Bulk-Boundary Correspondence, SPT Invariants and Gauging
Bosonic topological phases of matter: bulk-boundary correspondence, SPT invariants and gauging Apoorv Tiwari,1, 2 Xiao Chen,3 Ken Shiozaki,4 and Shinsei Ryu5 1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada 2Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green St, Urbana IL 61801 3Kavli Institute of Theoretical Physics, Santa Barbara, CA 93106, USA 4Condensed Matter Theory Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan 5James Franck Institute and Kadanoff Center for Theoretical Physics, University of Chicago, IL 60637, USA (ΩDated: October 16, 2017) We analyze 2 + 1d and 3 + 1d Bosonic Symmetry Protected Topological (SPT) phases of matter protected by onsite symmetry group G by using dual bulk and boundary approaches. In the bulk we study an effective field theory which upon coupling to a background flat G gauge field furnishes a purely topological response theory. The response action evaluated on certain manifolds, with appropriate choice of background gauge field, defines a set of SPT topological invariants. Further, SPTs can be gauged by summing over all isomorphism classes of flat G gauge fields to obtain Dijkgraaf-Witten topological G gauge theories. These topological gauge theories can be ungauged by first introducing and then proliferating defects that spoils the gauge symmetry. This mechanism is related to anyon condensation in 2 + 1d and condensing bosonic gauge charges in 3 + 1d. In the dual boundary approach, we study 1 + 1d and 2 + 1d quantum field theories that have G 't- Hooft anomalies that can be precisely cancelled by (the response theory of) the corresponding bulk SPT.
[Show full text]