Quantum Vortex Reconnections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Φ0-Magnetic Force Microscopy for Imaging and Control of Vortex
Imaging and controlling vortex dynamics in mesoscopic superconductor-normal-metal-superconductor arrays Tyler R. Naibert1, Hryhoriy Polshyn1,2,*, Rita Garrido-Menacho1, Malcolm Durkin1, Brian Wolin1, Victor Chua1, Ian Mondragon-Shem1, Taylor Hughes1, Nadya Mason1,*, and Raffi Budakian1,3 1Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green St., Urbana, IL 61801-3080, USA 2Department of Physics, University of California, Santa Barbara, CA 93106, USA 3Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada, N2L3G1 Department of Physics, University of Waterloo, Waterloo, ON, Canada, N2L3G1 Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada, N2L2Y5 Canadian Institute for Advanced Research, Toronto, ON, Canada, M5G1Z8 *Corresponding authors. Email: [email protected]; [email protected] Harnessing the properties of vortices in superconductors is crucial for fundamental science and technological applications; thus, it has been an ongoing goal to locally probe and control vortices. Here, we use a scanning probe technique that enables studies of vortex dynamics in superconducting systems by leveraging the resonant behavior of a raster-scanned, magnetic-tipped cantilever. This experimental setup allows us to image and control vortices, as well as extract key energy scales of the vortex interactions. Applying this technique to lattices of superconductor island arrays on a metal, we obtain a variety of striking spatial patterns that encode information about the energy landscape for vortices in the system. We interpret these patterns in terms of local vortex dynamics and extract the relative strengths of the characteristic energy scales in the system, such as the vortex-magnetic field and vortex-vortex interaction strengths, as well as the vortex chemical potential. -
Scanning Hall Probe Microscopy of Vortex Matter in Single-And Two-Gap Superconductors
ARENBERG DOCTORAL SCHOOL Faculty of Science Scanning Hall probe microscopy of vortex matter in single-and two-gap superconductors - Bart Raes Promotors: Dissertation presented in partial Prof.Dr. Victor V. Moshchalkov fulfillment of the requirements for the Prof.Dr. Jacques Tempère PhD degree July 2013 Scanning Hall probe microscopy of vortex matter in single-and two-gap superconductors Bart RAES Dissertation presented in partial fulfillment of the requirements for the PhD degree Members of the Examination committee: Prof. Dr. Victor V. Moshchalkov KU Leuven (Promotor) Prof. Dr. Jacques Tempère Universiteit Antwerpen (Co-promotor) Prof. Dr. J. Van de Vondel KU Leuven (Secretary) Prof. Dr. L. Chibotaru KU Leuven (President) Prof. Dr. J. Vanacken KU Leuven Dr. J. Gutierrez Royo KU Leuven Prof. Dr. A.V. Silhanek Université de Liège Prof. Dr. S. Bending University of Bath Prof. Dr. G. Borghs KU Leuven, IMEC July 2013 © 2013 KU Leuven, Groep Wetenschap & Technologie, Arenberg Doctoraatsschool, W. de Croylaan 6, 3001 Leuven, België Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the publisher. ISBN 978-90-8649-638-9 D/2013/10.705/53 Dankwoord-Acknowledgements Doctoreren is niet alleen het resultaat van bijna vier jaar wetenschappelijk onderzoek, het is een lange weg met veel hindernissen maar zeker ook enkele hoogtepunten. -
Exploring the Symbiosis of Western and Non-Western Music: a Study
7/11/13 17:44 To Ti Ta Thijmen, mini Mauro, and an amazing Anna Promotoren Prof. dr. Marc Leman Vakgroep Kunst-, Muziek- en Theaterwetenschappen Lucien Posman Vakgroep Muziekcreatie, School of Arts, Hogeschool Gent Decaan Prof. dr. Marc Boone Rector Prof. dr. Anne De Paepe Leescommissie Dr. Micheline Lesaffre Prof. Dr. Francis Maes Dr. Godfried-Willem Raes Peter Vermeersch Dr. Frans Wiering Aanvullende examencommissie Prof. Dr. Jean Bourgeois (voorzitter) Prof. Dr. Maximiliaan Martens Prof. Dr. Dirk Moelants Prof. Dr. Katharina Pewny Prof. Dr. Linda Van Santvoort Kaftinformatie: Art work by Noel Cornelis, cover by Inge Ketelers ISBN: 978-94-6197-256-9 Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen, of enige andere manier, zonder voorafgaande toestemming van de uitgever. Olmo Cornelis has been affiliated as an artistic researcher to the Royal Conservatory, School of Arts Ghent since February 2008. His research project was funded by the Research Fund University College Ghent. Faculteit Letteren & Wijsbegeerte Olmo Cornelis Exploring the symbiosis of Western and non-Western music a study based on computational ethnomusicology and contemporary music composition Part I Proefschrift voorgelegd tot het behalen van de graad van Doctor in de kunsten: muziek 2013 Dankwoord Een dankwoord lokt menig oog, en dient een erg persoonlijke rol. Daarom schrijf ik dit deel liever in het Nederlands. Een onderzoek dat je gedurende zes jaar voert, is geen individueel verhaal. Het komt slechts tot stand door de hulp, adviezen en meningen van velen. -
Mto.95.1.4.Cuciurean
Volume 1, Number 4, July 1995 Copyright © 1995 Society for Music Theory John D. Cuciurean KEYWORDS: scale, interval, equal temperament, mean-tone temperament, Pythagorean tuning, group theory, diatonic scale, music cognition ABSTRACT: In Mathematical Models of Musical Scales, Mark Lindley and Ronald Turner-Smith attempt to model scales by rejecting traditional Pythagorean ideas and applying modern algebraic techniques of group theory. In a recent MTO collaboration, the same authors summarize their work with less emphasis on the mathematical apparatus. This review complements that article, discussing sections of the book the article ignores and examining unique aspects of their models. [1] From the earliest known music-theoretical writings of the ancient Greeks, mathematics has played a crucial role in the development of our understanding of the mechanics of music. Mathematics not only proves useful as a tool for defining the physical characteristics of sound, but abstractly underlies many of the current methods of analysis. Following Pythagorean models, theorists from the middle ages to the present day who are concerned with intonation and tuning use proportions and ratios as the primary language in their music-theoretic discourse. However, few theorists in dealing with scales have incorporated abstract algebraic concepts in as systematic a manner as the recent collaboration between music scholar Mark Lindley and mathematician Ronald Turner-Smith.(1) In their new treatise, Mathematical Models of Musical Scales: A New Approach, the authors “reject the ancient Pythagorean idea that music somehow &lsquois’ number, and . show how to design mathematical models for musical scales and systems according to some more modern principles” (7). -
LESSONS from TOPOLOGICAL SUPERFLUIDS: SAFE and DANGEROUS ROUTES to ANTISPACETIME 1 1 1,2 Llv.B
FEATURES LESSONS FROM TOPOLOGICAL SUPERFLUIDS: SAFE AND DANGEROUS ROUTES TO ANTISPACETIME 1 1 1,2 l V.B. Eltsov , J. Nissinen and G.E. Volovik – DOI: https://doi.org/10.1051/epn/2019504 l 1 Low Temperature Laboratory, Aalto University, P.O. Box 15100, FI-00076 Aalto, Finland l 2 Landau Institute for Theoretical Physics, acad. Semyonov av., 1a, 142432, Chernogolovka, Russia All realistic second order phase transitions are undergone at finite transition rate and are therefore non-adiabatic. In symmetry-breaking phase transitions the non-adiabatic processes, as predicted by Kibble and Zurek [1, 2], lead to the formation of topological defects (the so-called Kibble-Zurek mechanism). The exact nature of the resulting defects depends on the detailed symmetry-breaking pattern. or example, our universe – the largest condensed topological and nontopological objects (skyrmions and matter system known to us – has undergone Q-balls), etc. several symmetry-breaking phase transitions The model predictions can be tested in particle accel- Fafter the Big Bang. As a consequence, a variety erators (now probing energy densities >10-12s after the of topological defects might have formed during the early Big Bang) and in cosmological observations (which have evolution of the Universe. Depending on the Grand Uni- not yet identified such defects to date). The same physics, fied Theory model, a number of diffierent cosmic -topo however, can be probed in symmetry breaking transitions logical defects have been predicted to exist. Among them in condensed matter systems — in fermionic superfluid are point defects, such as the 't Hooft-Polyakov magnetic 3He to an astonishing degree of similarity. -
Twist Effects on Quantum Vortex Defects
Journal of Physics: Conference Series PAPER • OPEN ACCESS Twist effects on quantum vortex defects To cite this article: M Foresti 2021 J. Phys.: Conf. Ser. 1730 012016 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.40.40 on 26/09/2021 at 14:31 IC-MSQUARE 2020 IOP Publishing Journal of Physics: Conference Series 1730 (2021) 012016 doi:10.1088/1742-6596/1730/1/012016 Twist effects on quantum vortex defects M Foresti Department of Mathematics & Applications, University of Milano-Bicocca, Via Cozzi 55, 20125 Milano, Italy E-mail: [email protected] Abstract. We demonstrate that on a quantum vortex in Bose-Einstein condensates can form a new, central phase singularity. We define the twist phase for isophase surfaces and show that if the injection of a twist phase is global this phenomenon is given by an analog of the Aharonov- Bohm effect. We show analytically that the injection of a twist phase makes the filament unstable, that is the GP equation is modified by a new term that makes the Hamiltonian non-Hermitian. Using Kleinert's theory for multi-valued fields we show that this instability is compensated by the creation of the second vortex, possibly linked with the first one. 1. Introduction A Bose-Einstein condensate (BEC) is a diluted gas of bosons at very low temperature (see [1] and [2]) described by a unique scalar, complex-valued field = (x; t) called order parameter, that depends on position x and time t. The equation that describes the dynamics of a BEC is the Gross-Pitaevskii equation (GPE) written here in a non-dimensional [3]: i i @ = r2 + 1 − j j2 : (1) t 2 2 This is a type of non-linear Scrh¨odingerequation in three-dimensional space. -
Generation and Detection of Continuous Variable Quantum Vortex States Via Compact Photonic Devices
hv photonics Article Generation and Detection of Continuous Variable Quantum Vortex States via Compact Photonic Devices David Barral *, Daniel Balado and Jesús Liñares Optics Area, Department of Applied Physics, Faculty of Physics and Faculty of Optics and Optometry, University of Santiago de Compostela, Campus Vida s/n (Campus Universitario Sur), Santiago de Compostela, Galicia E-15782, Spain; [email protected] (D.B.); [email protected] (J.L.) * Correspondence: [email protected]; Tel.: +34-881-811-000 Received: 10 October 2016; Accepted: 29 December 2016; Published: 3 January 2017 Abstract: A quantum photonic circuit with the ability to produce continuous variable quantum vortex states is proposed. This device produces two single-mode squeezed states which go through a Mach-Zehnder interferometer where photons are subtracted by means of weakly coupled directional couplers towards ancillary waveguides. The detection of a number of photons in these modes heralds the production of a quantum vortex. Likewise, a measurement system of the order and handedness of quantum vortices is introduced and the performance of both devices is analyzed in a realistic scenario by means of the Wigner function. These devices open the possibility of using the quantum vortices as carriers of quantum information. Keywords: quantum information processing; continuous variables; integrated optics 1. Introduction In recent years, there has been an increasing interest in the processing of quantum information (QIP) with continuous variables (CV-QIP) [1]. CV-QIP protocols are based on Gaussian states as resources of entanglement. However, the use of non-Gaussian states has been shown to be essential in certain quantum protocols, like the entanglement distillation [2–5]. -
A Vortex Formulation of Quantum Physics Setting Discrete Quantum States Into Continuous Space-Time
Fred Y. Ye, IJNSR, 2017; 1:4 Research Article IJNSR (2017) 1:4 International Journal of Natural Science and Reviews (ISSN:2576-5086) A Vortex Formulation of Quantum Physics Setting Discrete Quantum States into Continuous Space-time Fred Y. Ye 1, 2* 1 School of Information Management, Nanjing University, Nanjing 210023, CHINA 2International Joint Informatics Laboratory (IJIL), UI-NU, Champaign-Nanjing ABSTRACT Any quantum state can be described by a vortex, which is math- *Correspondence to Author: ematically a multi-vector and physically a united-measure. Fred Y. Ye When the vortex formulation of quantum physics is introduced, School of Information Management, Hamil-ton principle keeps its core position in physical analysis. Nanjing University, Nanjing 210023, While the global characteristics are described by Lagranrian CHINA; International Joint Informat- function for dynamics and double complex core function for ics Laboratory (IJIL), UI-NU, Cham- stable states, Schrödinger equation and gauge symmetries paign-Nanjing reveal local char-acteristics. The vortex-based physics provides a new unified understanding of wave-particle duality and uncertainty, quantum entanglement and teleportation, as How to cite this article: well as quantum information and computation, with setting Fred Y. Ye. A Vortex Formulation of discrete quantum states into con-tinuous space-time for Quantum Physics Setting Discrete keeping concordance of methodology in processing micro- Quantum States into Continuous particle and macro-galaxy. Two fundamental experiments are Space-time. International Journal suggested to correct and verify the physical for-mulation. of Natural Science and Reviews, 2017; 1:4. Keywords: Vortex; vortex formulation; quantum mechanism; quantum state; quantum physics; space-time eSciPub LLC, Houston, TX USA. -
Physics of Superfluid Helium-4 Vortex Tangles in Normal-Fluid Strain Fields
Physics of superfluid helium-4 vortex tangles in normal-fluid strain fields Demosthenes Kivotides1, Anthony Leonard2 1Strathclyde University, Glasgow, UK 2California Institute of Technology, Pasadena, CA, USA (Dated: March 5, 2021) Abstract By employing dimensional analysis, we scale the equations of the mesoscopic model of finite temperature superfluid hydrodynamics. Based on this scaling, we set up three problems, that depict the effects of kinematic, normal-fluid strain fields on superfluid vortex loops, and characterize small- scale processes in fully developed turbulence. We also develop a formula for the computation of energy spectra corresponding to superfluid vortex tangles in unbounded domains. Employing this formula, we compute energy spectra of superfluid vortex patterns induced by uniaxial, equibiaxial and simple-shear normal-fluid flows. By comparing the steady-state superfluid spectra and vortex structures, we conclude that normal-flow strain fields do not play important role in explaining the phenomenology of fully developed superfluid turbulence. This is in sharp contrast with the role of vortical normal-flow fields in offering plausible, structural explanations of superfluid vortex patterns and spectra entailed in numerical turbulent solutions of the mesoscopic model. 1 INTRODUCTION The advent of quantum theory posed the problem of quantizing fluid dynamics. The most obvious choice, i.e., quantizing the Navier-Stokes fluid, leads to unsurpassable mathematical difficulties with uncontrollable singularities [1]. This could be because Navier-Stokes is a statistical, dissipative field theory and, traditionally, quantum mechanics was successful operating on conservative classical field theories. Indeed, things become better with the quantization of (nonlinear) Schroedinger (NLS) type fluids, that can explain superfluidity via spontaneous breaking of the particle number symmetry which induces a ground state (superfluid) whose topological defects (superfluid vortices) interact with the fluctuations of the quantum field (normal fluid) [2–7]. -
Kingkorg Parameter Guide
English Parameter guide Contents Parameters . 3 1. Program parameters ................................................................................... 3 2. Timbre parameters..................................................................................... 4 3. Vocoder parameters ..................................................................................13 4. Arpeggio parameters .................................................................................14 5. Edit utility parameters.................................................................................16 6. GLOBAL parameters...................................................................................16 7. MIDI parameters ......................................................................................18 8. CV&Gate parameters..................................................................................20 9. Foot parameters ......................................................................................20 10. UserKeyTune parameters ............................................................................21 11. EQ parameters.......................................................................................22 12. Tube parameters.....................................................................................22 13. Global utility.........................................................................................22 Effects . .23 . 1. What are effects.......................................................................................23 -
Microkorg XL+ Synthesizer / Ulate These Parameters and Create Sounds with a High Degree of Freedom
E 1 Precautions THE FCC REGULATION WARNING (for USA) Data handling Location NOTE: This equipment has been tested and found to com- Unexpected malfunctions can result in the loss of memory Using the unit in the following locations can result in a ply with the limits for a Class B digital device, pursuant to contents. Please be sure to save important data on an malfunction. Part 15 of the FCC Rules. These limits are designed to external data filer (storage device). Korg cannot accept • In direct sunlight provide reasonable protection against harmful interference any responsibility for any loss or damage which you may • Locations of extreme temperature or humidity in a residential installation. This equipment generates, incur as a result of data loss. • Excessively dusty or dirty locations uses, and can radiate radio frequency energy and, if not • Locations of excessive vibration installed and used in accordance with the instructions, may • Close to magnetic fields cause harmful interference to radio communications. How- * All product names and company names are the trademarks ever, there is no guarantee that interference will not occur or registered trademarks of their respective owners. Power supply in a particular installation. If this equipment does cause Please connect the designated AC adapter to an AC out- harmful interference to radio or television reception, which let of the correct voltage. Do not connect it to an AC outlet can be determined by turning the equipment off and on, of voltage other than that for which your unit is intended. the user is encouraged to try to correct the interference by one or more of the following measures: Interference with other electrical devices • Reorient or relocate the receiving antenna. -
Modeling Quantum Fluid Dynamics at Nonzero Temperatures
Modeling quantum fluid dynamics at SPECIAL FEATURE nonzero temperatures Natalia G. Berloffa,b,1, Marc Brachetc, and Nick P. Proukakisd aDepartment of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, United Kingdom; bCambridge-Skoltech Quantum Fluids Laboratory, Skolkovo Institute of Science and Technology ul. Novaya, Skolkovo 143025, Russian Federation; cCentre National de la Recherche Scientifique, Laboratoire de Physique Statistique, Université Pierre-et-Marie-Curie Paris 06, Université Paris Diderot, Ecole Normale Supérieure, 75231 Paris Cedex 05, France; and dJoint Quantum Centre (JQC) Durham–Newcastle, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom Edited by Katepalli R. Sreenivasan, New York University, New York, NY, and approved December 13, 2013 (received for review July 15, 2013) The detailed understanding of the intricate dynamics of quantum similar [e.g., Kolmogorov spectrum (9–13)], features sensitive to fluids, in particular in the rapidly growing subfield of quantum the vortex core structure arising at lengthscales smaller than the turbulence which elucidates the evolution of a vortex tangle in average intervortex spacing [e.g., velocity statistics (20–22) and a superfluid, requires an in-depth understanding of the role of finite pressure (23)] show starkly different behavior––see, e.g., the temperature in such systems. The Landau two-fluid model is the most recent reviews (24, 25). In addition to liquid helium (2, 26), there successful hydrodynamical theory of superfluid helium, but by the has been some recent interest in the observation of turbulence in nature of the scale separations it cannot give an adequate descrip- smaller inhomogeneous confined weakly interacting gases (27, tion of the processes involving vortex dynamics and interactions.