hep-th/0310159 HUTP-03/A072 SLAC-PUB-9863 SU-ITP-03/28 Heterotic Moduli Stabilization with Fractional Chern-Simons Invariants Sergei Gukov,a1 Shamit Kachru,b,c2 Xiao Liu,b,c3 and Liam McAllisterb4 a Department of Physics, Harvard University, Cambridge, MA 02138 b Department of Physics, Stanford University, Stanford, CA 94305 c SLAC, Sta nf o rd Uni v e rs i ty, Me nlo P a rk , CA We show that fractional flux from Wilson lines can stabilize the moduli of heterotic string compactifications on Calabi-Yau threefolds. We observe that the Wilson lines used in GUT symmetry breaking naturally induce a fractional flux. When combined with a hidden-sector gaugino condensate, this generates a potential for the complex structure moduli, K¨ahler moduli, and dilaton. This potential has a supersymmetric AdS minimum at moderately weak coupling and large volume. Notably, the necessary ingredients for this construction are often present in realistic models. We explore the type IIA dual phenomenon, which involves Wilson lines in D6-branes wrapping a three-cycle in a Calabi- Yau, and comment on the nature of the fractional instantons which change the Chern- Simons invariant. 1
[email protected] 2
[email protected] 3
[email protected] 4
[email protected] Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309 Work supported by the Department of Energy contract DE-AC03-76SF00515. 1. Introduction When string theory is compactified on a Calabi-Yau manifold [1], the resulting low- energy field theory typically contains some number of massless scalar fields, or moduli.