory (the IKKT model) Recent work in field theory has revealed the exis- and M-theory. It remains to be elucidated whether tence of an important new class of gauge-invariant they contain further non-perturbative informa- matrix models. At the difference of the clas- tion on gauge theories via the Eguchi-Kawai mech- sic Wigner-type models, interest now focusses anism. on integrals of D non-linearly coupled matrices For the sake of brevity (cf. [1] for complete Xµ,µ =1;:::D.TheXµare constructed from definitions), we write down (even for supersym- A the generators T of the fundamental representa- metric Yang-Mills theories) only the effective bo- G X XAT tion of a given Lie algebra Lie( ): µ = µ A, sonic integral, which is obtained after integrat- with A =1;:::;dim(G).
    [Show full text]
  • Bulk Witten Indices and the Number of Normalizable Ground States in Supersymmetric Quantum Mechanics of Orthogonal, Symplectic and Exceptional Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server AEI-2000-037 hep-th/0006234 Bulk Witten Indices and the Number of Normalizable Ground States in Supersymmetric Quantum Mechanics of Orthogonal, Symplectic and Exceptional Groups Matthias Staudacher ∗ Albert-Einstein-Institut, Max-Planck-Institut f¨ur Gravitationsphysik Am M¨uhlenberg 1 D-14476 Golm, Germany Abstract This note addresses the question of the number of normalizable vacuum states in supersymmetric quantum mechanics with sixteen supercharges and arbitrary semi-simple compact gauge group, up to rank three. After eval- uating certain contour integrals obtained by appropriately adapting BRST deformation techniques we propose novel rational values for the bulk indices. Our results demonstrate that an asymptotic method for obtaining the bound- ary contribution to the index, originally due to Green and Gutperle, fails for groups other than SU(N). We then obtain likely values for the number of ground states of these systems. In the case of orthogonal and symplectic groups our finding is consistent with recent conjectures of Kac and Smilga, but appears to contradict their result in the case of the exceptional group G2. ∗[email protected] 1 Supersymmetric Yang-Mills theories dimensionally reduced to zero spacial dimensions were initially considered as interesting examples for susy quantum mechanics [1], [2]. The Hamiltonian of these systems reads 1 1 H = Tr P P [X ;X ][X ;X ] Ψ [Γi X ; Ψ ] : (1) 2 i i i j i j α αβ i β 2g − 2 − ! where the bosonic (Xi) and fermionic (Ψi) degrees of freedom take values in the Lie algebra of the compact gauge group.
    [Show full text]
  • SUMMER SCHOOL “THE STRUCTURE of LOCAL QUANTUM FIELDS” Overview in Recent Years We Have Seen Many New Insights Into the Mathe
    SUMMER SCHOOL \THE STRUCTURE OF LOCAL QUANTUM FIELDS" ORGS.: DIRK KREIMER WITH SPENCER BLOCH AND FRANCIS BROWN Overview In recent years we have seen many new insights into the mathemat- ical structure of renormalizable quantum field theories. Such theories still form the core of theoretical physics underwritten by their ability to predict the outcome of physics experiments. Progress was made in particular through understanding the math- ematical structure of renormalization and the renormalization group [1]. The identification of a Hopf algebra structure in renormalization by Kreimer in 1997 [2], much elaborated on by Connes and Kreimer in the years 1998-2001, now leads to an understanding of the computa- tional practice of perturbative quantum field theory in terms of alge- braic geometry and mixed Hodge structures, starting with the work of Bloch-Esnault-Kreimer [3] and Bloch-Kreimer [4]. As a result, Francis Brown was able to streamline the computa- tional techniques in Feynman diagram computations and to explain the connection to mixed Tate motives in a very impressive work recently [5, 6, 7], see also [8] by Aluffi and Marcolli, which directly connects to the detailed analysis of multiple zeta values and polylogarithms neces- sary in QFT computations [9, 10]. At the same time, from string theory we obtained the AdS/CFT cor- repondence which led to many new insights on the interplay between quantum fields and string theory. In particular, the Britto-Cachazo- Feng-Witten recursion relations [11] led to spectacular progress in con- formally invariant N=4 super Yang{Mills theory, and many conjectures concerning the transcendental nature of Green functions in such theo- ries were obtained by Beisert-Eden and Staudacher [12], by Korchem- sky [13] and many others.
    [Show full text]
  • Two-Dimensional Chiral Matrix Models and String Theories
    CERN-TH/96-311 hep-th/9611011 Two-Dimensional Chiral Matrix Mo dels and String Theories y Ivan K. Kostov C.E.A. - Saclay, Service de Physique Theorique F-91191 Gif-Sur-Yvette, France Matthias Staudacher CERN, Theory Division CH-1211 Geneva 23, Switzerland We formulate and solve a class of two-dimensional matrix gauge mo d- els describing ensembles of non-folding surfaces covering an oriented, dis- cretized, two-dimensional manifold. We interpret the mo dels as string the- ories characterized by a set of coupling constants asso ciated to worldsheet rami cation p oints of various orders. Our approach is closely related to, but simpler than, the string theory describing two-dimensional Yang-Mills theory. Using recently develop ed character expansion metho ds we exactly solve the mo dels for target space lattices of arbitrary internal connectivity and top ology. SPhT-96/123 CERN-TH/96-311 November 1996 member of CNRS y [email protected] a.f r [email protected]. ch 1. Intro duction The idea that the strong interactions are describ ed by a string theory which is in some sense dual to p erturbative QCD is a ma jor challenge for high energy theory. More generally, a D -dimensional con ning Yang-Mills theory is exp ected to de ne a string theory with D -dimensional target space stable in the interval 2 D 4. This \YM string" has b een constructed so far only for D = 2 [1],[2]. It has b een shown that the partition function of pure U (N ) gauge theory de ned on a two-dimensional manifold of given genus and area can be rep- resented in terms of a weighted sum over maps from a worldsheet to W spacetime .
    [Show full text]
  • Perturbative and Non-Perturbative Approaches to String Sigma-Models in Ads/CFT
    Perturbative and non-perturbative approaches to string sigma-models in AdS/CFT DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Physik Spezialisierung: Theoretische Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Humboldt-Universität zu Berlin von Herrn Dipl.-Phys. Edoardo Vescovi Präsidentin der Humboldt-Universität zu Berlin Prof. Dr.-Ing. Dr. Sabine Kunst Dekan der Mathematisch-Naturwissenschaftlichen Fakultät Prof. Dr. Elmar Kulke Gutachter/innen: 1. Prof. Dr. Valentina Forini 2. Prof. Dr. Jan Plefka 3. Prof. Dr. Radu Roiban Tag der mündlichen Prüfung: 05/10/2016 Supervisor’s foreword This thesis, which encompasses results from the six peer-reviewed publications that Dr. Vescovi co-authored in his three years at Humboldt University Berlin, deals with the most relevant string model in the framework of the gauge/gravity duality – one of the most far- reaching recent ideas in theoretical physics. This work is in my opinion remarkable for three aspects. First, it contains some of the technically hardest calculations in this framework (next-to-leading order results for string excitations which are highly coupled, as well as next-to-next-to-leading order results, the last one setting the current limit of perturbative string world-sheet analysis). Second, it contains the results of a new, highly interdisciplinary project – involving various themes in mathematical and high-energy physics – which initiates an entirely new way to analyze worldsheet string theory models: the use of Monte Carlo simulations for their lattice-discretized version. Finally, the thesis is very well written and highly pedagogical, thus enabling the reader to follow easily (and I believe with pleasure) the complex subjects treated and the analytic and numerical results reported.
    [Show full text]
  • Form Factors and the Dilatation Operator in N=4 Super Yang-Mills
    Form factors and the dilatation operator in N = 4 super Yang-Mills theory and its deformations Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Physik eingereicht an der Mathematisch-Naturwissenschaftlichen Fakult¨at der Humboldt-Universit¨at zu Berlin von M.Sc. B.Sc. Matthias Oliver Wilhelm Pr¨asident der Humboldt-Universit¨at zu Berlin Prof. Dr. Jan-Hendrik Olbertz Dekan der Mathematisch-Naturwissenschaftlichen Fakult¨at Prof. Dr. Elmar Kulke Gutachter/innen: 1. Prof. Dr. Matthias Staudacher 2. Prof. Dr. Jan Plefka 3. Prof. Dr. Tristan McLoughlin Tag der m¨undlichen Pr¨ufung: 12.02.2016 2 Zusammenfassung Seit mehr als einem halben Jahrhundert bietet die Quantenfeldtheorie (QFT) den genausten und erfolgreichsten theoretischen Rahmen zur Beschreibung der fundamentalen Wechsel- wirkungen zwischen Elementarteilchen, wenn auch mit Ausnahme der Gravitation. Den- noch sind QFTs im Allgemeinen weit davon entfernt, vollst¨andig verstanden zu sein. Dies liegt an einem Mangel an theoretischen Methoden zur Berechnung ihrer Observablen sowie an fehlendem Verst¨andnis der auftretenden mathematischen Strukturen. In den letzten anderthalb Jahrzehnten kam es zu bedeutendem Fortschritt im Verst¨andnis von speziellen Aspekten einer bestimmten QFT, der maximal supersymmetrischen Yang-Mills-Theorie in vier Dimensionen, auch = 4 SYM-Theorie genannt. Diese haben die Hoffnung N geweckt, dass die = 4 SYM-Theorie exakt l¨osbar ist. Besonders bemerkenswert war der N Fortschritt auf den Gebiet der Streuamplituden auf Grund der Entwicklung sogenannter Masseschalen-Methoden und auf dem Gebiet der Korrelationsfunktionen zusammengeset- zter Operatoren auf Grund von Integrabilit¨at. In dieser Dissertation gehen wir der Frage nach, ob und in welchem Umfang die in diesem Kontext gefunden Methoden und Struk- turen auch zum Verst¨andnis weitere Gr¨oßen in dieser Theorie sowie zum Verst¨andnis an- derer Theorien beitragen k¨onnen.
    [Show full text]
  • Statistical Physics Approach to M-Theory Integrals
    Nonperturbative Quantum Effects 2000 PROCEEDINGS Statistical Physics Approach to M-theory Integrals∗ Werner Krauth and Matthias Staudacher CNRS-Laboratoire de Physique Statistique, Ecole Normale Sup´erieure 24, rue Lhomond F-75231 Paris Cedex 05 E-mail: [email protected] Albert-Einstein-Institut, Max-Planck-Institut f¨ur Gravitationsphysik Am M¨uhlenberg 1 D-14476 Golm E-mail: [email protected] Abstract: We explain the concepts of computational statistical physics which have proven very help- ful in the study of Yang-Mills integrals, an ubiquitous new class of matrix models. Issues treated are: Absolute convergence versus Monte Carlo computability of near-singular integrals, singularity detec- tion by Markov-chain methods, applications to asymptotic eigenvalue distributions and to numerical evaluations of multiple bosonic and supersymmetric integrals. In many cases already, it has been possible to resolve controversies between conflicting analytical results using the methods presented here. Keywords: Monte Carlo Methods, M-theory, Matrix Models, Yang-Mills Theory. 1. Introduction theories. Furthermore, they appear in proposed formulations of string theory (the IKKT model) Recent work in field theory has revealed the exis- and M-theory. It remains to be elucidated whether tence of an important new class of gauge-invariant they contain further non-perturbative informa- matrix models. At the difference of the clas- tion on gauge theories via the Eguchi-Kawai mech- sic Wigner-type models, interest now focusses anism. on integrals of D non-linearly coupled matrices For the sake of brevity (cf. [1] for complete Xµ,µ = 1,...D. The Xµ are constructed from definitions), we write down (even for supersym- A the generators T of the fundamental representa- metric Yang-Mills theories) only the effective bo- A tion of a given Lie algebra Lie(G): Xµ = Xµ TA, sonic integral, which is obtained after integrat- with A = 1,..., dim(G).
    [Show full text]
  • Matthias Staudacher
    1 Matthias Staudacher 1. General Information Name, Title: Matthias Staudacher, Prof. Dr. DOB, Gender: 13.09.1963, male Address: Institut f¨ur Physik Humboldt Universit¨atzu Berlin Zum Großen Windkanal 6, 12489 Berlin Tel: 030 - 2093 66392 E-Mail: [email protected] Current Position: Professor (W3) 2. Academic Education Subject: Physics (1982-1987) University: University of Heidelberg, University of Munich, Uni- versity of Illinois at Urbana-Champaign Degree: Master of Science 3. Scientific Degrees PhD: University of Illinois at Urbana-Champaign, 1990, supervisor: Prof. John Kogut 4. Career Path since 2010: Full Professor (W3), Institute of Physics and Institute of Mathematics, Humboldt University of Berlin 1997 { 2010: Research Associate, Max Planck Institute for Gravita- tional Physics (Albert Einstein Institute), Potsdam 1995 { 1997: CERN Stipend (Fellow), Geneva 1993 { 1995: Chercheur Postdoctoral, Laboratoire de Physique The- orique de l'Ecole´ Normale Sup´erieure,Paris 1990 { 1993: Postdoctoral Fellow, Rutgers, The State University of New Jersey 2 5. Miscellaneous 2015 { 16: Spokesman of the CRC 647 \Space - Time - Matter. Analytic and Geometric Structures" since 2013: Editorial Board of \Nuclear Physics, Section B" since 2013: Editorial Board of \Fortschritte der Physik" 2009: Academy Award of the \Berlin-Brandenburgische Akademie der Wissenschaften" since 2008: Work Group (site inspectors) of the \Institute for the Physics and Mathematics of the Universe", Tokyo/Japan since 2008: Editorial Board of \Journal of High Energy Physics" 1990: Ross Martin Award for Excellence in Research 1988 { 89: University of Illinois Fellowship 1985 { 89: Fulbright Fellow 1981 { 87: Stipend of the German Scholarship Foundation (Stu- dienstiftung des Deutschen Volkes) 6.
    [Show full text]
  • BFKL Catch Up!
    BFKL Catch Up! Florian Schwennsen1 1DESY, Notketraße 85, 22607 Hamburg, Germany I give a brief overview over the most recent progress in the field of standard dilute BFKL. 1 Introduction Although there is hardly any doubt that Quantum Chromodynamics (QCD) is the proper the- ory to describe strong interactions, it is still far away from being completely solved. Even at large scales where the coupling constant becomes small, a perturbative calculation at a fixed order is not the end of the story. Whenever one considers kinematic regions characterized by two different large scales, logarithms of the ratio of these two scales appear at each order of per- turbation theory and – being large – compensate the smallness of the coupling. A resummation n of logarithms of the type [αs ln s] is realized by the leading logarithmic (LL) Balitsky-Fadin- Kuraev-Lipatov (BFKL) [1, 2, 3, 4] equation. It took almost twenty years to extend it to n next-to-leading logarithmic accuracy (NLL) by resumming terms of the type αs[αs ln s] as well [5, 6]. Both the LL and the NLL BFKL equation are still being studied with great eagerness to improve the accuracy of theoretical predictions for concrete observables as well as to increase our fundamental knowledge about quantum field theory itself. The aim of my contribution to the 13th International Conference on Elastic and Diffractive Scattering is to give an overview over the most recent progresses. An exhaustive discussion of them at this place is not possible. That’s why I strongly encourage the reader to have a look at the original works instead and to consider this short article just as an appetizer.
    [Show full text]