Albatross-Like Utilization of Wind Gradient for Unpowered Flight of Fixed-Wing Aircraft

Total Page:16

File Type:pdf, Size:1020Kb

Albatross-Like Utilization of Wind Gradient for Unpowered Flight of Fixed-Wing Aircraft applied sciences Article Albatross-Like Utilization of Wind Gradient for Unpowered Flight of Fixed-Wing Aircraft Shangqiu Shan * ID , Zhongxi Hou and Bingjie Zhu College of Aerospace Sciences and Engineering, National University of Defense Technology, Changsha 410073, China; [email protected] (Z.H.); [email protected] (B.Z.) * Correspondence: [email protected]; Tel.: +86-137-8729-3515 Received: 3 September 2017; Accepted: 12 October 2017; Published: 14 October 2017 Abstract: The endurance of an aircraft can be considerably extended by its exploitation of the hidden energy of a wind gradient, as an albatross does. The process is referred to as dynamic soaring and there are two methods for its implementation, namely, sustainable climbing and the Rayleigh cycle. In this study, the criterion for sustainable climbing was determined, and a bio-inspired method for implementing the Rayleigh cycle in a shear wind was developed. The determined sustainable climbing criterion promises to facilitate the development of an unpowered aircraft and the choice of a more appropriate soaring environment, as was demonstrated in this study. The criterion consists of three factors, namely, the environment, aerodynamics, and wing loading. We develop an intuitive explanation of the Raleigh cycle and analyze the energy mechanics of utilizing a wind gradient in unpowered flight. The energy harvest boundary and extreme power point were determined and used to design a simple bio-inspired guidance strategy for implementing the Rayleigh cycle. The proposed strategy, which involves the tuning of a single parameter, can be easily implemented in real-time applications. In the results and discussions, the effects of each factor on climbing performance are examined and the sensitivity of the aircraft factor is discussed using five examples. Experimental MATLAB simulations of the proposed strategy and the comparison of the results with those of Gauss Pseudospectral Optimization Software confirm the feasibility of the proposed strategy. Keywords: unpowered flight; dynamic soaring; wind gradient; energy extraction; micro fixed-wing unmanned aerial vehicle 1. Introduction An aircraft usually consumes a large amount of energy during flight. There is, however, the question of whether an aircraft can fly indefinitely without carrying a power source. This might be realizable if a method could be developed for the aircraft to continuously extract energy from its environment. A wind field in which the wind gradient varies with the altitude is known to contain a large amount of energy [1–3]. In addition, albatrosses have been observed to soar for long periods without flapping their wings [4–7]. Lord Rayleigh was perhaps the first to discuss the problem relevant to albatrosses soaring in a horizontal but non-uniform wind field [8]. This type of flight involves the extraction of energy from a wind gradient and is referred to as dynamic soaring. The phenomenon of dynamic soaring has attracted the interest of many scholars. The technique utilized by an albatross to obtain extra airspeed for soaring is referred to as the Rayleigh cycle [9] and is illustrated in Figure1. Idrac [ 10] showed that wind speed increases with the altitude, which generally occurs over the sea where albatrosses fly. Different researchers have observed birds to understand their soaring mechanics [11–13], and theories regarding their utilization of wind gradient have been developed. Wood [14] used a two-dimensional model to investigate two types of complete soaring flight cycles in a logarithmic wind velocity profile. Hendriks [15] Appl. Sci. 2017, 7, 1061; doi:10.3390/app7101061 www.mdpi.com/journal/applsci Appl. Sci. 2017, 7, 1061 2 of 25 Appl. Sci. 2017, 7, 1061 2 of 25 obtainedthree‐dimensional a three-dimensional mass point mass dynamics point dynamicsequation for equation obtaining for non obtaining‐diving non-divingflight. In addition, flight. In addition,Denny Denny[16], Taylor [16], Tayloret al. et[17], al. [and17], andLiu Liuet al. et al.[18] [ 18analyzed] analyzed the the energy energy transformation transformation in in wind-gradient-basedwind‐gradient‐based flight flight from from a a physics physics viewpoint. viewpoint. FigureFigure 1. An1. An albatross albatross flying flying over over the the sea sea to to obtainobtain extra airspeed. airspeed. Because Because the the wind wind speed speed below below the the wavewave is nearly is nearly zero zero and and the the wind wind above above the the wavewave has a certain speed, speed, the the wind wind can can be be considered considered to to comprisecomprise two two layers layers with with a wind a wind shear shear between between them. them. Suppose Suppose that thethat initial the initial airspeed airspeed of the of albatross the is 17albatross m/s in is the 17 wind m/s in layer the belowwind layer the wave. below Ifthe the wave. wind If speed the wind above speed the waveabove isthe 7 m/swave higher is 7 m/s than thathigher below than the wave,that below when the the wave, albatross when faces the thealbatross wind andfaces crosses the wind the windand crosses shear betweenthe wind the shear lower between the lower and upper wind layers, the airspeed would suddenly increase to 24 m/s. This and upper wind layers, the airspeed would suddenly increase to 24 m/s. This sudden gain in speed is sudden gain in speed is due to the lack of time for the albatross to change its ground speed. due to the lack of time for the albatross to change its ground speed. With the development of computer science, the use of numerical algorithms has become a popularWith the approach development to determine of computer the optimal science, trajectory the use of under numerical a wind algorithms gradient. has Zhao become [19,20] a popularused approachNPSOL, to a numerical determine optimization the optimal software, trajectory to underminimize a wind the dynamic gradient. soaring Zhao cycles [19,20 of] unpowered used NPSOL, a numericalaircraft and optimization powered aircraft. software, Sachs to [21,22] minimize also the solved dynamic the optimal soaring control cycles problem of unpowered of dynamic aircraft andsoaring powered and aircraft. computed Sachs the minimum [21,22] also shear solved wind the strength optimal under control certain problem conditions. of dynamic Deittert soaring et al. [23] and computedutilized the the differential minimum flatness shear wind property strength to determine under certainthe optimal conditions. trajectory Deittert for cross et‐country al. [23] flight. utilized theKaushik differential et al. flatness [24] used property the GPOPS to determine‐II optimal the control optimal software trajectory for for trajectory cross-country computation. flight. There Kaushik et al.have [24 been] used several the GPOPS-II other studies optimal on the control optimization software of dynamic for trajectory soaring computation. [25–29]. There have been severalRecent other studies improvements on the optimization were achieved of in dynamic the practical soaring application [25–29]. of dynamic soaring. Lawrance et Recental. [30,31] improvements proposed an algorithm were achieved for determining in the practicalthe flight direction application for the of dynamicquickest energy soaring. Lawranceharvest. etLangelaan al. [30,31 et] proposedal. [32] and an Rodriguez algorithm et foral. determining[33] proposed the a method flight directionfor estimating for the the quickestwind field for trajectory design. Liu et al. [34] presented a nonlinear model of a predictive control strategy energy harvest. Langelaan et al. [32] and Rodriguez et al. [33] proposed a method for estimating for trajectory determination for energy extraction. Barate et al. [35] controlled a simulated glider the wind field for trajectory design. Liu et al. [34] presented a nonlinear model of a predictive based on a set of Takagi‐Sugeno‐Kang fuzzy rules to exploit wind gradient energy. Although these control strategy for trajectory determination for energy extraction. Barate et al. [35] controlled a contributions improved the sophistication of the concept of dynamic soaring, this was accompanied simulated glider based on a set of Takagi-Sugeno-Kang fuzzy rules to exploit wind gradient energy. by a more complicated practical implementation process. In contrast, Gao et al. [36] and Yang [37] Althoughproposed these a simple contributions method improvedfor generating the sophistication a guidance strategy of the conceptfor autonomous of dynamic dynamic soaring, soaring. this was accompaniedThis involved by the a more division complicated of the Rayleigh practical cycle implementation into four sections, process. the characteristics In contrast, Gao of which et al. [were36] and Yangdetermined [37] proposed by simple a simple equations. method Gao for and generating Liu [38] also a developed guidance strategya dynamic for soaring autonomous plan in dynamicwhich soaring.the Dubins This involved path was the used division to improve of the Rayleighthe computational cycle into fourefficiency. sections, They the showed characteristics that dynamic of which weresoaring determined could be by achieved simple using equations. modern Gao technology. and Liu However, [38] also developed their strategy a dynamic has the shortcoming soaring plan of in whichinvolving the Dubins numerous path control was used parameters, to improve which the computationalmakes practical efficiency.implementation They showedcumbersome. that dynamic soaringIn could the present be achieved study, using we followed modern technology.the
Recommended publications
  • CHAPTER 20 Wind Turbine Noise Measurements and Abatement
    CHAPTER 20 Wind turbine noise measurements and abatement methods Panagiota Pantazopoulou BRE, Watford, UK. This chapter presents an overview of the types, the measurements and the potential acoustic solutions for the noise emitted from wind turbines. It describes the fre- quency and the acoustic signature of the sound waves generated by the rotating blades and explains how they propagate in the atmosphere. In addition, the avail- able noise measurement techniques are being presented with special focus on the technical challenges that may occur in the measurement process. Finally, a discus- sion on the noise treatment methods from wind turbines referring to a range of the existing abatement methods is being presented. 1 Introduction Wind turbines generate two types of noise: aerodynamic and mechanical. A tur- bine’s sound power is the combined power of both. Aerodynamic noise is gener- ated by the blades passing through the air. The power of aerodynamic noise is related to the ratio of the blade tip speed to wind speed. The mechanical noise is associated with the relevant motion between the various parts inside the nacelle. The compartments move or rotate in order to convert kinetic energy to electricity with the expense of generating sound waves and vibration which is transmitted through the structural parts of the turbine. Depending on the turbine model and the wind speed, the aerodynamic noise may seem like buzzing, whooshing, pulsing, and even sizzling. Downwind tur- bines with their blades downwind of the tower cause impulsive noise which can travel far and become very annoying for people. The low frequency noise gener- ated from a wind turbine is primarily the result of the interaction of the aerody- namic lift on the blades and the atmospheric turbulence in the wind.
    [Show full text]
  • Low Level Wind Shear: Invisible Enemy to Pilots
    Low Level Wind Shear: Invisible Enemy To Pilots On the afternoon of August 2, 1985, a landmark aircraft accident occurred at the Dallas/Fort Worth (DFW) airport. The tragic accident, which killed 137 of the 163 passengers on board Delta Airlines Flight 191, was responsible for making “wind shear” a more commonly known weather phenomenon and implementing many new changes with regard to wind shear detection (Ref. 1). On that day, thunderstorms were in the area of approach to runway 17L at the DFW International Airport, with a thunderstorm rain shaft right in the path of final approach. The crew decided to proceed through the thunderstorm, which turned out to be a critical error. Shortly after entering the storm, turbulence increased and the L1011 aircraft encountered a 26 knot headwind. Just as suddenly, the wind switched to a 46 knot tailwind, resulting in a loss of 72 knots of airspeed. This much of an airspeed loss on final approach, when the jet was only 800 feet above the surface, was unrecoverable and the aircraft eventually crashed short of the runway (Ref. 1). The sudden change in wind speed and direction that the aircraft encountered is called wind shear. Wind shear can occur at many different levels of the atmosphere, however it is most dangerous at the low levels, as a sudden loss of airspeed and altitude can occur. Plenty of altitude is normally needed to recover from the stall produced by the abrupt change in wind speed and direction, which is why pilots need to be aware of the hazards and mitigation of low-level wind shear.
    [Show full text]
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • Evaluation and Flight Assessment of a Scale Glider
    Dissertations and Theses 8-2014 Evaluation and Flight Assessment of a Scale Glider Alvydas Anthony Civinskas Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Civinskas, Alvydas Anthony, "Evaluation and Flight Assessment of a Scale Glider" (2014). Dissertations and Theses. 41. https://commons.erau.edu/edt/41 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Evaluation and Flight Assessment of a Scale Glider by Alvydas Anthony Civinskas A Thesis Submitted to the College of Engineering Department of Aerospace Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida August 2014 Acknowledgements The first person I would like to thank is my committee chair Dr. William Engblom for all the help, guidance, energy, and time he put into helping me. I would also like to thank Dr. Hever Moncayo for giving up his time, patience, and knowledge about flight dynamics and testing. Without them, this project would not have materialized nor survived the many bumps in the road. Secondly, I would like to thank the RC pilot Daniel Harrison for his time and effort in taking up the risky and stressful work of piloting. Individuals like Jordan Beckwith and Travis Billette cannot be forgotten for their numerous contributions in getting the motor test stand made and helping in creating the air data boom pod so that test data.
    [Show full text]
  • Ai2019-2 Aircraft Serious Incident Investigation Report
    AI2019-2 AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT ACADEMIC CORPORATE BODY JAPAN AVIATION ACADEMY J A 2 4 5 1 March 28, 2019 The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board and with Annex 13 to the Convention on International Civil Aviation is to prevent future accidents and incidents. It is not the purpose of the investigation to apportion blame or liability. Kazuhiro Nakahashi Chairman Japan Transport Safety Board Note: This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report. AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT INABILITY TO OPERATE DUE TO DAMAGE TO LANDING GEAR DURING FORCED LANDING ON A GRASSY FIELD ABOUT 3 KM SOUTHWEST OF NOTO AIRPORT, JAPAN AT ABOUT 15:00 JST, SEPTEMBER 26, 2018 ACADEMIC CORPORATE BODY JAPAN AVIATION ACADEMY VALENTIN TAIFUN 17EII (MOTOR GLIDER: TWO SEATER), JA2451 February 22, 2019 Adopted by the Japan Transport Safety Board Chairman Kazuhiro Nakahashi Member Toru Miyashita Member Toshiyuki Ishikawa Member Yuichi Marui Member Keiji Tanaka Member Miwa Nakanishi 1. PROCESS AND PROGRESS OF THE INVESTIGATION 1.1 Summary of On Wednesday, September 26, 2018, a Valentin Taifun 17EII (motor the Serious glider), registered JA2451, owned by Japan Aviation Academy, took off from Incident Noto Airport in order to make a test flight before the airworthiness inspection. During the flight, as causing trouble in its electric system, the aircraft tried to return to Noto Airport by gliding, but made a forced landing on a grassy field about 3 km short of Noto Airport, and sustained damage to the landing gear, therefore, the operation of the aircraft could not be continued.
    [Show full text]
  • AMA FPG-9 Glider OBJECTIVES – Students Will Learn About the Basics of How Flight Works by Creating a Simple Foam Glider
    AEX MARC_Layout 1 1/10/13 3:03 PM Page 18 activity two AMA FPG-9 Glider OBJECTIVES – Students will learn about the basics of how flight works by creating a simple foam glider. – Students will be introduced to concepts about air pressure, drag and how aircraft use control surfaces to climb, turn, and maintain stable flight. Activity Credit: Credit and permission to reprint – The Academy of Model Aeronautics (AMA) and Mr. Jack Reynolds, a volunteer at the National Model Aviation Museum, has graciously given the Civil Air Patrol permission to reprint the FPG-9 model plan and instructions here. More activities and suggestions for classroom use of model aircraft can be found by contacting the Academy of Model Aeronautics Education Committee at their website, buildandfly.com. MATERIALS • FPG-9 pattern • 9” foam plate • Scissors • Clear tape • Ink pen • Penny 18 AEX MARC_Layout 1 1/10/13 3:03 PM Page 19 BACKGROUND Control surfaces on an airplane help determine the movement of the airplane. The FPG-9 glider demonstrates how the elevons and the rudder work. Elevons are aircraft control surfaces that combine the functions of the elevator (used for pitch control) and the aileron (used for roll control). Thus, elevons at the wing trailing edge are used for pitch and roll control. They are frequently used on tailless aircraft such as flying wings. The rudder is the small moving section at the rear of the vertical stabilizer that is attached to the fixed sections by hinges. Because the rudder moves, it varies the amount of force generated by the tail surface and is used to generate and control the yawing (left and right) motion of the aircraft.
    [Show full text]
  • Federal Aviation Administration, DOT § 61.45
    Federal Aviation Administration, DOT Pt. 61 Vmcl Minimum Control Speed—Landing. 61.35 Knowledge test: Prerequisites and Vmu The speed at which the last main passing grades. landing gear leaves the ground. 61.37 Knowledge tests: Cheating or other VR Rotate Speed. unauthorized conduct. VS Stall Speed or minimum speed in the 61.39 Prerequisites for practical tests. stall. 61.41 Flight training received from flight WAT Weight, Altitude, Temperature. instructors not certificated by the FAA. 61.43 Practical tests: General procedures. END QPS REQUIREMENTS 61.45 Practical tests: Required aircraft and equipment. [Doc. No. FAA–2002–12461, 73 FR 26490, May 9, 61.47 Status of an examiner who is author- 2008] ized by the Administrator to conduct practical tests. PART 61—CERTIFICATION: PILOTS, 61.49 Retesting after failure. FLIGHT INSTRUCTORS, AND 61.51 Pilot logbooks. 61.52 Use of aeronautical experience ob- GROUND INSTRUCTORS tained in ultralight vehicles. 61.53 Prohibition on operations during med- SPECIAL FEDERAL AVIATION REGULATION NO. ical deficiency. 73 61.55 Second-in-command qualifications. SPECIAL FEDERAL AVIATION REGULATION NO. 61.56 Flight review. 100–2 61.57 Recent flight experience: Pilot in com- SPECIAL FEDERAL AVIATION REGULATION NO. mand. 118–2 61.58 Pilot-in-command proficiency check: Operation of an aircraft that requires Subpart A—General more than one pilot flight crewmember or is turbojet-powered. Sec. 61.59 Falsification, reproduction, or alter- 61.1 Applicability and definitions. ation of applications, certificates, 61.2 Exercise of Privilege. logbooks, reports, or records. 61.3 Requirement for certificates, ratings, 61.60 Change of address.
    [Show full text]
  • Atmospheric Effects on Traffic Noise Propagation
    TRANSPORTATION RESEARCH RECORD 1255 59 Atmospheric Effects on Traffic Noise Propagation ROGER L. WAYSON AND WILLIAM BOWLBY Atmospheric effects on traffic noise propagation have largely L 0 sound level at a reference distance, been ignored during measurements and modeling, even though Ageo attenuation due to geometric spreading, it has generally been accepted that the effects may produce large Ab insertion loss due to diffraction, changes in receiver noise levels. Measurement of traffic noise at L, level increases due to reflection, and multiple locations concurrently with measurement of meteoro­ Ac attenuation due to ground characteristics and envi­ logical data is described. Statistical methods were used to evaluate the data. Atmospheric effects on traffic noise levels were shown ronmental effects. to be significant, even at very short distances; parallel components It should be noted that all levels in dB in this paper are of the wind (which are usually ignored) were important at second 2 row receivers; turbulent scattering increased noise levels near the referenced to 2 x 10-s N/m • ground more than refractive ray bending for short-distance prop­ The last term on the right side of Equation 1, A,, consists agation; and temperature lapse rates were not as important as of three parameters: ground attenuation, attenuation due to wind shear very near the highway. A statistical model was devel­ atmospheric absorption, and attenuation due to atmospheric oped to predict excess attenuations due to atmospheric effects. refraction. (2) Outdoor noise propagation has been studied since the time of the Greek philosopher Chrysippus (240 B. C.). Modern where prediction models have become accurate, and the advent of computers has increased the capabilities of models.
    [Show full text]
  • Hang Glider: Range Maximization the Problem Is to Compute the flight Inputs to a Hang Glider So As to Provide a Maximum Range flight
    Hang Glider: Range Maximization The problem is to compute the flight inputs to a hang glider so as to provide a maximum range flight. This problem first appears in [1]. The hang glider has weight W (glider plus pilot), a lift force L acting perpendicular to its velocity vr relative to the air, and a drag force D acting in a direction opposite to vr. Denote by x the horizontal position of the glider, by vx the horizontal component of the absolute velocity, by y the vertical position, and by vy the vertical component of absolute velocity. The airmass is not static: there is a thermal just 250 meters ahead. The profile of the thermal is given by the following upward wind velocity: 2 2 − x −2.5 x u (x) = u e ( R ) 1 − − 2.5 . a m R We take R = 100 m and um = 2.5 m/s. Note, MKS units are used through- out. The upwind profile is shown in Figure 1. Letting η denote the angle between vr and the horizontal plane, we have the following equations of motion: 1 x˙ = vx, v˙x = m (−L sin η − D cos η), 1 y˙ = vy, v˙y = m (L cos η − D sin η − W ) with q vy − ua(x) 2 2 η = arctan , vr = vx + (vy − ua(x)) , vx 1 1 L = c ρSv2,D = c (c )ρSv2,W = mg. 2 L r 2 D L r The glider is controlled by the lift coefficient cL. The drag coefficient is assumed to depend on the lift coefficient as 2 cD(cL) = c0 + kcL where c0 = 0.034 and k = 0.069662.
    [Show full text]
  • Glider Handbook, Chapter 2: Components and Systems
    Chapter 2 Components and Systems Introduction Although gliders come in an array of shapes and sizes, the basic design features of most gliders are fundamentally the same. All gliders conform to the aerodynamic principles that make flight possible. When air flows over the wings of a glider, the wings produce a force called lift that allows the aircraft to stay aloft. Glider wings are designed to produce maximum lift with minimum drag. 2-1 Glider Design With each generation of new materials and development and improvements in aerodynamics, the performance of gliders The earlier gliders were made mainly of wood with metal has increased. One measure of performance is glide ratio. A fastenings, stays, and control cables. Subsequent designs glide ratio of 30:1 means that in smooth air a glider can travel led to a fuselage made of fabric-covered steel tubing forward 30 feet while only losing 1 foot of altitude. Glide glued to wood and fabric wings for lightness and strength. ratio is discussed further in Chapter 5, Glider Performance. New materials, such as carbon fiber, fiberglass, glass reinforced plastic (GRP), and Kevlar® are now being used Due to the critical role that aerodynamic efficiency plays in to developed stronger and lighter gliders. Modern gliders the performance of a glider, gliders often have aerodynamic are usually designed by computer-aided software to increase features seldom found in other aircraft. The wings of a modern performance. The first glider to use fiberglass extensively racing glider have a specially designed low-drag laminar flow was the Akaflieg Stuttgart FS-24 Phönix, which first flew airfoil.
    [Show full text]
  • NWS Unified Surface Analysis Manual
    Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV.
    [Show full text]
  • Ergonomics of Paragliding Reserve Deployment
    Contemporary Ergonomics and Human Factors 2020. Eds. Rebecca Charles and Dave Golightly. CIEHF. Ergonomics of paragliding reserve deployment Matt Wilkes1, Geoff Long1, Heather Massey1, Clare Eglin1, Mike Tipton1 and Rebecca Charles2 1Extreme Environments Laboratory, University of Portsmouth, 2 Rail Safety and Standards Board ABSTRACT Paragliding is an emerging discipline of aviation, which is considered relatively high risk. Reserve parachutes are rarely used, but typical deployments are at low altitude, with pilots under the extreme stress of a life-threatening situation. To date, paraglider equipment design has focused primarily on weight and aerodynamics, so reserve parachute deployment systems have evolved haphazardly. Our study aimed to characterise deployment behaviours in amateur pilots. Fifty-five paraglider pilots were filmed deploying their reserve parachutes from a zipline. Test conditions were designed for ecologically valid body, hand and gaze positions; cognitive loading and switching; and physical disorientation akin to a real deployment. The footage was reviewed by two groups of subject matter experts. It was noted that pilots searched for the reserve handle using the hip as an anatomical landmark and tried to extract the deployment bag upwards, irrespective of optimum direction. Recommendations, which are being incorporated into the latest draft of the European Norm for harness design included: positioning reserve handles at the pilot’s hip; better system integration between different manufacturers; and containers being designed so deployment bags are extractable at any angle of pull. Deployment in a single, sweeping action should be encouraged in preference to the multiple actions sometimes taught. KEYWORDS Equipment failure, personal protective equipment, accidents, aviation Introduction Paragliding is a widely practiced form of unpowered flight (Paragliding Manufacturers’ Association 2014).
    [Show full text]