Seafood Watch Seafood Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fishery Basics – Seafood Markets Types of Fishery Products
Fishery Basics – Seafood Markets Types of Fishery Products Fish products are highly traded and valuable commodities around the world. Seafood products are high in unsaturated fats and contain many proteins and other compounds that enhance good health. Fisheries products can be sold as live, fresh, frozen, preserved, or processed. There are a variety of methods to preserve fishery products, such as fermenting (e.g., fish pastes), drying, smoking (e.g., smoked Salmon), salting, or pickling (e.g., pickled Herring) to name a few. Fish for human consumption can be sold in its entirety or in parts, like filets found in grocery stores. The vast majority of fishery products produced in the world are intended for human consumption. During 2008, 115 million t (253 billion lbs) of the world fish production was marketed and sold for human consumption. The remaining 27 million t (59 billion lbs) of fishery production from 2008 was utilized for non-food purposes. For example, 20.8 million t (45 billion lbs) was used for reduction purposes, creating fishmeal and fish oil to feed livestock or to be used as feed in aquaculture operations. The remainder was used for ornamental and cultural purposes as well as live bait and pharmaceutical uses. Similar to the advancement of fishing gear and navigation technology (See Fishing Gear), there have been many advances in the seafood-processing sector over the years. Prior to these developments, most seafood was only available in areas close to coastal towns. The modern canning process originated in France in the early 1800s. Cold storage and freezing plants, to store excess harvests of seafood, were created as early as 1892. -
Improving Shrimp Practices in Latin America
IMPROVING SHRIMP MARICULTURE in LATIN AMERICA GOOD MANAGEMENT PRACTICES (GMPS) to R EDUCE ENVIRONMENTAL IMPACTS and IMPROVE EFFICIENCY of S HRIMP AQUACULTURE in LATIN AMERICA and an ASSESSMENT of P RACTICES in the HONDURAN SHRIMP INDUSTRY Claude E. Boyd P.O. Box 3074 Auburn,Alabama 36831 U.S.A. Maria C. Haws Coastal Resources Center University of Rhode Island Narragansett, Rhode Island 02882 U.S.A. Bartholomew W. Green Department of Fisheries and Allied Aquaculture Auburn University,Alabama 36849-5419 U.S.A. TABLE of C ONTENTS Preface___________________________________________________________________ 1 1.0 Rationale for Developing GMPs ____________________________________________ 3 2.0 Characteristics of Good Management Practices__________________________________ 5 3.0 Who Can Benefit from Good Management Practices _____________________________ 7 4.0 Methodology Used in Developing Good Management Practices ______________________ 8 5.0 The Scope and Intent of Good Management Practices _____________________________ 10 6.0 Characteristics of the Honduras Shrimp Industry ________________________________ 12 7.0 Site Selection _________________________________________________________ 16 7.1 Topography ______________________________________________________ 17 7.2 Hydrology and Hydrography__________________________________________ 18 7.3 Soil Characteristics ________________________________________________ 18 7.4 Infrastructure and Operational Considerations _____________________________ 19 8.0 Farm Design and Construction _____________________________________________ -
Fishery Oceanographic Study on the Baleen Whaling Grounds
FISHERY OCEANOGRAPHIC STUDY ON THE BALEEN WHALING GROUNDS KEIJI NASU INTRODUCTION A Fishery oceanographic study of the whaling grounds seeks to find the factors control ling the abundance of whales in the waters and in general has been a subject of interest to whalers. In the previous paper (Nasu 1963), the author discussed the oceanography and baleen whaling grounds in the subarctic Pacific Ocean. In this paper, the oceanographic environment of the baleen whaling grounds in the coastal region ofJapan, subarctic Pacific Ocean, and Antarctic Ocean are discussed. J apa nese oceanographic observations in the whaling grounds mainly have been carried on by the whaling factory ships and whale making research boats using bathyther mographs and reversing thermomenters. Most observations were made at surface. From the results of the biological studies on the whaling grounds by Marr ( 1956, 1962) and Nemoto (1959) the author presumed that the feeding depth is less than about 50 m. Therefore, this study was made mainly on the oceanographic environ ment of the surface layer of the whaling grounds. In the coastal region of Japan Uda (1953, 1954) plotted the maps of annual whaling grounds for each 10 days and analyzed the relation between the whaling grounds and the hydrographic condition based on data of the daily whaling reports during 1910-1951. A study of the subarctic Pacific Ocean whaling grounds in relation to meteorological and oceanographic conditions was made by U da and Nasu (1956) and Nasu (1957, 1960, 1963). Nemoto (1957, 1959) also had reported in detail on the subject from the point of the food of baleen whales and the ecology of plankton. -
International Whaling Commission (IWC)
Food and Agriculture Organization of the United Nations Fisheries and for a world without hunger Aquaculture Department Regional Fishery Bodies Summary Descriptions International Whaling Commission (IWC) Objectives Area of competence Species and stocks coverage Members Further information Objectives The main objective of the International Whaling Commission (IWC) is to establish a system of international regulations to ensure proper and effective conservation and management of whale stocks. These regulations must be "such as are necessary to carry out the objectives and purposes of the Convention and to provide for the conservation, development, and optimum utilization of whale resources; must be based on scientific findings; and must take into consideration the interests of the consumers of whale products and the whaling industry." Area of competence The area of competence of the IWC is global. The International Convention for the Regulation of Whaling also applies to factory ships, land stations, and whale catchers under the jurisdiction of the Contracting Governments and to all waters in which whaling is prosecuted by such factory ships, land stations, and whale catchers. FAO Fisheries and Aquaculture Department IWC area of competence Launch the RFBs map viewer Species and stocks coverage Blue whale (Balaenoptera musculus); bowhead whale (Balaena mysticetus); Bryde’s whale (Balaenoptera edeni, B. brydei); fin whale (Balaenoptera physalus); gray whale (Eschrichtius robustus); humpback whale (Megaptera novaeangliae); minke whale (Balaenoptera -
Economics of Freshwater Prawn Farming in the United States
SRAC Publication No. 4830 VI November 2005 PR Economics of Freshwater Prawn Farming in the United States Siddhartha Dasgupta1 Freshwater prawn (Macrobrachium Alabama with 60 acres. There are 20,000 eggs, which hatch into rosenbergii) farming in the United also a few prawn farms in prawn larvae in 3 weeks. Newly States has been predominantly a Arkansas, Georgia, Illinois, hatched larvae are kept in brack- small-scale aquaculture industry. Indiana, Louisiana and Ohio. ish water where they need pro- The U.S. industry started in During the 1980s and 1990s, 0.2 tein-rich feed such as zooplank- Hawaii in the 1960s, followed by to 0.4 million pounds of prawns ton. After 22 to 30 days, post- South Carolina in the 1970s and per year were produced in the larvae can be stocked in freshwa- Mississippi in the 1980s. Early U.S. The crop had an annual ter. The post-larvae are usually attempts at prawn culture were wholesale value of $0.89 million nursed for at least 30 more days. hampered by lack of seed stock to $2.54 million and the prices Then the juveniles are ready to be and problems in marketing the for whole prawns paid by proces- stocked into ponds for grow-out to end product. During the 1980s sors and other wholesale buyers adult prawns. and 1990s, researchers developed ranged from $4 to $7 per pound. The parameters of prawn produc- several elements important for the The price of Gulf of Mexico tion are industry’s growth, such as marine shrimp (tails only) • stocking density (number of improved hatchery and nursery declined from $7.00 per pound to technology, pond culture methods, juveniles stocked per acre of $4.50 per pound from 1995 to water), and post-harvest handling proto- 2002, which corresponded to an cols for quality control and prod- approximate price range of $2.25 • age of seed at stocking, uct preservation. -
Study on the Potential of Fish Farming in the Caribbean
CRFM Technical & Advisory Document Series Number 2014 / 2 STUDY ON THE POTENTIAL OF FISH FARMING IN THE CARIBBEAN CRFM Technical & Advisory Document - Number 2014 / 2 Study on the Potential of Fish Farming in the Caribbean Prepared by: George Myvett, Milton Haughton and Peter A. Murray CRFM Secretariat Belize 2014 2 CRFM Technical & Advisory Document - Number 2014 / 2 Study on the Potential of Fish Farming in the Caribbean © CRFM 2014 All rights reserved. Reproduction, dissemination and use of material in this publication for educational or non-commercial purposes are authorised without prior written permission of the CRFM, provided the source is fully acknowledged. No part of this publication may be reproduced, disseminated on used for any commercial purposes or resold without the prior written permission of the CRFM. Correct Citation: CRFM, 2014. Study on the Potential of Fish Farming in the Caribbean. CRFM Technical & Advisory Document No 2014 / 2. P78 ISSN : 1995-1132 Published by the Caribbean Regional Fisheries Mechanism Secretariat Belize This document has been produced with financial assistance of the Technical Centre for Agricultural and Rural Coordination (CTA) which funded the Consultancy. However, the views expressed herein are those of the author and CRFM Secretariat, and can therefore in no way be taken to reflect the official opinions of CTA. 3 Contents Contents ........................................................................................................................................................ 1 Glossary -
Commercial Fishing Guide |
Texas Commercial Fishing regulations summary 2021 2022 SEPTEMBER 1, 2021 – AUGUST 31, 2022 Subject to updates by Texas Legislature or Texas Parks and Wildlife Commission TEXAS COMMERCIAL FISHING REGULATIONS SUMMARY This publication is a summary of current regulations that govern commercial fishing, meaning any activity involving taking or handling fresh or saltwater aquatic products for pay or for barter, sale or exchange. Recreational fishing regulations can be found at OutdoorAnnual.com or on the mobile app (download available at OutdoorAnnual.com). LIMITED-ENTRY AND BUYBACK PROGRAMS .......................................................................... 3 COMMERCIAL FISHERMAN LICENSE TYPES ........................................................................... 3 COMMERCIAL FISHING BOAT LICENSE TYPES ........................................................................ 6 BAIT DEALER LICENSE TYPES LICENCIAS PARA VENDER CARNADA .................................................................................... 7 WHOLESALE, RETAIL AND OTHER BUSINESS LICENSES AND PERMITS LICENCIAS Y PERMISOS COMERCIALES PARA NEGOCIOS MAYORISTAS Y MINORISTAS .......... 8 NONGAME FRESHWATER FISH (PERMIT) PERMISO PARA PESCADOS NO DEPORTIVOS EN AGUA DULCE ................................................ 12 BUYING AND SELLING AQUATIC PRODUCTS TAKEN FROM PUBLIC WATERS ............................. 13 FRESHWATER FISH ................................................................................................... 13 SALTWATER FISH ..................................................................................................... -
Fishery Improvement Projects
Guidelines for Supporting Fishery Improvement Projects Working together, conservation groups and the seafood industry can be a powerful force for improving the sustainability of seafood and the health of ocean ecosystems. solutionsforseafood.org GUIDELINES FOR SUPPORTING FISHERY IMPROVEMENT PROJECTS The goal of this document is to define the kind of fishery improvement projects members of the Conservation Alliance will support (e.g., recognize on the Alliance fip tracking website and/or recommend business partners participate in or source from). Table of Contents GUIDELINESGUIDELINES FORFOR SUPPORTINGSUPPORTING FISHERYFISHERY IMPROVEMENTIMPROVEMENT PROJECTSPROJECTS / / TABLE OF CONTENTS PAGEPAGE 22 Guidelines for Supporting Fishery Improvement Projects Members of the Conservation There are many different ways to address management Alliance for Seafood and environmental problems in fisheries, including Solutions support the efforts policy change, targeted strategies such as bycatch fisheries are making to reduction, and multistakeholder efforts called fishery improve the sustainability of improvement projects (FIPs). While the latter are the their seafood products. focus of these guidelines, we believe all of these methods are valuable and play an important role in helping fisheries become more sustainable over time. GUIDELINES FOR SUPPORTING FISHERY IMPROVEMENT PROJECTS / Introduction PAGE 3 In 2012, the Conservation Alliance released its first set of guidelines for fishery improvement projects with the expectation that these guidelines would need to evolve over time. Since then, the number of fishery improvement projects around the world has increased substantially. Based on feedback from the Alliance community and industry and fishery stakeholders, the Alliance has updated the guidelines to be as clear as possible and recognize advances in the fishery improvement project landscape during the past two years. -
Seafood Watch® Standard for Fisheries
1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion -
1 Assessment of Gear Efficiency for Harvesting Artisanal Giant Freshwater Prawn
Assessment of Gear Efficiency for Harvesting Artisanal Giant Freshwater Prawn (Macrobrachium Rosenbergii de Man) Fisheries from the Sundarbans Mangrove Ecosystem in Bangladesh Biplab Kumar Shaha1, Md. Mahmudul Alam2*, H. M. Rakibul Islam3, Lubna Alam4, Alokesh Kumar Ghosh5, Khan Kamal Uddin Ahmed6, Mazlin Mokhtar7 1Fisheries and Marine Resource Technology Discipline, Khulna University, Bangladesh 2Doctoral Student, Institute for Environment and Development (LESTARI), National University of Malaysia (UKM), Malaysia 3Scientific Officer, Bangladesh Fisheries Research Institute, Shrimp Research Station, Bagerhat, Bangladesh 4 Research Fellow, Institute for Environment and Development (LESTARI), National University of Malaysia (UKM), Malaysia 5Assistant Professor, Fisheries and Marine Resource TechnologyDiscipline, Khulna University, Bangladesh 6Chief Scientific Officer, Bangladesh Fisheries Research Institute. Shrimp Research Station, Bagerhat, Bangladesh 7Professor, Institute for Environment and Development (LESTARI), National University of Malaysia (UKM), Malaysia Citation Reference: Shaha, B.K., Alam, M.M., Islam, H.M.R., Alam, L., Ghosh, A.K., Ahmed, K.K.U., and Mokthar, M. 2014. Assessment of Gear Efficiency for Harvesting Artisanal Giant Freshwater Prawn (Macrobrachium Rosenbergii De Man) Fisheries from the Sundarbans Mangrove Ecosystem in Bangladesh. Research Journal of Fisheries and Hydrobiology, 9(2): 1126-1139. http://www.aensiweb.com/old/jasa/2- JASA_February_2014.html This is a pre-publication copy. The published article is copyrighted -
Fishing for Food Security the Importance of Wild Fisheries for Food Security and Nutrition APRIL 2016
Fishing for Food Security The Importance of Wild Fisheries for Food Security and Nutrition APRIL 2016 This publication was produced for review by theUSAID United – FISHING States FOR Agency FOOD for International0 Development. It was preparedSECURITY by Measuring Impact. Table of Contents I. PREFACE 03 II. OVERVIEW 04 III. FISHERIES AND GLOBAL DEVELOPMENT 07 IV. KEY OPPORTUNITIES FOR ACTION 24 V. CASE STUDIES 28 VI.THE IMPORTANCE OF FISHERIES IN NINE FEED THE FUTURE PRIORITY COUNTRIES 32 VII.SOURCES 52 Figures 1. Global Fishing in 2010 06 2. Fish contributions to animal protein supply 09 3. Voluntary submissions of marine fisheries catch data by FAO member countries and estimations including all fisheries known to exist 10 4. Reconstructed global catch by fisheries sectors 11 5. Evidence base, poverty reduction benefits, and importance to biodiversity for specific conservation mechanisms 18 6. The biological effects of fully protected, no-take marine reserves 21 7. Summary of potential biomass and financial gains that can be produced through sustainable fisheries management 22 8. Rebuilding of Kenyan small-scale fisheries through gear restrictions and closed area management 23 9. Nutrition and food security statistics for Bangladesh 33 10. Nutrition and food security statistics for Cambodia 35 11. Nutrition and food security statistics for Ghana 37 12. Nutrition and food security statistics for Kenya 39 13. Nutrition and food security statistics for Liberia 41 14. Nutrition and food security statistics for Malawi 43 15. Nutrition and food security statistics for Mozambique 45 16. Nutrition and food security statistics for Senegal 47 17. Nutrition and food security statistics for Tanzania 49 18. -
FINANCIAL ANALYSIS of FRESHWATER PRAWN in MIXED FARMS in SELECTED PROVINCES of THAILAND by Chao Tiantong, B.Sc
FINANCIAL ANALYSIS OF FRESHWATER PRAWN IN MIXED FARMS IN SELECTED PROVINCES OF THAILAND by Chao Tiantong, B.Sc.(Agr.), Dip. Agr. Sc. (Post) A sub-thesis submitted in partial fulfilment of the requirements for the degree of Master of Agricultural Development Economics in the Australian National University August, 1981 ii DECLARATION Except where otherwise indicated, this sub-thesis is my own work. August, 1981 C. Tiantong ( LIBRAS iii ACKNOWLEDGEMENTS The present sub-thesis would not have been completed without the assistance and support of a number of people. Dr Barry Shaw and Dr David Evans spent a lot of their precious time supervising me on this thesis. At all times they could be approached for discussion. Without their valuable advice, constructive ideas and willingness to correct my English this thesis would have taken a much longer time to finish. In fact, they were more than supervisors and I can hardly express the extent of my gratitude to them. The MADE Convener, Dr Dan M. Etherington was very helpful in guiding the analysis of the data and the provision of related materials. His understanding of the problems involved in writing a thesis allowed me sufficient time to complete my work. To him, I wish to express my sincere thanks. The thesis also would not have been finished without financial support from the Australian Development Assistance Bureau (ADAB). My thanks to ADAB and all the officers involved in students' affairs. Dusit Sirirote, Wuttikorn Masaphand, Dr Sumlit Tiandum and Tek Kowalski, the first three from OAE and the latter from the Australian Embassy in Bangkok, can never be forgotten because of their help in supplying data and related information.