Douglas Hoen Phd Thesis FINAL CORRECTED
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptional Modulator ZBED6 Affects Cell Cycle and Growth of Human Colorectal Cancer Cells
Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells Muhammad Akhtar Alia,1, Shady Younisb,c,1, Ola Wallermand, Rajesh Guptab, Leif Anderssonb,d,e,1,2, and Tobias Sjöbloma,1 aScience For Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; bScience for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 85 Uppsala, Sweden; cDepartment of Animal Production, Ain Shams University, Shoubra El-Kheima, 11241 Cairo, Egypt; dDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and eDepartment of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 Contributed by Leif Andersson, May 15, 2015 (sent for review December 10, 2014; reviewed by Jan-Ake Gustafsson) The transcription factor ZBED6 (zinc finger, BED-type containing 6) (QTN) with a large impact on body composition (muscle growth is a repressor of IGF2 whose action impacts development, cell pro- and fat deposition); mutant animals showed threefold higher IGF2 liferation, and growth in placental mammals. In human colorectal expression in postnatal muscle (11). ZBED6 was identified as the cancers, IGF2 overexpression is mutually exclusive with somatic nuclear factor specifically binding the wild-type IGF2 sequence but mutations in PI3K signaling components, providing genetic evi- not the mutated site. ChIP sequencing (ChIP-seq) in mouse C2C12 dence for a role in the PI3K pathway. To understand the role of cells identified more than 1,200 putative ZBED6 target genes, in- ZBED6 in tumorigenesis, we engineered and validated somatic cell cluding 262 genes encoding transcription factors (6). -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
Dissection of the Cellular Function of the ZBED6 Transcription Factor in Mouse
bioRxiv preprint doi: https://doi.org/10.1101/540914; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Dissection of the cellular function of the ZBED6 transcription factor in mouse 2 myoblast cells using gene editing, RNAseq and proteomics 3 4 Shady Younis1, Rakan Naboulsi1, Xuan Wang2, Xiaofang Cao1, Mårten Larsson1, Ernest 5 Sargsyan2, Peter Bergsten2, Nils Welsh2, Leif Andersson1,3,4 6 7 1Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala 8 University, SE-751 23 Uppsala, Sweden. 2Science for Life Laboratory, Department of Medical 9 Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden. 3Department of Animal 10 Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, 11 Sweden. 4Department of Veterinary Integrative Biosciences, Texas A&M University, College 12 Station, TX 77843, USA. 13 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/540914; this version posted February 5, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 16 SUMMARY 17 The transcription factor ZBED6 acts as a repressor of Igf2 and affects directly or indirectly the 18 transcriptional regulation of thousands of genes. Here, we use gene editing in mouse C2C12 19 myoblasts and show that ZBED6 regulates Igf2 exclusively through its binding site 5′-GGCTCG- Δ 20 3′ in intron 1 of Igf2. Deletion of this motif (Igf2 GGCT) or complete ablation of Zbed6 leads to 21 ~20-fold up-regulation of IGF2 protein. -
Atlas Journal
Atlas of Genetics and Cytogenetics in Oncology and Haematology Home Genes Leukemias Tumors Cancer prone Deep Insight Case Reports Portal Journals Teaching X Y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 NA Atlas Journal Atlas Journal versus Atlas Database: the accumulation of the issues of the Journal constitutes the body of the Database/Text-Book. TABLE OF CONTENTS Volume 13, Number 7, July 2009 Previous Issue / Next Issue Genes ABL1 (v-abl Abelson murine leukemia viral oncogene homolog 1) (9q34.1) - updated. Ali G Turhan. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 757-766. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ABL.html BCL2L12 (BCL2-like 12 (proline-rich)) (19q13.3). Christos Kontos, Hellinida Thomadaki, Andreas Scorilas. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 767-771. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCL2L12ID773ch19q13.html BCR (Breakpoint cluster region) (22q11.2) - updated. Ali G Turhan. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 772-779. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/BCR.html ENAH (enabled homolog (Drosophila)) (1q42.12). Paola Nisticò, Francesca Di Modugno. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 780-785. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/ENAHID44148ch1q42.html FGFR2 (fibroblast growth factor receptor 2) (10q26.13). Masaru Katoh. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 786-799. [Full Text] [PDF] URL : http://atlasgeneticsoncology.org/Genes/FGFR2ID40570ch10q26.html MAPK6 (mitogen-activated protein kinase 6) (15q21.2). Sylvain Meloche. Atlas Genet Cytogenet Oncol Haematol 2009; 13 (7): 800-804. -
Transcriptional Modulator ZBED6 Affects Cell Cycle and Growth of Human Colorectal Cancer Cells
Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells Muhammad Akhtar Alia,1, Shady Younisb,c,1, Ola Wallermand, Rajesh Guptab, Leif Anderssonb,d,e,1,2, and Tobias Sjöbloma,1 aScience For Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; bScience for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 85 Uppsala, Sweden; cDepartment of Animal Production, Ain Shams University, Shoubra El-Kheima, 11241 Cairo, Egypt; dDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; and eDepartment of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 Contributed by Leif Andersson, May 15, 2015 (sent for review December 10, 2014; reviewed by Jan-Ake Gustafsson) The transcription factor ZBED6 (zinc finger, BED-type containing 6) (QTN) with a large impact on body composition (muscle growth is a repressor of IGF2 whose action impacts development, cell pro- and fat deposition); mutant animals showed threefold higher IGF2 liferation, and growth in placental mammals. In human colorectal expression in postnatal muscle (11). ZBED6 was identified as the cancers, IGF2 overexpression is mutually exclusive with somatic nuclear factor specifically binding the wild-type IGF2 sequence but mutations in PI3K signaling components, providing genetic evi- not the mutated site. ChIP sequencing (ChIP-seq) in mouse C2C12 dence for a role in the PI3K pathway. To understand the role of cells identified more than 1,200 putative ZBED6 target genes, in- ZBED6 in tumorigenesis, we engineered and validated somatic cell cluding 262 genes encoding transcription factors (6). -
Functional Characterization of the Biological Significance of the ZBED6/ZC3H11A Locus in Placental Mammals
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1372 Functional characterization of the biological significance of the ZBED6/ZC3H11A locus in placental mammals SHADY YOUNIS ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6206 ISBN 978-91-513-0072-6 UPPSALA urn:nbn:se:uu:diva-329190 2017 Dissertation presented at Uppsala University to be publicly examined in B/B42, Biomedicinskt centrum (BMC), Uppsala, Monday, 30 October 2017 at 13:15 for the degree of Doctor of Philosophy (Faculty of Medicine). The examination will be conducted in English. Faculty examiner: Docent Ola Hansson (Department of Clinical Sciences, Malmö University Hospital, Lund University). Abstract Younis, S. 2017. Functional characterization of the biological significance of the ZBED6/ ZC3H11A locus in placental mammals. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1372. 57 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0072-6. The recent advances in molecular and computational biology have made possible the study of complicated transcriptional regulatory networks that control a wide range of biological processes and phenotypic traits. In this thesis, several approaches were combined including next generation sequencing, gene expression profiling, chromatin and RNA immunoprecipitation, bioinformatics and genome editing methods in order to characterize the biological significance of the ZBED6 and ZC3H11A genes. A mutation in the binding site of ZBED6, located in an intron of IGF2, disrupts the binding and leads to 3-fold upregulation of IGF2 mRNA in pig muscle tissues. The first part of the thesis presents a detailed functional characterization of ZBED6. Transient silencing of ZBED6 expression in mouse myoblasts led to increased Igf2 expression (~2-fold). -
SMARCA4 Regulates Spatially Restricted Metabolic Plasticity in 3D Multicellular Tissue
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.21.436346; this version posted March 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SMARCA4 regulates spatially restricted metabolic plasticity in 3D multicellular tissue Katerina Cermakova1,2,*, Eric A. Smith1,2,*, Yuen San Chan1,2, Mario Loeza Cabrera1,2, Courtney Chambers1,2, Maria I. Jarvis3, Lukas M. Simon4, Yuan Xu5, Abhinav Jain6, Nagireddy Putluri1, Rui Chen7, R. Taylor Ripley5, Omid Veiseh3, and H. Courtney Hodges1,2,3,8,9,‡ 1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA 2. Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA 3. Department of Bioengineering, Rice University, Houston, TX, USA 4. Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX, USA 5. Department of Surgery, Division of General Thoracic Surgery, Baylor College of Medicine, Houston, TX, USA 6. Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 7. Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA 8. Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA 9. Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA * These authors contributed equally to this work ‡ Corresponding author: H. Courtney Hodges, Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA, [email protected]. Abstract SWI/SNF and related chromatin remodeling complexes act as tissue-specific tumor suppressors and are frequently inactivated in different cancers. -
Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you. -
Downloaded, Each with Over 20 Samples for AD-Specific Pathways, Biological Processes, and Driver Each Specific Brain Region in Each Condition
Xiang et al. BMC Medical Genomics 2018, 11(Suppl 6):115 https://doi.org/10.1186/s12920-018-0431-1 RESEARCH Open Access Condition-specific gene co-expression network mining identifies key pathways and regulators in the brain tissue of Alzheimer’s disease patients Shunian Xiang1,2, Zhi Huang4, Wang Tianfu1, Zhi Han3, Christina Y. Yu3,5, Dong Ni1*, Kun Huang3* and Jie Zhang2* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Gene co-expression network (GCN) mining is a systematic approach to efficiently identify novel disease pathways, predict novel gene functions and search for potential disease biomarkers. However, few studies have systematically identified GCNs in multiple brain transcriptomic data of Alzheimer’s disease (AD) patients and looked for their specific functions. Methods: In this study, we first mined GCN modules from AD and normal brain samples in multiple datasets respectively; then identified gene modules that are specific to AD or normal samples; lastly, condition-specific modules with similar functional enrichments were merged and enriched differentially expressed upstream transcription factors were further examined for the AD/normal-specific modules. Results: We obtained 30 AD-specific modules which showed gain of correlation in AD samples and 31 normal- specific modules with loss of correlation in AD samples compared to normal ones, using the network mining tool lmQCM. Functional and pathway enrichment analysis not only confirmed known gene functional categories related to AD, but also identified novel regulatory factors and pathways. Remarkably, pathway analysis suggested that a variety of viral, bacteria, and parasitic infection pathways are activated in AD samples. -
Genomic Rearrangements Near Genes Leading to Upregulation Across a Diverse Subset of Human Cancers
bioRxiv preprint doi: https://doi.org/10.1101/099861; this version posted January 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genomic rearrangements near genes leading to upregulation across a diverse subset of human cancers Yiqun Zhang1, Fengju Chen1, Chad J. Creighton1,2,3,4 1. Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA. 2. Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA. 3. Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA. 4. Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA. Correspondence to: Chad J. Creighton ([email protected]) Abbreviations: PCAWG, the Pan-Cancer Analysis of Whole Genomes project; SV, Structural Variant; Running header: Genomic rearrangements altering transcription bioRxiv preprint doi: https://doi.org/10.1101/099861; this version posted January 12, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Using a dataset of somatic Structural Variants (SVs) in cancers from 2658 patients—1220 with corresponding gene expression data—we identified hundreds of genes for which the nearby presence (within 100kb) of an SV breakpoint was associated with altered expression. For the vast majority of these genes, expression was increased rather than decreased with corresponding SV event. Well-known up-regulated cancer-associated genes impacted by this phenomenon included TERT, MDM2, CDK4, ERBB2, and IGF2. -
Imprint Stability and Plasticity During Development
156 1 REPRODUCTIONREVIEW Imprint stability and plasticity during development Sarah-Jayne Mackin, Avinash Thakur*, and Colum P Walsh Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Northern Ireland, UK Correspondence should be addressed to C P Walsh; Email: [email protected] *(A Thakur is currently at Terry Fox Laboratory, BC Cancer Research Centre, 675 West 10th Avenue, Room 13-112, Vancouver, BC V5Z 1L3, Canada) Abstract There have been a number of recent insights in the area of genomic imprinting, the phenomenon whereby one of two autosomal alleles is selected for expression based on the parent of origin. This is due in part to a proliferation of new techniques for interrogating the genome that are leading researchers working on organisms other than mouse and human, where imprinting has been most studied, to become interested in looking for potential imprinting effects. Here, we recap what is known about the importance of imprints for growth and body size, as well as the main types of locus control. Interestingly, work from a number of labs has now shown that maintenance of the imprint post implantation appears to be a more crucial step than previously appreciated. We ask whether imprints can be reprogrammed somatically, how many loci there are and how conserved imprinted regions are in other species. Finally, we survey some of the methods available for examining DNA methylation genome-wide and look to the future of this burgeoning field. Reproduction (2018) 156 R43–R55 Introduction hypothesis (Haig & Graham 1991, Moore & Haig 1991). Many imprinting phenomena involve effects on growth, Genomic imprinting is a classic epigenetic phenomenon, nutrition or metabolic balance, and this theory was partly and after X-inactivation, one of the best understood. -
Identificação De Genes E O Problema Do Alinhamento Spliced Múltiplo
Identifica¸c˜ao de Genes e o Problema do Alinhamento Spliced M´ultiplo Rodrigo Mitsuo Kishi DISSERTAC¸ AO˜ APRESENTADA A` FACULDADE DE COMPUTAC¸ AO˜ DA UNIVERSIDADE FEDERAL DE MATO GROSSO DO SUL PARA OBTENC¸ AO˜ DO GRAU DE MESTRE EM CIENCIAˆ DA COMPUTAC¸ AO˜ Area´ de Concentra¸c˜ao: Ciˆencia da Computa¸c˜ao Orientador: Prof. Dr. Said Sadique Adi – Durante o desenvolvimento deste trabalho, o autor recebeu apoio financeiro da FUNDECT – — Campo Grande, dezembro de 2010 — Identifica¸c˜ao de Genes e o Problema do Alinhamento Spliced M´ultiplo Este exemplar corresponde `a reda¸c˜ao final da disserta¸c˜ao devi- damente corrigida e defendida por Rodrigo Mitsuo Kishi e aprovada pela Banca Examinadora. Campo Grande, 14 de dezembro de 2010. Banca Examinadora: • Prof. Dr. Said Sadique Adi (Orientador) (FACOM/UFMS) • Profa. Dra. Maria Em´ıliaMachado Telles Walter (CIC/UnB) • Prof. Dr. Nalvo Franco de Almeida Jr. (FACOM/UFMS) • Profa. Dra. Luciana Montera Cheung (FACOM/UFMS) Dedicat´oria Dedico essa disserta¸c˜ao `amem´oria de minha av´o, Julieta Parreira Sandoval. i Agradecimentos Agrade¸co aos meus pais, Ester, Orlando e `aminha av´o, ”Dona Zola”, pelos ensinamentos fundamentais sobre car´ater, respeito e educa¸c˜ao. Al´em disso, agrade¸co a eles pela seguran¸ca que tenho desde que sa´ıde casa para estudar. Agrade¸co tamb´em `aminha namorada, Juliana, pelo apoio e compreens˜ao. Ao meu orientador, o Professor Said Sadique, com quem aprendi a maior parte do que sei sobre Bioinform´atica e que sempre esteve presente quando precisei, se desdobrando para conseguir tempo e me ajudar.