Introduction to Chern-Simons Theories

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Chern-Simons Theories Preprint typeset in JHEP style - HYPER VERSION Introduction To Chern-Simons Theories Gregory W. Moore Abstract: These are lecture notes for a series of talks at the 2019 TASI school. They contain introductory material to the general subject of Chern-Simons theory. They are meant to be elementary and pedagogical. ************* THESE NOTES ARE STILL IN PREPARATION. CONSTRUCTIVE COMMENTS ARE VERY WELCOME. (In par- ticular, I have not been systematic about trying to include references. The literature is huge and I know my own work best. I will certainly be interested if people bring reference omissions to my attention.) **************** June 7, 2019 Contents 1. Introduction: The Grand Overview 5 1.1 Assumed Prerequisites 8 2. Chern-Simons Theories For Abelian Gauge Fields 9 2.1 Topological Terms Matter 9 2.1.1 Charged Particle On A Circle Surrounding A Solenoid: Hamiltonian Quantization 9 2.1.2 Charged Particle On A Circle Surrounding A Solenoid: Path Integrals 14 2.1.3 Gauging The Global SO(2) Symmetry And Chern-Simons Terms 16 2.2 U(1) Chern-Simons Theory In 3 Dimensions 19 2.2.1 Some U(1) Gauge Theory Preliminaries 19 2.2.2 From θ-term To Chern-Simons 20 2.2.3 3D Maxwell-Chern-Simons For U(1) 22 2.2.4 The Formal Path Integral Of The U(1) Chern-Simons Theory 24 2.2.5 First Steps To The Hilbert Space Of States 25 2.2.6 General Remarks On Quantization Of Phase Space And Hamiltonian Reduction 27 2.2.7 The Space Of Flat Gauge Fields On A Surface 31 2.2.8 Quantization Of Flat Connections On The Torus: The Real Story 39 2.2.9 Quantization Of Flat Connections On The Torus: The Coherent Story 41 2.2.10 Quantization Of Flat Connections On The Torus: Landau's Story 47 2.2.11 Quantization Of Flat Connections On The Torus: Heisenberg's Story 51 2.2.12 Symplectic Transformations, Large Diffeomorphisms, And Modular Transformations 55 2.2.13 The Bundle Of Physical States Over The Moduli Space Of Curves 59 2.2.14 Correlation Functions Of Line Defects And Framing Anomalies 60 2.2.15 Digression On The Gauss Linking Number 61 2.2.16 The Framing Anomaly And Ribbons 64 2.2.17 A Topological Anomaly: The Normalization Factor: N 68 2.2.18 Uniting The Path Integral And Hamiltonian Viewpoints: States Cre- ated By Wilson Lines 70 2.3 Relation To Rational Conformal Field Theory 72 2.3.1 Quantization When @Σ Is Nonempty: Emergence Of Edge States 72 2.3.2 Quantization With Wilson Lines Piercing Spatial Surface 74 2.4 The Gaussian Model For R2 Rational 74 2.4.1 Gluing The Same Chiral Algebra To Get Different Radii 79 2.4.2 The Free Fermion Radius: Level 1=2 Theta Functions And Spin Structures On The Torus 80 { 1 { 2.5 Spin Theories 82 2.6 Generalization: Torus Gauge Group 84 2.6.1 Applications To the FQHE 85 2.6.2 Coupling To External Abelian Gauge Fields 85 3. Chern-Simons Theories For NonAbelian Gauge Fields 85 3.1 Some Chern-Weil Theory 85 3.1.1 The Chern-Simons Action On M3 With A Nonempty Boundary 88 3.2 The Semiclassical Approximation To The Chern-Simons Path Integral 88 3.2.1 Semiclassical Approximation: The Framing Anomaly Revisited 89 3.2.2 Higher Loops 92 3.3 Quantization In Some Important Cases 92 3.3.1 Quantization On Σ2 × R With Σ A Compact Surface 92 3.3.2 Quantization On Punctured Surfaces 96 3.3.3 Quantization On D2 × R, With D2 A Disk: Nonabelian Edge States 97 3.4 Quantization Of The Moduli Space Of Flat Gauge Fields And Algebraic Geometry 98 3.4.1 Generalization To Conformal Blocks With Vertex Operator Insertions 99 4. WZW Model And RCFT 100 4.1 The Principal Chiral Model And The WZ Term 101 4.1.1 The Wess-Zumino Term 101 4.1.2 The Case Of Two Dimensions And The Conformal Point 107 4.2 Quantization: Virasoro And Affine Lie Algebra Symmetry 110 4.2.1 Stress-Energy Tensor 114 4.3 The Central Extension Of The Loop Group And The WZ Term 116 4.4 Relation To Anomalies 118 4.4.1 Coupling To External Gauge Fields 118 4.4.2 Anomalies Of Weyl Fermions 118 4.5 Highest Weight Representations Of Loop Groups 120 4.5.1 Integrable highest weight representations of Lfg 120 4.5.2 Integrable Highest Weight Representations Of The Group 127 4.5.3 Characters of integrable highest weight representations 129 4.5.4 Modular properties 131 4.6 The Hilbert Space Of WZW And The One-Loop Partition Function 133 4.7 Primary Fields 135 4.7.1 Semisimple Algebras 135 4.7.2 An Example Of Semisimple Fusion Rules: Finite Group Theory 138 4.8 Tensor Product Of Highest Weight Representations 140 4.8.1 Fusion Rules For The WZW Model 142 4.9 Conformal Blocks And Monodromy 143 4.10 Open String WZW Model: Symmetry Preserving Boundary Conditions 143 { 2 { 5. Topological Field Theories And Categories 144 5.1 Basic Ideas 144 5.1.1 More Structure 149 5.2 The Definition Of Topological Field Theory 149 5.2.1 Some General Properties 150 5.2.2 Unitarity 156 5.3 One Dimensional Field Theories 156 5.4 Two-Dimensional Topological Field Theories 158 5.5 Extended Topological Field Theories 159 5.6 Three-Dimensional Topological Field Theories 159 5.7 Some Source Material For Topological Field Theories 159 6. Computing Nonabelian Chern-Simons Correlators Using RCFT 160 6.1 3D Interpretation Of Braiding And Fusing Matrices 160 6.2 Surgery Manipulations 160 6.3 The Jones polynomial and WRT Invariants 161 6.4 Beyond knot polynomials: The idea of categorification and Knot homology. 161 7. Finite Group Chern-Simons Theory 161 7.1 The General Compact Group G 161 7.1.1 Chern-Simons Theory When The Gauge Group Is A Finite Group 161 8. p-form Generalizations And Differential Cohomology 161 9. More About Topological Field Theories 161 10. Anyons, nonabelions, and quantum computation 162 10.1 Anyons in 2+1 dimensions 162 11. A Survey Of Further Generalizations And Applications 165 11.1 Applications To Supergravity 165 11.2 Noncompact Groups 165 11.3 Applications to Holography 165 11.4 Many Other Applications And Extensions 165 A. Symplectic Geometry 166 A.1 Kahler quotients: A lightning review 166 A.1.1 The moment map 166 A.1.2 Symplectic Quotient 168 A.1.3 K¨ahlerquotient 169 B. Lightning Review Of K¨ahlerQuantization 171 B.1 The Bargmann Representation 171 B.2 Generalization: Berezin-Toeplitz Quantization 172 B.2.1 Example: Quantization Of The Sphere And Representations Of SU(2)174 { 3 { B.3 The Borel-Weil-Bott Theorem 175 C. A Few Details About SL(2; Z) 176 C.1 Generators And A Fundamental Domain For P SL(2; Z) 176 C.2 Expressing Elements Of SL(2; Z) As Words In S And T 179 D. Level k Theta Functions 182 D.1 Definition 182 D.2 Modular Transformation Laws For Level k Theta Functions 182 E. Theta Functions And Holomorphic Line Bundles On Tori 184 E.1 Heisenberg Groups As Principal U(1) Bundles 185 E.2 A Natural Connection 187 E.3 Putting A Complex Structure On The Symplectic Tori 187 E.4 Lagrangian Decompositions 188 E.5 The Space Of Complex Structures On The Torus: The Siegel Upper Half- Plane 188 E.6 Lagrangian Decomposition: Group-Theoretic Interpretation 192 E.7 Hermitian Holomorphic Line Bundles 192 E.7.1 Computing The First Chern Class 194 E.7.2 A Basis Of Holomorphic Sections: Level κ Theta Functions 194 E.8 Modular Transformation Laws 195 E.9 The Heat Equation 195 F. Hodge Theory And Analytic Torsion 195 F.1 Some Hodge Theory 195 F.2 Analytic Torsion 197 G. Orientation, Spin, Spinc, P in±, And Pinc Structures On Manifolds 198 G.1 Reduction Of Structure Group: General Discussion 198 G.2 Obstructions To Spin And Pin Structures 200 G.3 Spinc Structures On Four-Manifolds 202 G.4 't Hooft Flux 203 H. Connections, Parallel Transport, And Holonomy 203 I. Chern-Weil Theory And Chern-Simons Forms 211 I.1 Characteristic classes 211 I.2 Basic forms 212 I.3 Invariant polynomials on the Lie algebra 212 I.3.1 Examples 213 I.4 The Chern-Weil homomorphism 214 I.5 Dependence on connection: Construction of characteristic classes 215 I.6 The Borel Theorem 217 { 4 { I.7 Secondary characteristic classes: The Chern-Simons forms 217 I.7.1 Other paths to Chern-Simons 223 J. Some Material On Lie Groups And Lie Algebras 224 J.1 The Structure Of The General Compact Lie Group 224 J.2 Dual Coxeter Number 225 K. Categories: Groups and Groupoids 226 K.1 Groupoids 236 K.2 Tensor Categories 238 K.2.1 Z2-graded vector spaces 239 K.2.2 Category Of Representations Of A Group 239 L. Bordism 240 L.1 Unoriented Bordism: Definition And Examples 240 L.2 The Bordism Category Bordhd−1;di 241 SO L.3 The Oriented Bordism Category Bordhd−1;di 242 L.4 Other Bordism Categories 243 M. Some Sources From Course Notes 244 \This whole book is but a draught nay, but the draught of a draught." - Herman Melville 1. Introduction: The Grand Overview Chern-Simons theory is a quantum gauge theory involving a rather subtle action principle. It leads to quantum field theory in which many, many, natural questions can be explicitly answered.
Recommended publications
  • Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu
    Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu Notes for a topics in topology course, University of Notre Dame, Spring 2004, Spring 2013. Last revision: November 15, 2013 i The Atiyah-Singer Index Theorem This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera- tors on a compact manifold, namely those operators P with the property that dim ker P; dim coker P < 1. In general these integers are very difficult to compute without some very precise information about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that its determination can be carried out relying only on topological tools. You should compare this with the following elementary situation. m n Suppose we are given a linear operator A : C ! C . From this information alone we cannot compute the dimension of its kernel or of its cokernel. We can however compute their difference which, according to the rank-nullity theorem for n×m matrices must be dim ker A−dim coker A = m − n. Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator is determined by certain cohomology classes on the background manifold. These cohomology classes are in turn topological invariants of the vector bundles on which the differential operator acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that in order to understand the index problem for an arbitrary elliptic operator it suffices to understand the index problem for a very special class of first order elliptic operators, namely the Dirac type elliptic operators.
    [Show full text]
  • Fermionic Finite-Group Gauge Theories and Interacting Symmetric
    Fermionic Finite-Group Gauge Theories and Interacting Symmetric/Crystalline Orders via Cobordisms Meng Guo1;2;3, Kantaro Ohmori4, Pavel Putrov4;5, Zheyan Wan6, Juven Wang4;7 1Department of Mathematics, Harvard University, Cambridge, MA 02138, USA 2Perimeter Institute for Theoretical Physics, Waterloo, ON, N2L 2Y5, Canada 3Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada 4School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA 5 ICTP, Trieste 34151, Italy 6School of Mathematical Sciences, USTC, Hefei 230026, China 7Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA, USA Abstract We formulate a family of spin Topological Quantum Filed Theories (spin-TQFTs) as fermionic generalization of bosonic Dijkgraaf-Witten TQFTs. They are obtained by gauging G-equivariant invertible spin-TQFTs, or, in physics language, gauging the interacting fermionic Symmetry Protected Topological states (SPTs) with a finite group G symmetry. We use the fact that the latter are classified by Pontryagin duals to spin-bordism groups of the classifying space BG. We also consider unoriented analogues, that is G-equivariant invertible pin±-TQFTs (fermionic time-reversal-SPTs) and their gauging. We compute these groups for various examples of abelian G using Adams spectral sequence and describe all corresponding TQFTs via certain bordism invariants in dimensions 3, 4, and other. This gives explicit formulas for the partition functions of spin-TQFTs on closed manifolds with possible extended operators inserted. The results also provide explicit classification of 't Hooft anomalies of fermionic QFTs with finite abelian group symmetries in one dimension lower. We construct new anomalous boundary deconfined spin-TQFTs (surface fermionic topological orders).
    [Show full text]
  • Exploring the Symbiosis of Western and Non-Western Music: a Study
    7/11/13 17:44 To Ti Ta Thijmen, mini Mauro, and an amazing Anna Promotoren Prof. dr. Marc Leman Vakgroep Kunst-, Muziek- en Theaterwetenschappen Lucien Posman Vakgroep Muziekcreatie, School of Arts, Hogeschool Gent Decaan Prof. dr. Marc Boone Rector Prof. dr. Anne De Paepe Leescommissie Dr. Micheline Lesaffre Prof. Dr. Francis Maes Dr. Godfried-Willem Raes Peter Vermeersch Dr. Frans Wiering Aanvullende examencommissie Prof. Dr. Jean Bourgeois (voorzitter) Prof. Dr. Maximiliaan Martens Prof. Dr. Dirk Moelants Prof. Dr. Katharina Pewny Prof. Dr. Linda Van Santvoort Kaftinformatie: Art work by Noel Cornelis, cover by Inge Ketelers ISBN: 978-94-6197-256-9 Alle rechten voorbehouden. Niets uit deze uitgave mag worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevensbestand, of openbaar gemaakt, in enige vorm of op enige wijze, hetzij elektronisch, mechanisch, door fotokopieën, opnamen, of enige andere manier, zonder voorafgaande toestemming van de uitgever. Olmo Cornelis has been affiliated as an artistic researcher to the Royal Conservatory, School of Arts Ghent since February 2008. His research project was funded by the Research Fund University College Ghent. Faculteit Letteren & Wijsbegeerte Olmo Cornelis Exploring the symbiosis of Western and non-Western music a study based on computational ethnomusicology and contemporary music composition Part I Proefschrift voorgelegd tot het behalen van de graad van Doctor in de kunsten: muziek 2013 Dankwoord Een dankwoord lokt menig oog, en dient een erg persoonlijke rol. Daarom schrijf ik dit deel liever in het Nederlands. Een onderzoek dat je gedurende zes jaar voert, is geen individueel verhaal. Het komt slechts tot stand door de hulp, adviezen en meningen van velen.
    [Show full text]
  • Arxiv:1910.04634V1 [Math.DG] 10 Oct 2019 ˆ That E Sdnt by Denote Us Let N a En H Subbundle the Define Can One of Points Bundle
    SPIN FRAME TRANSFORMATIONS AND DIRAC EQUATIONS R.NORIS(1)(2), L.FATIBENE(2)(3) (1) DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, I-10129 Torino, Italy (2)INFN Sezione di Torino, Via Pietro Giuria 1, I-10125 Torino, Italy (3) Dipartimento di Matematica – University of Torino, via Carlo Alberto 10, I-10123 Torino, Italy Abstract. We define spin frames, with the aim of extending spin structures from the category of (pseudo-)Riemannian manifolds to the category of spin manifolds with a fixed signature on them, though with no selected metric structure. Because of this softer re- quirements, transformations allowed by spin frames are more general than usual spin transformations and they usually do not preserve the induced metric structures. We study how these new transformations affect connections both on the spin bundle and on the frame bundle and how this reflects on the Dirac equations. 1. Introduction Dirac equations provide an important tool to study the geometric structure of manifolds, as well as to model the behaviour of a class of physical particles, namely fermions, which includes electrons. The aim of this paper is to generalise a key item needed to formulate Dirac equations, the spin structures, in order to extend the range of allowed transformations. Let us start by first reviewing the usual approach to Dirac equations. Let (M,g) be an orientable pseudo-Riemannian manifold with signature η = (r, s), such that r + s = m = dim(M). R arXiv:1910.04634v1 [math.DG] 10 Oct 2019 Let us denote by L(M) the (general) frame bundle of M, which is a GL(m, )-principal fibre bundle.
    [Show full text]
  • Characteristic Classes and K-Theory Oscar Randal-Williams
    Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018.
    [Show full text]
  • Quantum Mechanics Quantum Chromodynamics (QCD)
    Quantum Mechanics_quantum chromodynamics (QCD) In theoretical physics, quantum chromodynamics (QCD) is a theory ofstrong interactions, a fundamental forcedescribing the interactions between quarksand gluons which make up hadrons such as the proton, neutron and pion. QCD is a type of Quantum field theory called a non- abelian gauge theory with symmetry group SU(3). The QCD analog of electric charge is a property called 'color'. Gluons are the force carrier of the theory, like photons are for the electromagnetic force in quantum electrodynamics. The theory is an important part of the Standard Model of Particle physics. A huge body of experimental evidence for QCD has been gathered over the years. QCD enjoys two peculiar properties: Confinement, which means that the force between quarks does not diminish as they are separated. Because of this, when you do split the quark the energy is enough to create another quark thus creating another quark pair; they are forever bound into hadrons such as theproton and the neutron or the pion and kaon. Although analytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons interact very weakly creating a quark–gluon plasma. This prediction of QCD was first discovered in the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 Nobel Prize in Physics. There is no known phase-transition line separating these two properties; confinement is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes dominant.
    [Show full text]
  • Geometrical and Topological Foundations of Theoretical Physics: from Gauge Theories to String Program
    IJMMS 2004:34, 1777–1836 PII. S0161171204304400 http://ijmms.hindawi.com © Hindawi Publishing Corp. GEOMETRICAL AND TOPOLOGICAL FOUNDATIONS OF THEORETICAL PHYSICS: FROM GAUGE THEORIES TO STRING PROGRAM LUCIANO BOI Received 20 April 2003 and in revised form 27 October 2003 We study the role of geometrical and topological concepts in the recent developments of the- oretical physics, notably in non-Abelian gauge theories and superstring theory, and further we show the great significance of these concepts for a deeper understanding of the dynam- ical laws of physics. This work aims to demonstrate that the global topological properties of the manifold’s model of spacetime play a major role in quantum field theory and that, therefore, several physical quantum effects arise from the nonlocal metrical and topological structure of this manifold. We mathematically argue the need for building new structures of space with different topology. This means, in particular, that the “hidden” symmetries of fundamental physics can be related to the phenomenon of topological change of certain classes of (presumably) nonsmooth manifolds. 2000 Mathematics Subject Classification: 14-xx, 55-xx, 81-xx, 83-xx. 1. Introduction. We analyze the role of geometrical and topological concepts in the developments of theoretical physics, especially in gauge theory and string theory, and we show the great significance of these concepts for a better understanding of the dynamics of physics. We claim that physical phenomena very likely emerge from the geometrical and topological structure of spacetime. The attempts to solve one of the central problems in twentieth century theoretical physics, that is, how to combine grav- ity and the other forces into a unitary theoretical explanation of the physical world, essentially depend on the possibility of building a new geometrical framework concep- tually richer than Riemannian geometry.
    [Show full text]
  • Submanifolds That Are Level Sets of Solutions to a Second-Order Elliptic Pde
    SUBMANIFOLDS THAT ARE LEVEL SETS OF SOLUTIONS TO A SECOND-ORDER ELLIPTIC PDE ALBERTO ENCISO AND DANIEL PERALTA-SALAS Abstract. We consider the problem of characterizing which noncompact hy- persurfaces in Rn can be regular level sets of a harmonic function modulo a C∞ diffeomorphism, as well as certain generalizations to other PDEs. We prove a versatile sufficient condition that shows, in particular, that any nonsingular al- gebraic hypersurface whose connected components are all noncompact can be transformed onto a union of components of the zero set of a harmonic function via a diffeomorphism of Rn. The technique we use, which is a significant re- finement of the basic strategy we recently applied to construct solutions to the Euler equation with knotted stream lines (Ann. of Math. 175 (2012) 345–367), combines robust but not explicit local constructions with appropriate global approximation theorems. In view of applications to a problem posed by Berry and Dennis, intersections of level sets are also studied. 1. Introduction The study of level sets of solutions to an elliptic PDE is a major topic in spectral geometry and in the geometric theory of differential equations, and can be traced back to the origins of potential theory. This is a multifaceted issue, with connections that range from geometric measure theory to purely topological questions. In the present paper we will focus on the geometric and topological aspects of this problem. These questions have attracted considerable attention, which has resulted in remarkable progress in our understanding of the symmetry of level sets [36, 21, 10], their curvature [28, 13, 16] and convexity properties [26, 3, 35], and the appearance of critical points [4, 7, 14] in the context of solutions to second-order elliptic PDE.
    [Show full text]
  • K-Theory and Characteristic Classes in Topology and Complex Geometry (A Tribute to Atiyah and Hirzebruch)
    K-theory and characteristic classes in topology and complex geometry (a tribute to Atiyah and Hirzebruch) Claire Voisin CNRS, Institut de math´ematiquesde Jussieu CMSA Harvard, May 25th, 2021 Plan of the talk I. The early days of Riemann-Roch • Characteristic classes of complex vector bundles • Hirzebruch-Riemann-Roch. Ref. F. Hirzebruch. Topological Methods in Algebraic Geometry (German, 1956, English 1966) II. K-theory and cycle class • The Atiyah-Hirzebruch spectral sequence and cycle class with integral coefficients. • Resolutions and Chern classes of coherent sheaves Ref. M. Atiyah, F. Hirzebruch. Analytic cycles on complex manifolds (1962) III. Later developments on the cycle class • Complex cobordism ring. Kernel and cokernel of the cycle class map. • Algebraic K-theory and the Bloch-Ogus spectral sequence The Riemann-Roch formula for curves • X= compact Riemann surface (= smooth projective complex curve). E ! X a holomorphic vector bundle on X. •E the sheaf of holomorphic sections of E. Sheaf cohomology H0(X; E)= global sections, H1(X; E) (eg. computed as Cˇech cohomology). Def. (holomorphic Euler-Poincar´echaracteristic) χ(X; E) := h0(X; E) − h1(X; E). • E has a rank r and a degree deg E = deg (det E) := e(det E). • X has a genus related to the topological Euler-Poincar´echaracteristic: 2 − 2g = χtop(X). • Hopf formula: 2g − 2 = deg KX , where KX is the canonical bundle (dual of the tangent bundle). Thm. (Riemann-Roch formula) χ(X; E) = deg E + r(1 − g) Sketch of proof Sketch of proof. (a) Reduction to line bundles: any E has a filtration by subbundles Ei such that Ei=Ei+1 is a line bundle.
    [Show full text]
  • Wilson Loops in 3-Dimensional N=6 Supersymmetric Chern-Simons Theory and Their String Theory Duals Drukker, N; Plefka, J; Young, D
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Queen Mary Research Online Wilson loops in 3-dimensional N=6 supersymmetric Chern-Simons Theory and their string theory duals Drukker, N; Plefka, J; Young, D For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/8211 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] HU-EP-08/20 Wilson loops in 3-dimensional =6 supersymmetric Chern-Simons TheoryN and their string theory duals Nadav Drukker, Jan Plefka and Donovan Young Humboldt-Universit¨at zu Berlin, Institut f¨ur Physik, Newtonstraße 15, D-12489 Berlin, Germany drukker,plefka,[email protected] Abstract We study Wilson loops in the three-dimensional = 6 supersymmetric Chern-Simons N theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjec- tured to be dual to type IIA string theory on AdS CP3. We construct loop operators in 4 × the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expec- tation value up to 2-loop order at weak coupling. The expectation value at strong coupling arXiv:0809.2787v4 [hep-th] 30 Oct 2008 is found by constructing the string theory duals of these operators. For low dimensional representations these are fundamental strings, for high dimensional representations these are D2-branes and D6-branes. In support of this identification we demonstrate that these string theory solutions match the symmetries, charges and the preserved supersymmetries of their Chern-Simons theory counterparts.
    [Show full text]
  • The Chern Characteristic Classes
    The Chern characteristic classes Y. X. Zhao I. FUNDAMENTAL BUNDLE OF QUANTUM MECHANICS Consider a nD Hilbert space H. Qauntum states are normalized vectors in H up to phase factors. Therefore, more exactly a quantum state j i should be described by the density matrix, the projector to the 1D subspace generated by j i, P = j ih j: (I.1) n−1 All quantum states P comprise the projective space P H of H, and pH ≈ CP . If we exclude zero point from H, there is a natural projection from H − f0g to P H, π : H − f0g ! P H: (I.2) On the other hand, there is a tautological line bundle T (P H) over over P H, where over the point P the fiber T is the complex line generated by j i. Therefore, there is the pullback line bundle π∗L(P H) over H − f0g and the line bundle morphism, π~ π∗T (P H) T (P H) π H − f0g P H . Then, a bundle of Hilbert spaces E over a base space B, which may be a parameter space, such as momentum space, of a quantum system, or a phase space. We can repeat the above construction for a single Hilbert space to the vector bundle E with zero section 0B excluded. We obtain the projective bundle PEconsisting of points (P x ; x) (I.3) where j xi 2 Hx; x 2 B: (I.4) 2 Obviously, PE is a bundle over B, p : PE ! B; (I.5) n−1 where each fiber (PE)x ≈ CP .
    [Show full text]
  • Holographic Wilson Loops
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1675 Holographic Wilson Loops Quantum String Corrections DANIEL RICARDO MEDINA RINCON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0350-5 UPPSALA urn:nbn:se:uu:diva-349210 2018 Dissertation presented at Uppsala University to be publicly examined in Room FB53, AlbaNova Universitetscentrum, Roslagstullsbacken 21, Stockholm, Wednesday, 13 June 2018 at 10:30 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Gianluca Grignani (Università di Perugia). Abstract Medina Rincon, D. R. 2018. Holographic Wilson Loops. Quantum String Corrections. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1675. 67 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0350-5. The gauge-string duality has been one of the most exciting areas in theoretical physics as it connects strongly coupled field theories with weakly interacting strings. The present thesis concerns the study of Wilson loops in this correspondence. Wilson loops are observables arising in many physical situations like the propagation of particles in gauge fields, the problem of confinement, etc. In the gauge-string correspondence these observables have a known physical description at both sides, making them ideal probes for the duality. Remarkable progress from localization has lead to predictions at all orders in the coupling for certain Wilson loop configurations in supersymmetric field theories. Being the string theory weakly interacting, in principle we can use perturbation theory to calculate the corresponding quantities. However, current string calculations have only been successful at leading order and in rare cases, next to leading order.
    [Show full text]