DUIT: Distributed Utility Integration Test

Total Page:16

File Type:pdf, Size:1020Kb

DUIT: Distributed Utility Integration Test August 2003 • NREL/SR-560-34389 DUIT: Distributed Utility Integration Test Distributed Utility Associates Livermore, California National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 August 2003 • NREL/SR-560-34389 DUIT: Distributed Utility Integration Test Distributed Utility Associates Livermore, California NREL Technical Monitor: Ben Kroposki Prepared under Subcontract No. AAD-0-30605-05 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 phone: 800.553.6847 fax: 703.605.6900 email: [email protected] online ordering: http://www.ntis.gov/ordering.htm Printed on paper containing at least 50% wastepaper, including 20% postconsumer waste Acronyms AEP............................American Electric Power ATE............................automated test environment CHP............................combined heat and power CTs.............................current transformers, combustion turbines DAS............................data acquisition system DER............................distributed energy resources DG..............................distributed generation DR..............................distributed resources DOE ...........................US Department of Energy DUIT..........................Distributed Utility Integration Test EMF ...........................electromagnetic fields EMI ............................electromagnetic interference EPRI...........................Electric Power Research Institute EPS.............................electric power system FACTS .......................Flexible AC Transmission Systems GENCOs ....................generation companies IEC .............................International Electrotechnical Council IEEE...........................Institute of Electrical and Electronics Engineers ISO .............................independent system operator LHV ...........................lower heating value MCFC ........................molten carbonate fuel cell MGTF ........................Modular Generation Test Facility NDZ ...........................non-detect zone NEMA........................National Electrical Manufacturers Association NREL .........................National Renewable Energy Laboratory ORNL.........................Oak Ridge National Laboratory PAFC..........................phosphoric acid fuel cell PCC............................point of common coupling PEAC .........................Power Electronics Applications Center PEMFC ......................proton exchange membrane fuel cell PG&E.........................Pacific Gas and Electric Co. PQ ..............................power quality PTs .............................potential transformers PV ..............................photovoltaics RAMD........................reliability, availability, maintainability, and durability RTOs..........................regional transmission organization SCADA......................Supervisory Control and Data Acquisition SCCR .........................Short Circuit Contribution Ratio SMES .........................superconducting magnetic energy storage SOFC..........................solid oxide fuel cell iii TES ............................Technical and Ecological Services THD ...........................total harmonic distortion T&D ...........................transmission and distribution, transmission and distribution utility TRANSCOs ...............transmitting utilities UCI.............................University of California at Irvine UL ..............................Underwriters Laboratories VOS............................value of service iv Table of Contents Table of Figures............................................................................................................................vii Table of Tables.............................................................................................................................viii 1 Needs Assessment and Testing ......................................................................................1 1.1 Introduction and Overall Project Description..........................................................1 1.2 Scope, Objectives, and Goals...................................................................................5 1.3 Technology Selection and Evaluation .....................................................................8 1.4 Site Evaluation and Selection ................................................................................11 1.5 Electrical and Operational Issues...........................................................................12 1.6 DUIT's Potential Results and Policy Implications.................................................15 2 Assessment of Test Sites...............................................................................................18 2.1 Introduction............................................................................................................18 2.2 Site Analysis Methodology....................................................................................18 2.3 Assessment of Sites................................................................................................23 2.4 Analysis..................................................................................................................58 2.5 Conclusions and Recommendations ......................................................................59 3 Technology Report..........................................................................................................61 3.1 Introduction: Selection and Evaluation of Technologies for the DUIT.................61 3.2 Electric Conversion and Grid Interface .................................................................63 3.3 Inverters and Inverter-Based Technologies ...........................................................68 3.4 Engine Technologies..............................................................................................83 4 Test Protocols..................................................................................................................88 4.1 Introduction............................................................................................................88 4.2 Unintentional Islanding Tests................................................................................89 4.3 Voltage Regulator Tests.......................................................................................112 4.4 Reclosing Tests ....................................................................................................118 4.5 Sectionalizing Devices Tests...............................................................................121 4.6 Synchronization Tests..........................................................................................128 4.7 Fuse Coordination Tests ......................................................................................131 4.8 Capacitor Switching and Operation.....................................................................134 4.9 Short Circuit Tests ...............................................................................................135 4.10 Distribution System Stability Tests .....................................................................140 4.11 Cold Load Pickup Tests.......................................................................................147 4.12 Faults on Adjacent Feeders Tests ........................................................................147 4.13 Network Secondary Tests ....................................................................................147 4.14 Substation Backfeed Tests...................................................................................148 4.15 Prioritization ........................................................................................................149 v 5 Project Plan....................................................................................................................150
Recommended publications
  • Micro Gas Turbine Engine: a Review
    Chapter 5 Micro Gas Turbine Engine: A Review Marco Antônio Rosa do Nascimento, Lucilene de Oliveira Rodrigues, Eraldo Cruz dos Santos, Eli Eber Batista Gomes, Fagner Luis Goulart Dias, Elkin Iván Gutiérrez Velásques and Rubén Alexis Miranda Carrillo Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54444 1. Introduction Microturbines are energy generators whose capacity ranges from 15 to 300 kW. Their basic principle comes from open cycle gas turbines, although they present several typi‐ cal features, such as: variable speed, high speed operation, compact size, simple opera‐ bility, easy installation, low maintenance, air bearings, low NOX emissions and usually a recuperator (Hamilton, 2001). Microturbines came into the automotive market between 1950 and 1970. The first microtur‐ bines were based on gas turbine designed to be used in generators of missile launching sta‐ tions, aircraft and bus engines, among other commercial means of transport. The use of this equipment in the energy market increased between 1980 and 1990, when the demand for distributed generating technologies increased as well (LISS, 1999). Distributed generation systems may prove more attractive in a competitive market to those seeking to increase reliability and gain independence by self-generating. Manufacturers of gas and liquid-fueled microturbines and advanced turbine systems have bench test results showing that they will either meet or beat current emission goals for nitrogen oxides (NOX) and other pollutants (Hamilton, 2001). Air quality regulation agencies need to account for this technological innovation. Emission control technologies and regulations for distributed generation system are not yet precisely defined.
    [Show full text]
  • A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives
    Review A Review of Range Extenders in Battery Electric Vehicles: Current Progress and Future Perspectives Manh-Kien Tran 1,* , Asad Bhatti 2, Reid Vrolyk 1, Derek Wong 1 , Satyam Panchal 2 , Michael Fowler 1 and Roydon Fraser 2 1 Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada; [email protected] (R.V.); [email protected] (D.W.); [email protected] (M.F.) 2 Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L3G1, Canada; [email protected] (A.B.); [email protected] (S.P.); [email protected] (R.F.) * Correspondence: [email protected]; Tel.: +1-519-880-6108 Abstract: Emissions from the transportation sector are significant contributors to climate change and health problems because of the common use of gasoline vehicles. Countries in the world are attempting to transition away from gasoline vehicles and to electric vehicles (EVs), in order to reduce emissions. However, there are several practical limitations with EVs, one of which is the “range anxiety” issue, due to the lack of charging infrastructure, the high cost of long-ranged EVs, and the limited range of affordable EVs. One potential solution to the range anxiety problem is the use of range extenders, to extend the driving range of EVs while optimizing the costs and performance of the vehicles. This paper provides a comprehensive review of different types of EV range extending technologies, including internal combustion engines, free-piston linear generators, fuel cells, micro Citation: Tran, M.-K.; Bhatti, A.; gas turbines, and zinc-air batteries, outlining their definitions, working mechanisms, and some recent Vrolyk, R.; Wong, D.; Panchal, S.; Fowler, M.; Fraser, R.
    [Show full text]
  • A Review of Protection Systems for Distribution Networks Embedded with Renewable Generation
    University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part A Sciences 1-1-2016 A review of protection systems for distribution networks embedded with renewable generation Joel Kennedy University of Wollongong, [email protected] Philip Ciufo University of Wollongong, [email protected] Ashish P. Agalgaonkar University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/eispapers Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Kennedy, Joel; Ciufo, Philip; and Agalgaonkar, Ashish P., "A review of protection systems for distribution networks embedded with renewable generation" (2016). Faculty of Engineering and Information Sciences - Papers: Part A. 5151. https://ro.uow.edu.au/eispapers/5151 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] A review of protection systems for distribution networks embedded with renewable generation Abstract The rapid growth of grid-connected embedded generation is changing the operational characteristics of power distribution networks. Amongst a range of issues being reported in the research, the effect of these changes on so-called 'traditional protection systems' has not gone without attention. Looking to the future, the possibility of microgrid systems and deliberate islanding of sections of the network will require highly flexible distribution management systems and a e-designr of protection strategies. This paper explores the envisaged protection issues concerned with large penetrations of embedded generation in distribution networks extending into auto-reclosure and protection device coordination.
    [Show full text]
  • Consolidated Edison Company of New York, Inc. Electric Case Testimonies Volume 3
    CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. ELECTRIC CASE TESTIMONIES VOLUME 3 TAB NO. WITNESSES 9 Electric Infrastructure and Operations Panel Milovan Blair Robert Schimmenti Walter Alvarado Patrick McHugh Hugh Grant Matt Sniffen 10 Customer Energy Solutions Matt Ketschke Damian Sciano Vicky Kuo Thomas Magee Margarett Jolly Janette Espino 11 Municipal Infrastructure Support Panel Robert Boyle Theresa Kong John Minucci 12 Customer Operations Panel Marilyn Caselli Chris Grant Chris Osuji Hollis Krieger Michael Murphy Matt Sexton CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. ELECTRIC INFRASTRUCTURE AND OPERATIONS PANEL TABLE OF CONTENTS I. Introduction ............................................. 1 A. Introduction and Qualifications of Panel Members ....... 1 B. Purpose of Filing ...................................... 7 C. Key Themes ............................................ 13 D. Testimony Format ...................................... 18 II. Electric System Description ............................. 19 A. Importance of Electric Infrastructure to Service Area . 19 B. Description of T&D Systems ............................ 21 C. Transmission System ................................... 22 D. Transmission and Area Substations ..................... 23 E. Distribution System ................................... 25 F. Distributed Energy Resources .......................... 27 III. Business Cost Optimization ............................ 28 IV. T&D Capital and O&M Summary Information ................. 37 V. Detail of T&D Programs/Projects ........................
    [Show full text]
  • Before the New York State Public Service Commission
    BEFORE THE NEW YORK STATE PUBLIC SERVICE COMMISSION ------------------------------------------------------x : In the Matter of : : Proceeding on Motion of the : Commission as to the Rates, Charges, : Before Rules and Regulations of Consolidated : Hon. William Bouteiller Edison Company of New York, Inc. for : Hon. Michelle L. Phillips Electric Service. : Hon. Rudy Stegemoeller : Administrative Law Judges : P.S.C. Case No. 07-E-0523 : : ------------------------------------------------------x INITIAL BRIEF ON BEHALF OF CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. IN SUPPORT OF A PERMANENT ELECTRIC RATE INCREASE Dated: November 30, 2007 New York, New York TABLE OF CONTENTS Page I. OVERVIEW OF PROCEEDING........................................................................................1 A. Procedural Overview.....................................................................................................1 1. Initial Filing .............................................................................................................1 2. Leaves Suspended....................................................................................................2 3. Conferences..............................................................................................................2 4. Active Parties...........................................................................................................3 5. Discovery .................................................................................................................4 6. Preliminary
    [Show full text]
  • The Impact of a Microturbine Power Plant on an Off-Road Range
    The Impact of a Microturbine Power Plant On an Off-Road Range-Extended Electric Vehicle Andrew Wyatt Zetts Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering Alfred L. Wicks, Chair Douglas J. Nelson Walter F. O‘Brien February 11, 2015 Blacksburg, VA Keywords: Microturbine, HEV, Autonomy Copyright © 2015 by Andrew W Zetts The Impact of a Microturbine Power Plant On an Off-Road Range-Extended Electric Vehicle Andrew Wyatt Zetts ABSTRACT The purpose of this thesis is to examine the feasibility of using a microturbine to power an off-road Series Hybrid Autonomous Vehicle (SHEV), and evaluate the benefits and drawbacks inherent in using a microturbine rather than an Internal Combustion Engine (ICE). The specific power plant requirements for a low speed hybrid vehicle that must operate extensively as an Electric Vehicle (EV) and run on JP-8 (a diesel equivalent) are unusual; few options can adequately address all of these needs. Most development of Hybrid Electric Vehicles (HEVs) has focused on gasoline ICE power plants, but Diesel ICEs are heavier, which has an adverse effect on EV range. While mechanically-linked turbine vehicles failed to have the same performance abilities of their ICE counterparts, a microturbine generator-powered SHEV can take advantage of its battery pack to avoid the issues inherent in its mechanical predecessors. A microturbine generator is mechanically decoupled from the powertrain, allowing for an incredibly power dense power plant that lightens the weight of the vehicle.
    [Show full text]
  • Performance and Emission Study on Waste Cooking Oil Biodiesel and Distillate Blends for Microturbine Application
    AIMS Energy, 3 (4): 798–809. DOI: 10.3934/energy.2015.4.798 Received date 16 August 2015, Accepted date 17 November 2015, Published date 23 November 2015 http://www.aimspress.com/ Research article Performance and emission study on waste cooking oil biodiesel and distillate blends for microturbine application Ee Sann Tan1,*, Kumaran Palanisamy1, Teuku Meurah Indra Mahlia1 and Kunio Yoshikawa2 1 Department of Mechanical Engineering, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000, Kajang, Selangor, Malaysia 2 Department of Environmental Science and Technology, Tokyo Institute of Technology, Yokohama, Japan * Correspondence: Email: [email protected]; Tel: +6-038-921-2020; Fax: +6-038-921-2116. Abstract: Biodiesel is defined as domestic renewable energy resource, which can be derived from natural oils through the transesterification. The implementation of biodiesel is essential due to the energy depletion crisis and the impact on exacerbating environment caused by rapid consumption of conventional diesel. Waste cooking oil (WCO) was used as the raw material to produce biodiesel in order to reduce wastes polluting the environment. This paper studies the technical potential of WCO biodiesel to be used as an alternative fuel for microturbine. The ASTM D6751 and ASTM D2881 standards were selected as references to evaluate the compatibility with distillate to be used as a microturbine fuel. The performance and emission tests were conducted employing a 30 kW microturbine, without any modification, using biodiesel and distillate blends up to maximum of 20% biodiesel mixing ratio. It was found that the thermal efficiency peaked at 20% biodiesel blend with distillate, despite the fact that biodiesel had a lower calorific value and a higher fuel consumption.
    [Show full text]
  • Performance Enhancement of Microturbine Engines Topped With
    Pezhman Akbari Performance Enhancement of Department of Mechanical Engineering, Michigan State University, 2500 Engineering Building, Microturbine Engines Topped East Lansing, MI 48824-1226 e-mail: [email protected] With Wave Rotors Razi Nalim Department of Mechanical Engineering, Significant performance enhancement of microturbines is predicted by implementing vari- Indiana University–Purdue University ous wave-rotor-topping cycles. Five different advantageous cases are considered for Indianapolis (IUPUI), implementation of a four-port wave rotor into two given baseline engines. In these ther- Indianapolis, IN 46202-5132 modynamic analyses, the compressor and turbine pressure ratios and the turbine inlet e-mail: [email protected] temperatures are varied, according to the anticipated design objectives of the cases. Advantages and disadvantages are discussed. Comparison between the theoretic perfor- Norbert Müller mance of wave-rotor-topped and baseline engines shows a performance enhancement up Department of Mechanical Engineering, to 34%. General design maps are generated for the small gas turbines, showing the Michigan State University, design space and optima for baseline and topped engines. Also, the impact of ambient 2455 Engineering Building, temperature on the performance of both baseline and topped engines is investigated. It is East Lansing, MI 48824-1226 shown that the wave-rotor-topped engines are less prone to performance degradation ͓ ͔ e-mail: [email protected] under hot-weather conditions than the baseline engines. DOI: 10.1115/1.1924484 Introduction microturbines ͓6,7͔. Utilizing conventional recuperators based on the use of existing materials can improve the overall efficiency of A growing market for distributed power generation and propul- microturbines up to 30% ͓2,8–10͔.
    [Show full text]
  • Factors Influencing the Performance of Foil Gas Thrust Bearings for Oil-Free Turbomachinery Applications
    FACTORS INFLUENCING THE PERFORMANCE OF FOIL GAS THRUST BEARINGS FOR OIL-FREE TURBOMACHINERY APPLICATIONS by BRIAN DAVID DYKAS Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Advisor: Dr. Joseph M. Prahl Department of Mechanical and Aerospace Engineering CASE WESTERN RESERVE UNIVERSITY May 2006 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents Table of Contents ............................. iii ListofTables............................... vi ListofFigures............................... vii Acknowledgements ............................ x Nomenclature............................... xi Abstract.................................. xiii 1 Introduction 1 1.1Oil-FreeTurbomachineryApplications................. 1 1.2EnablingTechnologies.......................... 5 1.3 Present Work ............................... 6 References.................................... 9 2 Background of the Art 11
    [Show full text]
  • Investigation of Micro Gas Turbine Systems for High Speed Long Loiter Tactical Unmanned Air Systems
    Article Investigation of Micro Gas Turbine Systems for High Speed Long Loiter Tactical Unmanned Air Systems James Large † and Apostolos Pesyridis *,† Department of Mechanical and Aerospace Engineering, Brunel University London, Uxbridge UB8 3PH, London, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-189-526-7901 † These authors contributed equally to this work. Received: 6 March 2019; Accepted: 7 May 2019; Published: 14 May 2019 Abstract: In this study, the on-going research into the improvement of micro-gas turbine propulsion system performance and the suitability for its application as propulsion systems for small tactical UAVs (<600 kg) is investigated. The study is focused around the concept of converting existing micro turbojet engines into turbofans with the use of a continuously variable gearbox, thus maintaining a single spool configuration and relative design simplicity. This is an effort to reduce the initial engine development cost, whilst improving the propulsive performance. The BMT 120 KS micro turbojet engine is selected for the performance evaluation of the conversion process using the gas turbine performance software GasTurb13. The preliminary design of a matched low-pressure compressor (LPC) for the proposed engine is then performed using meanline calculation methods. According to the analysis that is carried out, an improvement in the converted micro gas turbine engine performance, in terms of thrust and specific fuel consumption is achieved. Furthermore, with the introduction of a CVT gearbox, the fan speed operation may be adjusted independently of the core, allowing an increased thrust generation or better fuel consumption. This therefore enables a wider gamut of operating conditions and enhances the performance and scope of the tactical UAV.
    [Show full text]
  • Application of Micro Gas Turbine in Range-Extended Electric Vehicles
    Application of Micro Gas Turbine in Range-Extended Electric Vehicles Apostolos Karvountzis-Kontakiotisa,b, Amin Mahmoudzadeh Andwaria,d*Apostolos Pesiridisa, Salvatore Russoc, Raffaele Tuccilloc and Vahid Esfahaniand a Centre for Advanced Powertrain and Fuels Research (CAPF), Department of Mechanical, Aerospace and Civil Engineering, Brunel University London, London UB8 3PH, UK b Department of Mechanical Engineering & Aeronautics, City University of London, Northampton Square, London EC1V 0HB, UK c Department of Industrial Engineering, University of Naples Federico II, Via Claudio 21, Napoli, Italy d Vehicle, Fuel and Environment Research Institute, School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran 1439956191, Iran *Corresponding author E-mail: [email protected] Abstract The increasing number of passenger cars worldwide and the consequent increasing rate of global oil consumption have raised the attention on fuel prices and have caused serious problems to the environment. Nowadays, the demand for reducing fuel consumption and pollutant emissions has paved the way to the development of more efficient power generation systems for the transportation sector. The lower fuel burning and pollutant emissions of hybrid electric vehicles give a strong motivation and encourage further investigations in this field. This research aims to investigate novel configurations, which could achieve further performance benefits for vehicle powertrain. Automakers claim that the employment of a gas turbine operating as range extender in a series hybrid configuration is the most efficiency solution in the coming years. In particular, a Micro Gas Turbine (MGT) can be considered as an alternative to the internal combustion engine (ICE) as a range extender for electric vehicles.
    [Show full text]
  • Distributed Power Generation Using Biogas Fuelled Microturbines
    DISTRIBUTED POWER GENERATION USING BIOGAS FUELLED MICROTURBINES ETSU Contract B/U1/00670/00/REP DTI/PubURN 02/1345 Contractor Advantica Prepared by Kevin Pointon and Mike Langan The work described in this report was carried out under contract as part of the New and Renewable Energy Programme, managed by ETSU on behalf of the Department of Trade and Industry. The views and judgments expressed in this report are those of the contractor and do not necessarily reflect those of ETSU or the Department of Trade and Industry. First Published 2002 © Advantica Technologies Ltd Executive Summary Background Biogas, from anaerobic digestion (AD) contains a mixture of methane and carbon dioxide, with a calorific value (CV) between 50% and 60% of that of natural gas. According to the UK Government’s renewable energy strategy, there is considerable potential for electricity generation from biomass, and the European Union Renewable Energy Campaign for Take-off sets a target of 1GW of biogas fuelled installations throughout Europe by 2003. The use of AD to generate biogas is a mature technology, however, despite government initiatives to promote its widespread use, biogas generation is limited to the wastewater treatment industry and to a few small farm based projects. One of the limitations is the availability and reliability of small-scale power generation technologies. The development of the biogas compatible microturbine could improve the reliability and performance of the power generation side of the plant. The establishment of a link between a well-characterised biogas demonstration with a microturbine with proven operation on natural gas is a significant extension to existing technology.
    [Show full text]