COVID-19 Transmission Risk in Entertainment Settings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pattern of Early Human-To-Human Transmission of Wuhan 2019 Novel Coronavirus (2019-Ncov), December 2019 to January 2020
Rapid communication Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020 Julien Riou1 , Christian L. Althaus1 1. Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland Correspondence: Julien Riou ([email protected]) Citation style for this article: Riou Julien , Althaus Christian L. Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveill. 2020;25(4):pii=2000058. https://doi.org/10.2807/1560-7917.ES.2020.25.4.2000058 Article submitted on 24 Jan 2020 / accepted on 30 Jan 2020 / published on 30 Jan 2020 Since December 2019, China has been experiencing Epidemic parameters a large outbreak of a novel coronavirus (2019-nCoV) Two key properties will determine further spread which can cause respiratory disease and severe pneu- of 2019-nCoV. Firstly, the basic reproduction num- monia. We estimated the basic reproduction num- ber R0 describes the average number of secondary ber R0 of 2019-nCoV to be around 2.2 (90% high density cases generated by an infectious index case in a fully interval: 1.4–3.8), indicating the potential for sus- susceptible population, as was the case during the tained human-to-human transmission. Transmission early phase of the outbreak. If R0 is above the critical characteristics appear to be of similar magnitude to threshold of 1, continuous human-to-human transmis- severe acute respiratory syndrome-related coronavi- sion with sustained transmission chains will occur. rus (SARS-CoV) and pandemic influenza, indicating a Secondly, the individual variation in the number of risk of global spread. -
The Sturgis Motorcycle Rally and COVID-19
DISCUSSION PAPER SERIES IZA DP No. 13670 The Contagion Externality of a Superspreading Event: The Sturgis Motorcycle Rally and COVID-19 Dhaval Dave Andrew I. Friedson Drew McNichols Joseph J. Sabia SEPTEMBER 2020 DISCUSSION PAPER SERIES IZA DP No. 13670 The Contagion Externality of a Superspreading Event: The Sturgis Motorcycle Rally and COVID-19 Dhaval Dave Joseph J. Sabia Bentley University, IZA, NBER and CHEPS CHEPS, San Diego State University and IZA Andrew I. Friedson University of Colorado Denver and CHEPS Drew McNichols CHEPS, University of San Diego-California and San Diego State University SEPTEMBER 2020 Any opinions expressed in this paper are those of the author(s) and not those of IZA. Research published in this series may include views on policy, but IZA takes no institutional policy positions. The IZA research network is committed to the IZA Guiding Principles of Research Integrity. The IZA Institute of Labor Economics is an independent economic research institute that conducts research in labor economics and offers evidence-based policy advice on labor market issues. Supported by the Deutsche Post Foundation, IZA runs the world’s largest network of economists, whose research aims to provide answers to the global labor market challenges of our time. Our key objective is to build bridges between academic research, policymakers and society. IZA Discussion Papers often represent preliminary work and are circulated to encourage discussion. Citation of such a paper should account for its provisional character. A revised version may be available directly from the author. ISSN: 2365-9793 IZA – Institute of Labor Economics Schaumburg-Lippe-Straße 5–9 Phone: +49-228-3894-0 53113 Bonn, Germany Email: [email protected] www.iza.org IZA DP No. -
Mechanistic Transmission Modeling of COVID-19 on the Diamond Princess Cruise Ship Demonstrates the Importance of Aerosol Transmission
Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission Parham Azimia,1, Zahra Keshavarza, Jose Guillermo Cedeno Laurenta, Brent Stephensb, and Joseph G. Allena,1 aEnvironmental Health Department, Harvard T.H. Chan School of Public Health, Boston, MA 02115; and bDepartment of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL 60616 Edited by Andrea Rinaldo, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, and approved January 7, 2021 (received for review July 22, 2020) Several lines of existing evidence support the possibility of spreads (3). CDC has also acknowledged that airborne trans- airborne transmission of coronavirus disease 2019 (COVID-19). mission by smaller droplets traveling more than 1.8 m away from However, quantitative information on the relative importance of infected individual(s) can sometimes occur (4). transmission pathways of severe acute respiratory syndrome coro- Since the beginning of the pandemic, numerous researchers navirus 2 (SARS-CoV-2) remains limited. To evaluate the relative (5–15) and professional societies [e.g., American Society of Heat- importance of multiple transmission routes for SARS-CoV-2, we ing, Refrigerating and Air-Conditioning Engineers (16)] have raised developed a modeling framework and leveraged detailed informa- concerns that transmission of SARS-CoV-2 can occur from both tion available from the Diamond Princess cruise ship outbreak that symptomatic and asymptomatic (or presymptomatic) individuals to occurred in early 2020. We modeled 21,600 scenarios to generate a others beyond close-range contact through a combination of larger matrix of solutions across a full range of assumptions for eight respiratory droplets that are carried further than 1 to 2 m via air- unknown or uncertain epidemic and mechanistic transmission fac- flow patterns and smaller inhalable aerosols that can remain sus- R2 > tors. -
Overdispersion in COVID-19 Increases the Effectiveness of Limiting Nonrepetitive Contacts for Transmission Control
Overdispersion in COVID-19 increases the effectiveness of limiting nonrepetitive contacts for transmission control Kim Sneppena,1, Bjarke Frost Nielsena, Robert J. Taylorb, and Lone Simonsenb aNiels Bohr Institute, University of Copenhagen, 2100 København Ø, Denmark; and bDepartment of Science and Environment, Roskilde University, 4000 Roskilde, Denmark Edited by Simon Asher Levin, Princeton University, Princeton, NJ, and approved March 8, 2021 (received for review August 5, 2020) Increasing evidence indicates that superspreading plays a domi- generated by an individual is distributed around the mean, with nant role in COVID-19 transmission. Recent estimates suggest that lower values of k corresponding to a broader distribution. the dispersion parameter k for severe acute respiratory syndrome Multiple studies have found that k for SARS-CoV-2 is on the coronavirus 2 (SARS-CoV-2) is on the order of 0.1, which corre- order of 0.1, corresponding to ∼10% of infected people causing sponds to about 10% of cases being the source of 80% of infec- 80% of new infections (12–15) This also implies that the majority tions. To investigate how overdispersion might affect the outcome of infected individuals cause less than one secondary infection of various mitigation strategies, we developed an agent-based and thus, cannot sustain the epidemic on their own should the model with a social network that allows transmission through con- superspreading events somehow be prevented. tact in three sectors: “close” (a small, unchanging group of mutual Consistent with this, the household attack rate is low, as shown “ ” contacts as might be found in a household), regular (a larger, un- by several studies. -
Music Industry Report 2020 Includes the Work of Talented Student Interns Who Went Through a Competitive Selection Process to Become a Part of the Research Team
2O2O THE RESEARCH TEAM This study is a product of the collaboration and vision of multiple people. Led by researchers from the Nashville Area Chamber of Commerce and Exploration Group: Joanna McCall Coordinator of Applied Research, Nashville Area Chamber of Commerce Barrett Smith Coordinator of Applied Research, Nashville Area Chamber of Commerce Jacob Wunderlich Director, Business Development and Applied Research, Exploration Group The Music Industry Report 2020 includes the work of talented student interns who went through a competitive selection process to become a part of the research team: Alexander Baynum Shruthi Kumar Belmont University DePaul University Kate Cosentino Isabel Smith Belmont University Elon University Patrick Croke University of Virginia In addition, Aaron Davis of Exploration Group and Rupa DeLoach of the Nashville Area Chamber of Commerce contributed invaluable input and analysis. Cluster Analysis and Economic Impact Analysis were conducted by Alexander Baynum and Rupa DeLoach. 2 TABLE OF CONTENTS 5 - 6 Letter of Intent Aaron Davis, Exploration Group and Rupa DeLoach, The Research Center 7 - 23 Executive Summary 25 - 27 Introduction 29 - 34 How the Music Industry Works Creator’s Side Listener’s Side 36 - 78 Facets of the Music Industry Today Traditional Small Business Models, Startups, Venture Capitalism Software, Technology and New Media Collective Management Organizations Songwriters, Recording Artists, Music Publishers and Record Labels Brick and Mortar Retail Storefronts Digital Streaming Platforms Non-interactive -
Superspreading of Airborne Pathogens in a Heterogeneous World Julius B
www.nature.com/scientificreports OPEN Superspreading of airborne pathogens in a heterogeneous world Julius B. Kirkegaard*, Joachim Mathiesen & Kim Sneppen Epidemics are regularly associated with reports of superspreading: single individuals infecting many others. How do we determine if such events are due to people inherently being biological superspreaders or simply due to random chance? We present an analytically solvable model for airborne diseases which reveal the spreading statistics of epidemics in socio-spatial heterogeneous spaces and provide a baseline to which data may be compared. In contrast to classical SIR models, we explicitly model social events where airborne pathogen transmission allows a single individual to infect many simultaneously, a key feature that generates distinctive output statistics. We fnd that diseases that have a short duration of high infectiousness can give extreme statistics such as 20% infecting more than 80%, depending on the socio-spatial heterogeneity. Quantifying this by a distribution over sizes of social gatherings, tracking data of social proximity for university students suggest that this can be a approximated by a power law. Finally, we study mitigation eforts applied to our model. We fnd that the efect of banning large gatherings works equally well for diseases with any duration of infectiousness, but depends strongly on socio-spatial heterogeneity. Te statistics of an on-going epidemic depend on a number of factors. Most directly: How easily is it transmit- ted? And how long are individuals afected and infectious? Scientifc papers and news paper articles alike tend to summarize the intensity of epidemics in a single number, R0 . Tis basic reproduction number is a measure of the average number of individuals an infected patient will successfully transmit the disease to. -
Evidence That Coronavirus Superspreading Is Fat-Tailed BRIEF REPORT Felix Wonga,B,C and James J
Evidence that coronavirus superspreading is fat-tailed BRIEF REPORT Felix Wonga,b,c and James J. Collinsa,b,c,d,1 aInstitute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; cInfectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; and dWyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115 Edited by Simon A. Levin, Princeton University, Princeton, NJ, and approved September 28, 2020 (received for review September 1, 2020) Superspreaders, infected individuals who result in an outsized CoV and SARS-CoV-2 exhibited an exponential tail. We number of secondary cases, are believed to underlie a significant searched the scientific literature for global accounts of SSEs, in fraction of total SARS-CoV-2 transmission. Here, we combine em- which single cases resulted in numbers of secondary cases pirical observations of SARS-CoV and SARS-CoV-2 transmission and greater than R0, estimated to be ∼3 to 6 for both coronaviruses extreme value statistics to show that the distribution of secondary (1, 7). To broadly sample the right tail, we focused on SSEs cases is consistent with being fat-tailed, implying that large super- resulting in >6 secondary cases, and as data on SSEs are sparse, spreading events are extremal, yet probable, occurrences. We inte- perhaps due in part to a lack of data sharing, we pooled data for grate these results with interaction-based network models of disease SARS-CoV and SARS-CoV-2. Moreover, to avoid higher- transmission and show that superspreading, when it is fat-tailed, order transmission obfuscating the cases generated directly by leads to pronounced transmission by increasing dispersion. -
(COVID-19) Infections from a Family Gathering in Hong Kong
This is an online COVID-19 pre-publication manuscript which has been submitted to WPSAR. Pre-publication manuscripts are preliminary reports and have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. A superspreading event involving a cluster of 14 coronavirus disease 2019 (COVID-19) infections from a family gathering in Hong Kong LAM Ho Yeung, LAM Tsz Sum, WONG Chi Hong, LAM Wing Hang, LEUNG Chi Mei Emily, LAM Chau Kuen Yonnie, LAU Tin Wai Winnie, HO Chi Hin Billy, WONG Ka Hing, CHUANG Shuk Kwan Abstract Objectives An outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China in December 2019, with subsequent spread around the world. Hong Kong, a Special Administrative Region of China, recorded its first confirmed case on 23 January 2020. In this report, we describe a family cluster of 12 confirmed cases with 2 additional confirmed cases from secondary transmission. Method We reported the epidemiological, clinical and laboratory findings of the family cluster and the public health measures instituted. Results All 12 confirmed COVID-19 cases were among the 19 attendees of a 3-hour Chinese New Year family dinner consisting of hotpot and barbecue. Environmental sampling of the gathering venue was negative. 2 additional confirmed cases who were the co-workers of 2 confirmed cases were later identified, indicating secondary transmission. Contact tracing, quarantine and environmental disinfection were instituted to contain further spread. -
Transmission of SARS-Cov-2: Implications for Infection Prevention Precautions
Transmission of SARS-CoV-2: implications for infection prevention precautions Scientific brief 9 July 2020 This document is an update to the scientific brief published on 29 March 2020 entitled “Modes of transmission of virus causing COVID-19: implications for infection prevention and control (IPC) precaution recommendations” and includes new scientific evidence available on transmission of SARS-CoV-2, the virus that causes COVID-19. Overview This scientific brief provides an overview of the modes of transmission of SARS-CoV-2, what is known about when infected people transmit the virus, and the implications for infection prevention and control precautions within and outside health facilities. This scientific brief is not a systematic review. Rather, it reflects the consolidation of rapid reviews of publications in peer-reviewed journals and of non-peer-reviewed manuscripts on pre-print servers, undertaken by WHO and partners. Preprint findings should be interpreted with caution in the absence of peer review. This brief is also informed by several discussions via teleconferences with the WHO Health Emergencies Programme ad hoc Experts Advisory Panel for IPC Preparedness, Readiness and Response to COVID-19, the WHO ad hoc COVID-19 IPC Guidance Development Group (COVID-19 IPC GDG), and by review of external experts with relevant technical backgrounds. The overarching aim of the global Strategic Preparedness and Response Plan for COVID-19(1) is to control COVID-19 by suppressing transmission of the virus and preventing associated illness and death. Current evidence suggests that SARS-CoV-2, the virus that causes COVID-19, is predominantly spread from person-to-person. -
Live Venue Sound System Installation
CASE STUDIES Live Venue Installations Unite Your Audience The Martin Audio Experience LIVE VENUE INSTALLATIONS Martin Audio At Martin Audio we believe that uniting audiences with modelling and software engineering, to deliver dynamic, exciting sound creates shared memories that sear into the full-frequency sound right across the audience. consciousness delivering more successful tours, events and repeatedly packed venues. With over forty years of live sound and installation expertise to our name, Martin Audio offers a wide range of premium We achieve this by an obsessive attention to detail on professional loudspeakers so customers can be assured the professional sound system’s acoustic performance, of selecting the right system for their chosen application, frequently challenging convention and involving a whether it’s a small scale installation or a festival for over sophisticated mix of design, research, mathematical 150,000 people. Live Venue Installations With our heritage in live production it’s no surprise that this has transferred into the realms of permanent audio installation within live venues. More often than not, live venues are combined with bar and club areas so our portfolio offering has frequently meant and integrated system design approach. As with many other applications, our solutions focus upon appropriate sound level performance, coverage, consistency and control to unite audiences night after night. 2 LIVE VENUE INSTALLATIONS Cabo Wabo Cantina Upgrades With Martin Audio WPC Cabo Wabo Cantina Cabo San Lucas, MX––Sammy -
The 35 Best Folk Music Venues in the U.S
The 35 Best Folk Music Venues in the U.S. Tweet Like 2.9K Share Save (https://www.reddit.com/submit) Click a state to view its venue(s) Although folk music may have hit its zenith in the 1960s, the genre still thrives today, along with a dedicated base of fans. It lives in music venues on each coast as well as hundreds of places in between. ARIZONA Folk music is still with us because it connects the listener, and the artist, to our cultural heritage. The tunes and lyrics CALIFORNIA describe who we are and where we came from. COLORADO Below is a list of the top 35 folk venues in the United States. We've listed the venues alphabetically by state. CONNECTICUT These 35 venues are not necessarily dedicated to folk music, but they are places where folk music indeed thrives. They ILLINOIS are also elite live music venues with superb acoustics, sightlines, and atmospheres, all qualities needed to make our list. MARYLAND The deciding factor, however, was enthusiasm. The following 35 venues exhibit a fervor for folk music that is almost MASSACHUSETTS palatable. MICHIGAN The people behind these venues love what they do and they love folk music. And, as you'll soon read, many of these NEW YORK venues are run by volunteers. NORTH CAROLINA OREGON PENNSYLVANIA RHODE ISLAND Arizona TEXAS VIRGINIA The Lost Leaf Bar & Gallery 914 North 5th Street Phoenix, AZ The Lost Leaf Bar & Gallery is an amazing venue for any type of show, especially folk music. For one, all their shows are free. -
Cellular Superspreaders: an Epidemiological Perspective on HIV Infection Inside the Body
Opinion Cellular Superspreaders: An Epidemiological Perspective on HIV Infection inside the Body Kristina Talbert-Slagle1,2*, Katherine E. Atkins1, Koon-Kiu Yan3, Ekta Khurana3, Mark Gerstein3, Elizabeth H. Bradley1,2, David Berg2,4, Alison P. Galvani1, Jeffrey P. Townsend1 1 Yale School of Public Health, New Haven, Connecticut, United States of America, 2 Global Health Leadership Institute, Yale University, New Haven, Connecticut, United States of America, 3 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America, 4 Yale University School of Medicine, New Haven, Connecticut, United States of America Introduction CD4+ T cells may play a similarly critical population, there exists a distribution of role in the establishment and spread of individual reproductive numbers, of which Worldwide, more than 250 people HIV in the genital mucosa after sexual R0 is the mean [14]. In populations of become infected with HIV every hour exposure. homogeneous individuals, the distribution [1], yet an individual’s chance of becom- of individual reproductive numbers will be ing infected after a single sexual exposure, Basic and Individual clustered around the population average the predominant mode of HIV transmis- value of R , and thus, this average value Reproductive Number 0 sion, is often lower than one in 100 [2]. will more accurately predict the likelihood When sexually transmitted HIV-1 infec- To quantify the spread of infectious of transmission from each infected to each tion does occur, it is usually initiated by a disease, epidemiologists use the basic susceptible individual. If R0.1, then an single virus, called the founder strain, reproductive number, R , which describes outbreak is likely to become an epidemic, despite the presence of thousands of 0 the average number of secondary infec- and if R0,1, then an outbreak will not genetically diverse viral strains in the tions that arise from one infected individ- spread beyond a few initially infected transmitting partner [3].