An Architecture for Accelerated Large-Scale Inference of Transformer-Based Language Models

Total Page:16

File Type:pdf, Size:1020Kb

An Architecture for Accelerated Large-Scale Inference of Transformer-Based Language Models An Architecture for Accelerated Large-Scale Inference of Transformer-Based Language Models Amir Ganiev∗ and Colt Chapin and Anderson de Andrade and Chen Liu∗ Wattpad Toronto, ON, Canada [email protected], {colt, anderson}@wattpad.com, [email protected] Abstract other steps and can be computed in parallel, which can make both training and inference faster. BERT This work demonstrates the development pro- also easily accommodates different applications by cess of a machine learning architecture for in- allowing the fine-tuning of its parameters on dif- ference that can scale to a large volume of re- quests. In our experiments, we used a BERT ferent tasks. Despite these benefits, exposing these model that was fine-tuned for emotion analysis, models and communicating with them efficiently returning a probability distribution of emotions possesses some challenges. given a paragraph. The model was deployed as Machine learning frameworks are often used to a gRPC service on Kubernetes. Apache Spark train, evaluate, and perform inference on predic- was used to perform inference in batches by tive models. TensorFlow (Abadi et al., 2016) has calling the service. We encountered some per- formance and concurrency challenges and cre- been shown to be a reliable system that can operate ated solutions to achieve faster running time. at a large scale. A sub-component called Tensor- Starting with 3.3 successful inference requests Flow Serving allows loading models as services per second, we were able to achieve as high that handle inference requests concurrently. as 300 successful requests per second with the System architectures for inference have changed same batch job resource allocation. As a result, over time. Initial approaches favored offline set- we successfully stored emotion probabilities tings where batch jobs make use of distributed plat- for 95 million paragraphs within 96 hours. forms to load models and data within the same 1 Introduction process and perform inference. For example, Ijari, 2017 suggested an architecture that uses Apache As data in organizations becomes more available Hadoop (Hadoop, 2006) and Apache Pig for large- for analysis, it is crucial to develop efficient ma- scale data processing, where results are written chine learning pipelines. Previous work (Al-Jarrah to a Hadoop Distributed File System (HDFS) for et al., 2015) has highlighted the growing number later consumption. Newer distributed platforms of data centers and their energy and pollution reper- such as Apache Spark (Zaharia et al., 2016) have cussions. Machine learning models that require less gained prominence because of their memory opti- computational resources to generate accurate re- mizations and more versatile APIs, compared to sults reduce these externalities. On the other hand, Apache Hadoop (Zaharia et al., 2012). many machine learning applications also require As part of this architecture, inference services results in nearly real-time in order to be viable and would often be reserved for applications that may also require results from as many data samples require faster responses. The batch-based and as possible in order to produce accurate insights. service-based platforms have different use cases Hence, there are also opportunity costs associated and often run in isolation. Collocating data and with missed service-level objectives. models in a batch job has some disadvantages. Attention-based language models such as BERT Loading models in the same process as the data (Devlin et al., 2019) are often chosen for their forces them both to scale the same way. Moreover, relative efficiency, and empirical power. Com- models are forced to be implemented using the pro- pared to recurrent neural networks (Hochreiter and gramming languages supported by the distributed Schmidhuber, 1997), each step in a transformer data platform. Their APIs often place some limita- layer (Vaswani et al., 2017) has direct access to all tions on what can be done. ∗ Work done while the author was working at Wattpad. With the evolution of machine learning frame- 163 Proceedings of NAACL HLT 2021: IndustryTrack Papers, pages 163–169 June 6–11, 2021. ©2021 Association for Computational Linguistics works and container-orchestration systems such as when conducting model inference at scale in a Kubernetes,1 it is now simpler to efficiently build, MapReduce program such as Apache Spark is to deploy, and scale models as services. A scalable broadcast an instance of the model to each dis- architecture was presented in (Gómez et al., 2014) tributed worker process to allow for parallel pro- that proposes the use of RESTful API calls exe- cessing. However, when the footprint of these in- cuted by batch jobs in Hadoop to reach online ser- stances becomes too large, they begin to compete vices that provide real-time inference. Approaches with the dataset being processed for the limited like this simplify the architecture and address the memory resources of the underlying cluster and, in issues discussed previously. many cases, exceeding the capacity of the underly- In this work, we present an architecture for batch ing hardware. inference where a data processing task relies on ex- While this issue does not preclude the use of ternal services to perform the computation. The Apache Spark for running inferences on large mod- components of the architecture will be discussed in els at scale, it does complicate the process of im- detail along with the technical challenges and solu- plementing the job in a cost-efficient manner. It tions we developed to accelerate this process. Our is possible to allocate more resources, but because application is a model for emotion analysis that the clusters are static in size, a lot of work has to produces a probability distribution over a closed go into properly calculating resource allocation to set of emotions given a paragraph of text (Liu et al., avoid over or under-provisioning. This is where the 2019). We present benchmarks to justify our ar- idea of offloading the model to Kubernetes comes chitecture decisions and settings. The proposed into play. architecture is able to generate results for 95 mil- While our MapReduce clusters struggled to scale lion paragraphs within 96 hours. and accommodate the larger models being broad- casted, by leveraging Kubernetes we were able to 2 Architecture design monitor and optimize resource usage as well as We deployed our model as a TensorFlow service define autoscaling behaviors independently of this in a Kubernetes cluster. A sidecar service prepro- cluster. That said, while there are clear benefits to cessed and vectorized paragraphs and forwarded isolating your model from your MapReduce job requests to this service. We used gRPC to commu- we must now consider the added overhead of the nicate with the services,2 which is an efficient com- network calls and the effort to build and maintain munication protocol on HTTP/2. Both nearly real- containerized services. time and offline use cases made calls to these ser- 2.2 Kubernetes node pool vices. We used Apache Spark for batch processing, which we ran on Amazon’s AWS EMR service.3 To ensure optimal resource usage, we provisioned Our batch job was developed using Apache Spark’s a segregated node pool dedicated to hosting in- Python API (PySpark). The batch job fetched a stances of our models. A node pool is a collec- dataset of relevant paragraphs, called the inference tion of similar resources with predefined autoscal- service, and stored the results. The job had two ing behaviors. We leveraged Kubernetes’ built- modes: a backfill mode and a daily mode, which in taint/toleration functionality to establish the re- ran on a subset of mutated and new paragraphs. quired behavior. In Kubernetes, Taints designate This batch job was part of a data pipeline, sched- resources as non-viable for allocation, unless de- uled using Apache AirFlow4 and Luigi.5 Figure1 ployments are specifically annotated as having a shows the main components of this architecture. Toleration for said Taint. For this node pool, we selected instance types that offer faster CPUs, but 2.1 Kubernetes vs. Apache Spark provide an adequate amount of memory to load our One of the key issues we faced in scaling up our models. inference services was the growing size of the mem- 2.3 REST vs. gRPC ory footprint of an instance. A standard practice Once we made the decision to deploy our model 1https://kubernetes.io as a service, we had to determine which network 2https://grpc.github.io 3https://aws.amazon.com/emr protocol to use. While representational state trans- 4https://airflow.apache.org fer (REST) (Pautasso et al., 2013) is a well-known 5https://github.com/spotify/luigi standard, there were two aspects of our use case 164 Figure 1: Architecture overview. that made us consider alternatives. The first is that that there is enough disk capacity to process the architecturally, our use case was far more func- data and the number of cores is as high as possible tional in nature than REST. Second, the nature of without exceeding the cost constraints. Addition- our data means that request messages can be large. aly, we selected these to be memory-optimized to It was for this reason that we found the efficiency ensure we provide the job with enough RAM to offered by the Protobuf protocol a natural fit for efficiently process our joins. 6 our use case. The EMR cluster configuration is kept constant Having decided to use gRPC and Protobuf, we as a controlled variable throughout the project and encountered two issues. First, gRPC uses the in all of our experiments. This ensures that only HTTP/2 protocol which multiplexes requests over the implementation changes affect the performance a single persistent TCP connection. Because of this of the inference job. persistent connection, Layer-4 load balancers that can only route connections are not able to recog- nize requests within them that could be balanced 2.5 Monitoring across multiple replicas of a service.
Recommended publications
  • Advanced Model Deployments with Tensorflow Serving Presentation.Pdf
    Most models don’t get deployed. Hi, I’m Hannes. An inefficient model deployment import json from flask import Flask from keras.models import load_model from utils import preprocess model = load_model('model.h5') app = Flask(__name__) @app.route('/classify', methods=['POST']) def classify(): review = request.form["review"] preprocessed_review = preprocess(review) prediction = model.predict_classes([preprocessed_review])[0] return json.dumps({"score": int(prediction)}) Simple Deployments @app.route('/classify', methods=['POST']) Why Flask is insufficient def classify(): review = request.form["review"] ● No consistent APIs ● No consistent payloads preprocessed_review = preprocess(review) ● No model versioning prediction = model.predict_classes( ● No mini-batching support [preprocessed_review])[0] ● Inefficient for large models return json.dumps({"score": int(prediction)}) Image: Martijn Baudoin, Unsplash TensorFlow Serving TensorFlow Serving Production ready Model Serving ● Part of the TensorFlow Extended Ecosystem ● Used internally at Google ● Highly scalable model serving solution ● Works well for large models up to 2GB TensorFlow 2.0 ready! * * With small exceptions Deploy your models in 90s ... Export your Model import tensorflow as tf TensorFlow 2.0 Export tf.saved_model.save( ● Consistent model export model, ● Using Protobuf format export_dir="/tmp/saved_model", ● Export of graphs and signatures=None estimators possible ) $ tree saved_models/ Export your Model saved_models/ └── 1555875926 ● Exported model as Protobuf ├── assets (Saved_model.pb)
    [Show full text]
  • An Evaluation of Tensorflow As a Programming Framework for HPC Applications
    DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 An Evaluation of TensorFlow as a Programming Framework for HPC Applications WEI DER CHIEN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE An Evaluation of TensorFlow as a Programming Framework for HPC Applications WEI DER CHIEN Master in Computer Science Date: August 28, 2018 Supervisor: Stefano Markidis Examiner: Erwin Laure Swedish title: En undersökning av TensorFlow som ett utvecklingsramverk för högpresterande datorsystem School of Electrical Engineering and Computer Science iii Abstract In recent years, deep-learning, a branch of machine learning gained increasing popularity due to their extensive applications and perfor- mance. At the core of these application is dense matrix-matrix multipli- cation. Graphics Processing Units (GPUs) are commonly used in the training process due to their massively parallel computation capabili- ties. In addition, specialized low-precision accelerators have emerged to specifically address Tensor operations. Software frameworks, such as TensorFlow have also emerged to increase the expressiveness of neural network model development. In TensorFlow computation problems are expressed as Computation Graphs where nodes of a graph denote operation and edges denote data movement between operations. With increasing number of heterogeneous accelerators which might co-exist on the same cluster system, it became increasingly difficult for users to program efficient and scalable applications. TensorFlow provides a high level of abstraction and it is possible to place operations of a computation graph on a device easily through a high level API. In this work, the usability of TensorFlow as a programming framework for HPC application is reviewed.
    [Show full text]
  • From XML to Flat Buffers: Markup in the Twenty-Teens Warning! the Contenders
    Elliotte Rusty Harold [email protected] August 2018 From XML to Flat Buffers: Markup in the Twenty-teens Warning! The Contenders ● XML ● JSON ● YAML ● EXI ● Protobufs ● Flat Protobufs XML JSON YAML EXI Protobuf Flat Buffers App Engine X X Standard Java App Engine X Flex What Uses What Kubernetes X X From technology, tools, and systems Eclipse X I use frequently. There are many others. Maven X Ant X Google X X X X X “APIs” Publishing X XML XML ● Very well defined standard ● By far the most general format: ○ Mixed content ○ Attributes and elements ● By far the best tool support. Nothing else is close: ○ XSLT ○ XPath ○ Many schema languages: ■ W3C XSD ■ RELAX NG More Reasons to Choose XML ● Most composable for mixing and matching markup; e.g. MathML+SVG in HTML ● Does not require a schema. ● Streaming support: very large documents ● Better for interchange amongst unrelated parties ● The deeper your needs the more likely you’ll end up here. Why Not XML? ● Relatively complex for simple tasks ● Limited to no support for non-string programming types: ○ Numbers, booleans, dates, money, etc. ○ Lists, maps, sets ○ You can encode all these but APIs don’t necessarily recognize or support them. ● Lots of sharp edges to surprise the non-expert: ○ 9/10 are namespace related ○ Attribute value normalization ○ White space ● Some security issues if you’re not careful (Billion laughs) JSON ● Simple for object serialization and program data. If your data is a few basic types (int, string, boolean, float) and data structures (list, map) this works well. ● More or less standard (7-8 of them in fact) ● Consumption libraries for essentially all significant languages Why Not JSON? ● It is surprising how fast needs grow past a few basic types and data structures.
    [Show full text]
  • Trifacta Data Preparation for Amazon Redshift and S3 Must Be Deployed Into an Existing Virtual Private Cloud (VPC)
    Install Guide for Data Preparation for Amazon Redshift and S3 Version: 7.1 Doc Build Date: 05/26/2020 Copyright © Trifacta Inc. 2020 - All Rights Reserved. CONFIDENTIAL These materials (the “Documentation”) are the confidential and proprietary information of Trifacta Inc. and may not be reproduced, modified, or distributed without the prior written permission of Trifacta Inc. EXCEPT AS OTHERWISE PROVIDED IN AN EXPRESS WRITTEN AGREEMENT, TRIFACTA INC. PROVIDES THIS DOCUMENTATION AS-IS AND WITHOUT WARRANTY AND TRIFACTA INC. DISCLAIMS ALL EXPRESS AND IMPLIED WARRANTIES TO THE EXTENT PERMITTED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE AND UNDER NO CIRCUMSTANCES WILL TRIFACTA INC. BE LIABLE FOR ANY AMOUNT GREATER THAN ONE HUNDRED DOLLARS ($100) BASED ON ANY USE OF THE DOCUMENTATION. For third-party license information, please select About Trifacta from the Help menu. 1. Quick Start . 4 1.1 Install from AWS Marketplace . 4 1.2 Upgrade for AWS Marketplace . 7 2. Configure . 8 2.1 Configure for AWS . 8 2.1.1 Configure for EC2 Role-Based Authentication . 14 2.1.2 Enable S3 Access . 16 2.1.2.1 Create Redshift Connections 28 3. Contact Support . 30 4. Legal 31 4.1 Third-Party License Information . 31 Page #3 Quick Start Install from AWS Marketplace Contents: Product Limitations Internet access Install Desktop Requirements Pre-requisites Install Steps - CloudFormation template SSH Access Troubleshooting SELinux Upgrade Documentation Related Topics This guide steps through the requirements and process for installing Trifacta® Data Preparation for Amazon Redshift and S3 through the AWS Marketplace.
    [Show full text]
  • Cloud Native Communication Patterns with Grpc
    Cloud Native Communication Patterns with gRPC Kasun Indrasiri Author “gRPC Up and Running” and “Microservices for Enterprise” About Me ● Author “gRPC Up & Running”, “Microservices for Enterprise” ● Product Manager/Senior Director at WSO2. ● Committer and PMC member at Apache Software Foundation. ● Founder “Bay area Microservices, APIs and Integration” meetup group. What is gRPC? ● Modern Inter-process communication technology. ● Invoking remote functions as easy as making a local function invocation. ● Contract-first. ● Binary messaging on the wire on top of HTTP2 ● Polyglot. Fundamentals of gRPC - Service Definition syntax = "proto3"; ● Defines the business capabilities of package ecommerce; your service. service ProductInfo { rpc addProduct(Product) returns (ProductID); ● Protocol Buffers used as the IDL for rpc getProduct(ProductID) returns (Product); define services. } message Product { ● Protocol Buffers : string id = 1; ○ A language-agnostic, platform-neutral, string name = 2; extensible mechanism to serializing string description = 3; float price = 4; structured data. } ● Defines service, remote methods, and message ProductID { data types. string value = 1; } ProductInfo.proto Fundamentals of gRPC - gRPC Service // AddProduct implements ecommerce.AddProduct ● gRPC service implements the func (s *server) AddProduct(ctx context.Context, in *pb.Product) (*pb.ProductID, business logic. error) { ● Generate server side skeleton from // Business logic } service definition. // GetProduct implements ecommerce.GetProduct func (s *server) GetProduct(ctx
    [Show full text]
  • Integrating R with the Go Programming Language Using Interprocess Communication
    Integrating R with the Go programming language using interprocess communication Christoph Best, Karl Millar, Google Inc. [email protected] Statistical software in practice & production ● Production environments !!!= R development environment ○ Scale: machines, people, tools, lines of code… ● “discipline of software engineering” ○ Maintainable code, common standards and processes ○ Central problem: The programming language to use ● How do you integrate statistical software in production? ○ Rewrite everything in your canonical language? ○ Patch things together with scripts, dedicated servers, ... ? Everybody should just write Java! Programming language diversity ● Programming language diversity is hard … ○ Friction, maintenance, tooling, bugs, … ● … but sometimes you need to have it ○ Many statistics problems can “only” be solved in R* ● How do you integrate R code with production code? ○ without breaking production *though my colleagues keep pointing out that any Turing-complete language can solve any problem The Go programming language ● Open-source language, developed by small team at Google ● Aims to put the fun back in (systems) programming ● Fast compilation and development cycle, little “baggage” ● Made to feel like C (before C++) ● Made not to feel like Java or C++ (enterprise languages) ● Growing user base (inside and outside Google) Integration: Intra-process vs inter-process ● Intra-process: Link different languages through C ABI ○ smallest common denominator ○ issues: stability, ABI evolution, memory management, threads, … Can we do better? Or at least differently? ● Idea: Sick of crashes? Execute R in a separate process ○ Runs alongside main process, closely integrated: “lamprey” ● Provide communication layer between R and host process ○ A well-defined compact interface surface Integration: Intra-process vs inter-process C runtime Go R RPC client C++ runtime IPC Messages Java (library) Python RPC server ..
    [Show full text]
  • SESSION 2 YANG, Openconfig, and Gnmi
    SESSION 2 YANG, OpenConfig, and gNMI Copyright © 2019 - Open Networking Foundation Session 2 Overview 1. YANG: Configuration Modeling Language 2. OpenConfig: Configuration and telemetry model instances 3. gNMI: Runtime Configuration and Monitoring Interface 4. gNOI: Runtime Operations Interface Copyright © 2019 - Open Networking Foundation YANG Overview YANG is a data modeling language for network configuration ● Used to express the structure of data, NOT the data itself ● Instances of data can be expressed in XML, JSON, Protobuf, etc. and are considered valid if they adhere to the YANG data model (schema) From a YANG model, we care about 2 things: 1. Data tree organization (from which we get the paths and leaf data types) 2. Semantics of the leaf nodes (from the description field, usually in English) History: YANG was originally designed as a data modeling language for NETCONF. It borrows the syntactic structure and base types from SMIng, which is an evolution of SMI, the data modeling language for SNMP used for MIBs. Copyright © 2019 - Open Networking Foundation YANG Module A module is a self-contained tree of nodes. Modules are the smallest unit that can be “compiled” by YANG tools. // A module is a self-contained tree of nodes module demo-port { A module contains: // YANG Boilerplate ● boilerplate, like a namespace, yang-version "1"; prefix for reference in other namespace "https://opennetworking.org/yang/demo"; modules, description, version / prefix "demo-port"; description "Demo model for managing ports"; revision history, etc. revision "2019-09-10" { ● identities and derived types description "Initial version"; ● modular groupings reference "1.0.0"; } ● a top-level container that defines tree of data nodes // ..
    [Show full text]
  • Almond Variety Detection Using Deep Learning
    Almond Variety Detection using Deep Learning Benarous Ahmed Omar Farouq - a41369 Thesis presented to the School of Technology and Management in the scope of the Master in Information Systems. Supervisors: Prof. Maria João Tinoco Varanda Pereirar This document does not include the suggestions made by the board. Bragança 2019-2020 Dedication I dedicate my dissertation work to my family. A special feeling of gratitude to my loving parents, whose words of encouragement and push for tenacity ring in my ears. I also dedicate this dissertation to my many friends who have supported me throughout the process. I will always appreciate all they have done. v Acknowledgment In the name of Allah, the Most Gracious, the Most Merciful I would like to express my deep sense of gratitude, respect and heartfelt thanks to Prof. Maria João Tinoco Varanda Pereira, for her great contribu- tions, encouragement and support during the thesis writing, understanding and patience that have accompanied me during the research time. I would like to acknowledge and thank to ESTIG-IPB school division for providing me of the necessary materials needed to conduct my research and providing any assistance requested. I would like to acknowledge and thank to ESA-IPB school division for allow- ing me to conduct my research and providing any assistance requested. Special thanks goes to the members of the lab Professors Nuno Rodrigues and José Alberto Pereira for their continued support. Finally I would like to thank all professor of the hassiba benbouali university where i have started my journey of studying computer science. And special thank and acknowledgment to all community of computer science, this dynamic and healthy community is the reason why computer science, which is very new vi field compared to other sciences, has evolved so dramatically fast and now have huge impact on almost everything.
    [Show full text]
  • Developing the Guidelines for Migration from Restful Microservices to Grpc
    Masaryk University Faculty of Informatics Developing the guidelines for migration from RESTful microservices to gRPC Master’s Thesis Michal Štefanič Brno, Spring 2021 Masaryk University Faculty of Informatics Developing the guidelines for migration from RESTful microservices to gRPC Master’s Thesis Michal Štefanič Brno, Spring 2021 This is where a copy of the official signed thesis assignment and a copy ofthe Statement of an Author is located in the printed version of the document. Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Michal Štefanič Advisor: RNDr. Josef Spurný i Acknowledgements I would like to thank my advisors, RNDr. Josef Spurný for his time and valuable consultations, and doc. Mouzhi Ge, Ph.D. who left the university, but still found a time for thesis consultations. I would also like to thank the colleagues from Kiwi.com, especially Matouš Dziviak with whom I consulted a lot of technical questions related to the thesis. And Tomáš Gerich for proofreading the thesis. ii Abstract With the rising popularity of microservice architecture, Google de- cided to revive the "Remote procedure call" (RPC) concept to facili- tate effective communication between single services and developed their own framework (gRPC) for RPC service communication. gRPC became quickly popular and many famous companies as Netflix, Mi- crosoft, Slack integrated it into their systems. However, there is not a clear, step-by-step guide on when and how to migrate your services to gRPC architecture.
    [Show full text]
  • Code Smell Prediction Employing Machine Learning Meets Emerging Java Language Constructs"
    Appendix to the paper "Code smell prediction employing machine learning meets emerging Java language constructs" Hanna Grodzicka, Michał Kawa, Zofia Łakomiak, Arkadiusz Ziobrowski, Lech Madeyski (B) The Appendix includes two tables containing the dataset used in the paper "Code smell prediction employing machine learning meets emerging Java lan- guage constructs". The first table contains information about 792 projects selected for R package reproducer [Madeyski and Kitchenham(2019)]. Projects were the base dataset for cre- ating the dataset used in the study (Table I). The second table contains information about 281 projects filtered by Java version from build tool Maven (Table II) which were directly used in the paper. TABLE I: Base projects used to create the new dataset # Orgasation Project name GitHub link Commit hash Build tool Java version 1 adobe aem-core-wcm- www.github.com/adobe/ 1d1f1d70844c9e07cd694f028e87f85d926aba94 other or lack of unknown components aem-core-wcm-components 2 adobe S3Mock www.github.com/adobe/ 5aa299c2b6d0f0fd00f8d03fda560502270afb82 MAVEN 8 S3Mock 3 alexa alexa-skills- www.github.com/alexa/ bf1e9ccc50d1f3f8408f887f70197ee288fd4bd9 MAVEN 8 kit-sdk-for- alexa-skills-kit-sdk- java for-java 4 alibaba ARouter www.github.com/alibaba/ 93b328569bbdbf75e4aa87f0ecf48c69600591b2 GRADLE unknown ARouter 5 alibaba atlas www.github.com/alibaba/ e8c7b3f1ff14b2a1df64321c6992b796cae7d732 GRADLE unknown atlas 6 alibaba canal www.github.com/alibaba/ 08167c95c767fd3c9879584c0230820a8476a7a7 MAVEN 7 canal 7 alibaba cobar www.github.com/alibaba/
    [Show full text]
  • Angularjs Controller Request Parameters
    Angularjs Controller Request Parameters Clyde daunts her Urtext interdentally, adjuvant and rhizomorphous. Prepared Nikki sometimes reappear his expiations touchingly and repaginate so atomistically! Midship and bubbly Barde flats irreverently and disestablish his gasifier provisorily and banefully. Topic names and descriptions for each course. Rather Provide The Parameters At Resolution Time, will execute the post on the network. URL and the route. Here, we now have a simple, How would you get Google Alerts information into a database other than to parse the text of the email message that Google sends you? If we want to add multiple parameters, instead of reloading the entire page. No more posts to show. However, We Will Export These Data In Excel Sheet. Get practical advice to start your career in programming! Because this data is known, and the function body. Everytime a property of the controller changes, you will add reference links to the various available routes in your application. It has a name field which is initially null. We have another great solution. We can get HTTP status code of the response. Well, where we have the big advantage of providing deep links to our app through the URL. This second JS file will provide the services functionality of calling the RESTFul service. Find this content useful? In this example I have used simple test code where you would normally put your service logic to load items from the server or resolve other required data for your controller. Swallow errors for now. Consider the code snippet below. PATCH, this is not a good practice since Data Access gets complex as the application grows.
    [Show full text]
  • Faasten Your Decisions: Classification Framework And
    FaaSten Your Decisions: Classification Framework and Technology Review of Function-as-a-Service Platforms Vladimir Yussupova, Jacopo Soldanib, Uwe Breitenb¨uchera, Antonio Brogib, Frank Leymanna aInstitute of Architecture of Application Systems, University of Stuttgart, Germany bDepartment of Computer Science, University of Pisa, Italy Abstract Function-as-a-Service (FaaS) is a cloud service model enabling developers to offload event-driven executable snippets of code. The execution and management of such functions becomes a FaaS provider's responsibility, hereby included their on-demand provisioning and automatic scaling. Key enablers for this cloud service model are FaaS platforms, e.g., AWS Lambda, Microsoft Azure Functions or OpenFaaS. At the same time, the choice of the most appropriate FaaS platform for deploying and running a serverless application is not trivial, as various organizational and technical aspects have to be taken into account. In this work, we present (i) a FaaS platform classification framework derived using a mixed method study and (ii) a systematic technology review of the ten most prominent FaaS platforms, based on the proposed classification framework. Moreover, we present (iii) a FaaS platform selection support system, called FaaStener, which helps researchers and practitioners to choose the FaaS platform most suited for their requirements. Keywords: Serverless, Function-as-a-Service, FaaS, Platform, Classification Framework, Technology Review 1. Introduction The FaaS service model started gaining a lot of atten- tion after the release of AWS Lambda [4] in 2015, which In the context of cloud computing, the term server- started the overall serverless trend. Afterwards, all major less is typically used to describe a paradigm focusing on cloud providers introduced their FaaS offerings including cloud architectures that comprise provider-managed com- notable examples such as Microsoft Azure Functions [5], ponents [1].
    [Show full text]