Clean Bight Alliance Australia

Total Page:16

File Type:pdf, Size:1020Kb

Clean Bight Alliance Australia Clean Bight Alliance Australia Submission to: Nuclear Fuel Cycle Royal Commission SA 14th August 2015 Introduction Clean Bight Alliance Australia is a local community group based in Ceduna on the far west coast of SA. Members have a strong interest in the ongoing health of the marine and coastal areas of the Great Australian Bight and the Eyre Peninsular. CBAA advocate for appropriate use of the region’s natural marine resources and educate the community on the risks associated with industrialization of the marine environment and prominent local industries such as aquaculture, fishing and tourism. Issues Paper Three: Electricity Generation from Nuclear Fuels Q 3.1 Are there suitable areas in South Australia for the establishment of a nuclear reactor for generating electricity? What is the basis for that assessment? CBAA take the position that there are no suitable areas in South Australia for a nuclear reactor. Currently our position is supported by legislation as Nuclear Power generation in South Australia is prohibited by the Environment Protection and Biodiversity Conservation Act 1999 Act and the Australian Radiation Protection and Nuclear Safety Act 1998. CBAA strongly encourages the Royal Commission to appreciate the background to these important pieces of legislation and implications if these were to be further altered or weakened. 1 | P a g e Furthermore Nuclear power generation requires large quantities of water for cooling – typically 36.3 to 65.4 million liters per reactor per day. 1 South Australia is known as one of the driest states on one of the driest continents. No inland areas are suitable for the establishment of a nuclear reactor for generating electricity. The amount of water needed can definitely not be sourced with current reservoirs and transportation of the large amounts of sea water required would be unfeasible and costly. Locating a Nuclear Reactor in South Australia is restricted to coastal areas. However this is also highly unsuitable as siting a nuclear reactor would conflict with other key industries (see below Q 3.17) and add unnecessary environmental impacts to South Australia’s coastal areas and marine ecologies, which are already under pressure from a range of factors2. Even if a Nuclear Reactor located on SA’s coast utilized the less damaging cooling tower system to minimize sea water usage and heated water discharge the impacts on marine life would still be at a questionable scale. CBAA’s diverse membership includes members of the local Aboriginal community who have strong affiliation and understanding of the coastal environment. CBAA’s members may have unique local knowledge but they are not unique in their outlook. South Australia is home to multiple Aboriginal communities, many who have long standing connections with coastal areas. Many groups express their cultural connection to coastal areas and coastal waters, emphasising their strong importance in physical cultural heritage, traditional economies, a place of bushfoods and medicine. This rich cultural understanding which has continued for thousands of generations must be considered in any suitability for nuclear reactor site selection. In addition to current mechanisms such as Native Title agreements, consultation and informed consent would have to ensure that communities were aware of the time frame of a nuclear reactor and possible implications for cultural heritage and continuation of cultural practices and passing on of knowledge. Restricted access to a nuclear reactor site means that cultural groups and the general public would be locked out from an area during the reactor’s lifespan - which could range from 30-60 years. This restricted access could extend well beyond this time period if there was to be any problems during decommissioning. In this way a nuclear reactor located in South Australia could irreversibly impact on physical cultural heritage, cultural knowledge and any native title rights gained which are protected by the Aboriginal Heritage Act and Native Title Act. South Australia has been put up as suitable location for nuclear reactors because of its relatively stable geology. However any stability in regards to earthquakes is countered by the unknown impacts of climate change and a likely increase in extreme conditions in South Australia3. Adequate predictions on sea level rises and how reactor technologies would cope with high temperatures would need careful technological consideration. There are already examples of Nuclear Reactor’s malfunctioning in other parts of the world because of storms, drought, high temperatures, fire and restricted water supplies – 1 Andrew Macintosh (The Australia Institute), 'Siting Nuclear Power Plants in Australia Where would they go?', 2007 www.tai.org.au/documents/downloads/WP96.pdf pg 6. and 'How much water does a nuclear power plant consume?', Nuclear Monitor #770, 24 Oct 2013, www.wiseinternational.org/nuclear-monitor/770/how-much-water-does-nuclear-power-plant-consume 2 Department for Environment and Heritage.2004. Living Coast Strategy for South Australia.http://www.environment.sa.gov.au/our-places/coasts. 3 “Climate Change Impacts in South Australia” http://www.environment.gov.au/climate-change/climate-science/impacts/sa 2 | P a g e all of which are likely to increase in severity and frequency.4 The perceived benefits are outweighed by these risks, again making a nuclear reactor for energy production in South Australia unfeasible. Other issues which rule out South Australia’s suitability are: Risks to human populations and inability to both have adequate buffers to populated areas and access to grid connectivity; Inadequate emergency services and evacuation zones Environmental impacts and risks of pollution dispersion and; Terrorism and weapons proliferation risks Finally, South Australia’s suitability for renewable energy production as demonstrated by a recent report by Mark Diesendorf clearly shows that any development of a nuclear reactor is unnecessary5. This makes a focus on nuclear risk mitigation unnecessary and a distraction from furthering South Australia’s renewable energy sector capabilities. This will be further discussed in other sections of our submission. Q3.8 What issues should be considered in a comparative analysis of the advantages and disadvantages of the generation of electricity from nuclear fuels as opposed to other sources? What are the most important issues? Why? How should they be analysed? There are obviously a multitude of issues to be considered and a variety of ways they could be analysed in any comparative analysis of electricity sources. Because current and emerging sources of renewable energy, fossil fuels and nuclear may require variations to economic and political contexts such a comparison is further complicated. However CBAA believe that the long lead time in establishment of a nuclear reactor, the potential risks and high consequences of any accidents, combined with generation of high level radioactive waste outweigh any perceived advantages of nuclear over other forms of electricity generation. According to CBAA the most important issue to consider in any comparative analysis of electricity generation should be long term sustainability. This is sustainability for environment, for job creation and resource use. Decisions made now will have ramifications for generations to come. With this pragmatic approach renewable sources are far more advantageous for South Australia than nuclear or fossil fuels. Important issues to consider in any comparison should include: Efficiency and Scale Department of Energy, July 2013, 'U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather', http://energy.gov/downloads/us-energy-sector-vulnerabilities-climate-change-and-extreme-weather and Robert Krier, 15 Aug 2012, 'Extreme Heat, Drought Show Vulnerability of Nuclear Power Plants', InsideClimate News, http://insideclimatenews.org/news/20120815/nuclear-power-plants-energy-nrc-drought-weather-heat-water 5 Diesendorf, Mark for Conservation SA, 100% Renewable Electricity for South Australia, June 2015. 3 | P a g e Does the energy source require high levels of consumption? Can production be scaled up and down in a flexible way to meet demand? Life-cycle CO2 emissions Any comparison must include emissions from mining eg. uranium and increases in emissions as resources become less concentrated and more energy intensive to recover. Finite supply Limited time scale as opposed to supply of renewable power sources such as wind, sun, wave, geothermal. Capital investment and total economic cost, including subsidies Nuclear is capital intensive and will require legislative change to implement in Australia. Evidence to suggest global nuclear industry heavily dependent on subsidies. Local expertise Unlike nuclear expertise Australia has a foundation of experience and workforce associated with renewable energy sector Job Creation Time period from planning, building, infrastructure, construction, to generation Including history of delays and complications for various energy projects Ability to be integrated into the grid Determinate of site location and scale Land/Coast/Water degradation Total area required including buffer zones Risk of major accident And the scale of impact Water Use A focus on nuclear energy will curb the exciting growth and possibilities for renewable energy sources in South Australia. During 2013-2014 37% of electricity generated in South Australia was from wind and rooftop solar. There is also a risk that nuclear
Recommended publications
  • Greenhouse Solutions with Sustainable Energy by Mark Diesendorf
    Review: Greenhouse Solutions with Sustainable Energy By Mark Diesendorf Reviewed by Elery Hamilton-Smith Charles Sturt University, Australia Diesendorf, Mark. Greenhouse Solutions with Sustainable Energy . Sydney, NSW: University of New South Wales Press, 2007. 413 pp. ISBN 978-086-8409-733. AU$45.95, paper. This is indeed a timely book. The proliferation of books on world environmental trends, policies and issues means that there are literally thousands of pages clamoring for the attention of those interested. Many of these are simply advocating specific conceptualizations and solutions to one or more of the many global problems. Too many of them either neglect, or are deficient on, critical assessment of the necessary evidence. Diesendorf writes with great clarity, explaining complex issues and ideas without over-simplifying or dumbing down. Essentially, after a basic conceptual review, he critically evaluates eight major strategic directions, either already practiced or commonly proposed and advocated in global policy arenas. Each of these strategies is assessed in terms of the potential resources, current status and action, environmental, health and social impacts, economic and future development potential. Essentially, he concludes that, at least in Australia and probably globally, a combination of efficient energy use, solar hot water, gas, bio-energy, wind power, improved public transport and fuel-efficient vehicles could halve greenhouse emissions within a few decades. But the political will is lacking, and much government policy action serves only to further the production of greenhouse emissions. The large and wealthy fossil fuel industries, including their infrastructural demands such as power stations, transport, urban structure and building standards, are major determinants of governmental expenditure.
    [Show full text]
  • Appendix B: Submissions
    B Appendix B - Submissions Submissions 1 Mr Gavin Brown 2 Mr Jonathon Peter 3 Ms Glenda Maxwell 4 Mr Paul Savi 5 Mr Stuart Allinson 6 EcoEnviro Pty Ltd 7 Professor Derek Abbott 8 Mr Ian Fischer 9 Mr David Gates 10 Mr Paul Myers 11 Professor Keith Thompson 12 Mr Barry Murphy 13 Mr Peter Briggs 14 Mr Terry Ryan 15 Mr Denys Smith 16 Professor John Quiggin Attachment 1 16.1 Supplementary to submission 16 190 17 Mr Terje Petersen 18 Mr Allen Tripp 19 Mr Rob Watson-Smith 20 Dr Matthew Gustafson 21 Mr John Hallam 22 Cr Dominic Wy Kanak 23 Mr Ian Bennett 24 Mr Stephen Brown 25 Mr Greig Meyer 26 Mr John Drake 27 Mr Alan Hewett 28 Mr Robert Gishubl 29 ThorCon US 30 Mr Richard Legar and Ms Lyn Allenn 31 Mr Geoff Billard 32 Ms Trish Frail 33 Mr Bruce McDonald 34 Mr Dale Hess 35 Mr Goronwy Price 36 Friends of the Earth Australia 37 Dr Geoffrey Hudson 38 Mr Eric Gribble 39 SMR Nuclear Technology Pty Ltd 40 Mr Gerard Van Hees 41 Dr Ziggy Switkowski AO 42 Mr Allen Biggins 43 Dr Susan Tregeagle 44 Ms Helen Smith APPENDIX B - SUBMISSIONS 191 45 Mr Gregory Wolfe 46 Mr David Allen 47 Mrs Jacqualine McCarroll 48 Mr Mark Fitzsimmons 49 Ms Peggy Fisher 50 Mr Michael Angwin 51 Ms Claudia Tregoning 52 Ms Jenny Lovric 53 Mr Clif Barker 54 Hydricity Systems 55 Mr Stuart McConville 56 Dr Tom Biegler 57 Mr Fred Tropp-Asher 58 Mrs Carmel Laycock 59 Mr Arnaud Coquillard 60 Mr Barrie Hill Attachment 1 Attachment 2 Attachment 3 61 Mr Terry Krieg 62 Mr Dennis Nickell 63 Dr Heiko Timmers 64 Mr Adrian Stephan 64.1 Supplementary to submission 64 65 Mr Wayne Chamley 66 Mr
    [Show full text]
  • Dollars for Death Say No to Uranium Mining & Nuclear Power
    Dollars for Death Say No to Uranium Mining & Nuclear Power Jim Green & Others 2 Dollars for Death Contents Preface by Jim Green............................................................................3 Uranium Mining ...................................................................................5 Uranium Mining in Australia by Friends of the Earth, Australia..........................5 In Situ Leach Uranium Mining Far From ‘Benign’ by Gavin Mudd.....................8 How Low Can Australia’s Uranium Export Policy Go? by Jim Green................10 Uranium & Nuclear Weapons Proliferation by Jim Falk & Bill Williams..........13 Nuclear Power ...................................................................................16 Ten Reasons to Say ‘No’ to Nuclear Power in Australia by Friends of the Earth, Australia...................................................................16 How to Make Nuclear Power Safe in Seven Easy Steps! by Friends of the Earth, Australia...................................................................18 Japan: One Year After Fukushima, People Speak Out by Daniel P. Aldrich......20 Nuclear Power & Water Scarcity by Sue Wareham & Jim Green........................23 James Lovelock & the Big Bang by Jim Green......................................................25 Nuclear Waste ....................................................................................28 Nuclear Power: Watt a Waste .............................................................................28 Nuclear Racism .................................................................................31
    [Show full text]
  • Responding to Climate Change
    IssuesOfOurTime-Text.x:IssuesOfOurTime-Text.x 14/1/08 12:07 PM Page 5 Responding to Climate Change Ian Lowe n 1989, I wrote a book on climate change, Living in the IGreenhouse. At the time the scientific community was still divided about climate change. It was clear that the planet was getting warmer and that other changes were happening, like rising sea levels and altered rainfall patterns. It was also clear that the massive increase in our use of the so-called “fossil fuels” — coal, oil and gas — was changing the amount of carbon dioxide in the air. While a distinguished Swedish scientist had shown in the late 19th century that this could affect the global climate, some cautious colleagues were reluc- tant to accept that human energy use was actually causing the changes that were being observed. As more research has been done, it has become clearer that changes to the global climate have not just followed the increasing human use of fossil fuels but are being caused by that process. While there was genuine uncertainty in the science, it was defensible for short-sighted politicians to do nothing about the problem. The science has now been refined to the point where there is no legitimate dispute about the human influence on climate. That doesn’t mean that the debate is over. As I was finalising this contribu- tion, our national daily newspaper was still printing columns suggesting that we should do nothing because the science is not yet rock-solid! ISSUES OF OUR TIME 5 IssuesOfOurTime-Text.x:IssuesOfOurTime-Text.x 14/1/08 12:07 PM Page 6 IAN LOWE The politicians of the developed world accepted the scientific arguments ten years ago when they negotiated the Kyoto protocol to slow down release of greenhouse gases.
    [Show full text]
  • 100% Renewable Electricity for South Australia a Background Paper for the Nuclear Fuel Cycle Royal Commission
    100% Renewable Electricity for South Australia A background paper for the Nuclear Fuel Cycle Royal Commission Conservation Council of South Australia June 2015 This report was researched and written by Dr Mark Diesendorf, Associate Professor and Deputy Director of the Institute of Environmental Studies, UNSW Australia, for the Conservation Council of South Australia. Contact email: [email protected] Views expressed are those of the author and are not necessarily those of the Conservation Council of South Australia. Suggest citation: Diesendorf M (2015) 100% Renewable Electricity for South Australia. Conservation Council of South Australia, Adelaide. 1 2 Contents Executive summary 5 Abbreviations and conversion factor 10 1. Introduction 11 2. Renewable energy resources 12 3. Reliability 12 3.1 Reliability of supply with high penetrations of RE 13 3.2 Reliability of supply with high penetration of nuclear 15 4. Economics 16 4.1 Renewable energy economics 16 4.2 Nuclear energy economics 19 4.3 Comparing costs of renewable and nuclear 21 5. Benefits, risks and safety 21 5.1 Benefits 21 5.2 Risks and safety 23 6. The key challenges and policies for solving them 23 6.1 The key challenges 23 6.2 Targets 24 6.3 Renewable energy incentives 24 6.4 Renewable energy certificates 24 6.5 Reverse auction 25 6.6 Capacity payments for flexible, fast response power stations 25 6.7 Fair feed-in tariffs for small- and medium-scale renewable energy 25 6.8 Fair prices for retail electricity 26 6.9 A new transmission spine 26 6.10 Sea-water pumped hydro 27 7.
    [Show full text]
  • Renewable Electricity Policy for Australia
    Renewable electricity policy for Australia Mark Diesendorf Associate Professor, School of Humanities & Languages UNSW Sydney Email: [email protected] November 2018 ABOUT THE AUSTRALIA INSTITUTE The Australia Institute is an independent public policy think tank based in Canberra. It is funded by donations from philanthropic trusts and individuals and commissioned research. We barrack for ideas, not political parties or candidates. Since its launch in 1994, the Institute has carried out highly influential research on a broad range of economic, social and environmental issues. OUR PHILOSOPHY As we begin the 21st century, new dilemmas confront our society and our planet. Unprecedented levels of consumption co-exist with extreme poverty. Through new technology we are more connected than we have ever been, yet civic engagement is declining. Environmental neglect continues despite heightened ecological awareness. A better balance is urgently needed. The Australia Institute’s directors, staff and supporters represent a broad range of views and priorities. What unites us is a belief that through a combination of research and creativity we can promote new solutions and ways of thinking. OUR PURPOSE – ‘RESEARCH THAT MATTERS’ The Institute publishes research that contributes to a more just, sustainable and peaceful society. Our goal is to gather, interpret and communicate evidence in order to both diagnose the problems we face and propose new solutions to tackle them. The Institute is wholly independent and not affiliated with any other organisation. Donations to its Research Fund are tax deductible for the donor. Anyone wishing to donate can do so via the website at https://www.tai.org.au or by calling the Institute on 02 6130 0530.
    [Show full text]
  • View, Nuclear Power Plants Provide a Hope Which Coal Plants Cannot
    ENERGY SUSTAINABILITY: THE CASE OF PHOTOVOLTAICS Submitted to fulfill the requirements for candidacy as an Honors student in the Environmental Studies Program by Abram Walden Kaplan April, 1985 Oberlin College Please do not quote or distribute without the express permission of the author ----and the Environmental--· . --- Studies -- Program,----- Oberlin--- College.--- - Acknowledgements This proJect has been tremendously challenging and satisfying. It has given me the opportunity to link together my studies in many-- different disciplines, and to show their relevance to one another certainly a crucial facet of Environmental Studies. Four people in particular have invested considerable effort in seeing me through the research and writing process, and I cannot express enough my appreciation for their advice: Gil Heilaender and Larry Buell, my Honors advisors, have given me carefully prescribed doses of constructive feedback and thoughtful criticism. Thia proJect never ran into anything one might call a crisis, and my advisors can take much of the credit for preventing that. The two other maJor influences have been my parents, who have been incredibly patient and encouraging in seeing through the development of some of the themes in this thesis. Harlan Wilson, one of my Honors advisors for the first half of the proJect (until he left for a semester in London) was also very helpful in narrowing my focus and forcing me to think about what it was that I was attempting to do. Michael Kraft, Lucy Jarosz, Bob Tufts, Bob Hilborn, David Orr, Jay HacDaniel, George Lankford, and George Foy read all or part of my thesis in various stages, and offered excellent advice in clarifying and refining my writing.
    [Show full text]
  • The Economic and Institutional Foundations of the Paris Agreement on Climate Change: the Political Economy of Roadmaps to a Sustainable Electricity Future
    THE ECONOMIC AND INSTITUTIONAL FOUNDATIONS OF THE PARIS AGREEMENT ON CLIMATE CHANGE: THE POLITICAL ECONOMY OF ROADMAPS TO A SUSTAINABLE ELECTRICITY FUTURE Mark Cooper Senior Fellow for Economic Analysis Institute for Energy and the Environment, Vermont Law School Adjunct Fellow, Silicon Flatirons, University of Colorado Abstract Three recent “roadmap” analyses outline routes to a low-carbon economy that model the decarbonization of the electricity sector and the pervasive electrification of the transportation and industrial sectors. Two of these also impose a pollution constraint on electricity resources that rejects the use of nuclear power and fossil fuels with carbon capture and storage. Using independent cost estimates and sequentially “relaxing” the constraints on resource selection, this paper compares the resource costs of the resulting portfolios of assets needed to meet the need for electricity. Reflecting the continuing decline of the cost of renewable resources, the paper supports the claim that the long run costs of the 100% renewable portfolios are not only less than business-as-usual portfolios, but that the “environmental merit order” of asset selection is quite close to the “economic merit order.” Neither fossil fuels with carbon capture and storage nor nuclear power enters the least-cost, low-carbon portfolio. As long as a rigorous least-cost constraint is imposed on decarbonization, the pollution constraint is superfluous. The paper evaluates the Paris Agreement on climate change in light of these findings. The Agreement is described as a progressive, mixed market economic model with a governance structure based on a polycentric, multi-stakeholder approach for management of a common pool resource.
    [Show full text]
  • Submission: Senate Select Committee on Fuel and Energy
    Submission to Senate Select Committee on Fuel and Energy www.aph.gov.au/SENATE/committee/fuelenergy_ctte/index.htm [email protected] Submission by: Anti-nuclear & Clean Energy Campaign Friends of the Earth, Australia Contact: Jim Green B.Med.Sci.(Hons.), PhD National nuclear campaigner - Friends of the Earth, Australia 0417 318 368 [email protected] PO Box 222, Fitzroy, Victoria, 3065. <www.foe.org.au/anti-nuclear> July 21, 2009 "The nuclear non-proliferation treaty continues to fracture. And there has been little if any progress on nuclear arms reduction – let alone nuclear disarmament." Kevin Rudd 5 July 2007 – Lowy Institute. "[T]he Nuclear Non-proliferation Treaty disintegrates before our very eyes … the current non-proliferation regime is fundamentally fracturing. The consequences of the collapse of this regime for Australia are acute, including the outbreak of regional nuclear arms races in South Asia, North East Asia and possibly even South East Asia." Kevin Rudd 19 September 2006 - Sydney Institute. CONTENTS 1. Introduction 2. Nuclear power and climate change 3. Nuclear power and nuclear weapons 4. Nuclear power and water scarcity 5. Radioactive waste 6. Nuclear accidents 7. Economics of nuclear power 1. INTRODUCTION Friends of the Earth, Australia (FoE) understands that the Select Committee is considering nuclear energy in the context of energy security, hence this submission. While this submission focusses on nuclear power, references to a large and ever-growing number of scientific 'deep cuts' studies - most of which propose a mix of renewables plus concerted energy conservation/efficiency measures - are posted at: www.foe.org.au/anti-nuclear/issues/clean-energy.
    [Show full text]
  • The Eye of the Storm. an Integral Perspective on Sustainable
    The Eye of the Storm An Integral Perspective on Sustainable Development and Climate Change Response Christopher Riedy Institute for Sustainable Futures University of Technology, Sydney Thesis submitted for the PhD in Sustainable Futures May 2005 CERTIFICATE OF AUTHORSHIP/ORIGINALITY I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Signature of Candidate _________________________________________________ Acknowledgements The thesis I present here is the culmination of a long journey that has taken many twists and turns. I have many people to thank for their guidance and support along that journey. My supervisors have each contributed in their own way. Mark Diesendorf, my original supervisor, provided the vision that began the journey and introduced me to academic research. It was Mark’s idea to investigate subsidies to fossil fuel production and consumption in Australia. My initial work on subsidies benefited greatly from Mark’s experience. My second supervisor, Chloe Mason, introduced me to the social sciences and to the rigour required of an academic. The lessons were difficult at the time but valuable in hindsight. Indirectly, Chloe taught me to pursue my own research path. My current supervisor, Professor Stuart White, gave me the freedom to pursue that path and my work flourished under his supervision.
    [Show full text]
  • Renewables Flyer.10.Cdr
    The Trans-Mediterranean Renewable Energy the Clean Energy Future “A plan to cut Queensland's CO2 emissions Cooperation, TREC have released their study into form electricity by 2010” solar thermal energy produced in the worlds' study has found that Australia can readily meet its energy www.wwf.org.au/ourwork/climatechange/Cleanenergyfuture/ deserts in July 2006 www.trecers.net needs from a range of commercially proven fuels and technologies. In the study 2040 time horizon was chosen was released in April 2005. It shows that an alternative 1.The solar energy available in deserts is more than 700 deliberately. It is long enough for almost all existing coal energy mix together with the firm implementation of energy times the present global primary energy consumption. fired energy supply infrastructure and other less energy efficiency measures and policies could economically This is far more than needed to replace fossil fuels. efficient equipment to be fully written off. substitute for the present coal fired power as well as the A scenario that cuts emissions by 50% includes: newly proposed coal fired backup Kogan Creek power 2.Solar thermal power plants can store solar heat and station. ?The energy generated from the combustion of generate solar power according to demand, also at night. natural gas can provide 30% (including The mix would consist of bio-energy, combined cycle and cogeneration) of our electricity by 2040. cogeneration fuelled with coal seam methane and wind 3.Technologies for power production and long-distance power. ?The energy released from biomass from transmission to over 90% of world population are at hand.
    [Show full text]
  • Friends of the Earth Australia May 2005
    HOUSE OF rEPRES~NTA~lVES STAND~G COMM~fTLE ON Submission No. 52 i 5 JUN 2U05 INDUSTRY ANflT3ESOURCES Inquiry into the Strategic Importance of Australia’s Uranium Resources The House of Representatives Standing Committee on Industry and Resources Contents: Introduction pg. 2 Comments pg. 4 Summary pg. 27 References pg. 28 Friends of the Earth Australia May 2005 Page 1 of29 Submission to TheHouse of Representatives Standing Committee on Industry and Resources Inquiry into the Strategic Importance ofAustralia’s Uranium Resources Introduction This submission has been prepared by the Friends of the Earth Australia Anti Nuclear Campaign. Friends of the Earth is a non-government, non-profit organisation committed to social justice and environmental sustainability. Friends of the Earth is active at local, regional and national levels and is also a member of the Friends of the Earth International network of 71 member groups, one of the worlds largest non-government environmental groupings. Friends of the Earth has been actively engaged on nuclear issues in Australia for over 30 years. Friends of the Earth is committed to phasing out of the nuclear industry based on the premise that it is an unsafe, unwanted and unnecessary impact on both people and the environment. Over 50 years the nuclear industry has failed to deliver it’s promise of safe, clean energy while in reality continued to generate hazardous waste and entrench the threat of nuclear weapons. Friends of the Earth works toward a nuclear free future; opposing major nuclear developments; campaigning for responsible management of waste and presenting clean safe alternatives.
    [Show full text]