On Distance Matrices and Laplacians R

Total Page:16

File Type:pdf, Size:1020Kb

On Distance Matrices and Laplacians R Linear Algebra and its Applications 401 (2005) 193–209 www.elsevier.com/locate/laa On distance matrices and Laplacians R. Bapat a,1, S.J. Kirkland b,2,M.Neumannc,∗,3 aIndian Statistical Institute, New Delhi 110016, India bDepartment of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2 cDepartment of Mathematics, University of Connecticut, Storrs, CT 06269-3009, USA Received 24 September 2003; accepted 19 May 2004 Available online 20 July 2004 Submitted by R. Merris Abstract We consider distance matrices of certain graphs and of points chosen in a rectangular grid. Formulae for the inverse and the determinant of the distance matrix of a weighted tree are obtained. Results concerning the inertia and the determinant of the distance matrix of an unweighted unicyclic graph are proved. If D is the distance matrix of a tree, then we obtain − certain results for a perturbation of D 1.Asanexample,itisshownthatifL is the Laplacian − − 1 matrix of an arbitrary connected graph, then D 1 − L is an entrywise positive matrix. We consider the distance matrix of a subset of a rectangular grid of points in the plane. If we choose m + k − 1 points, not containing a closed path, in an m × k grid, then a formula for the determinant of the distance matrix of such points is obtained. © 2004 Elsevier Inc. All rights reserved. Keywords: Trees; Distance matrices; Laplacians; Determinants; Nonnegative matrices ∗ Corresponding author. E-mail address: [email protected] (M. Neumann). 1 The author thanks the Department of Mathematics, University of Connecticut, for the hospitality provided during the visit when this work was carried out. 2 Research supported in part by NSERC under grant number OGP0138251. 3 The work of this author was supported in part by NSF Grant No. DMS0201333. 0024-3795/$ - see front matter 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2004.05.011 194 R. Bapat et al. / Linear Algebra and its Applications 401 (2005) 193–209 1. Introduction and background A graph G = (V, E) consists of a finite set of vertices V and a set of edges E. A simple graph has no loops or multiple edges and therefore its edge set consists of distinct pairs. A weighted graph is a graph in which each edge is assigned a weight, which is a positive number. An unweighted graph,orsimplyagraph,is thus a weighted graph with each of the edges bearing weight 1. Let G be a connected, weighted graph on n vertices. The distance between ver- tices i and j is defined to be the minimum weight of all paths from i to j,where the weight of a path is just the sum of the weights of the edges on the path. The distance matrix D of G is an n × n matrix with zeros along the diagonal and with its (i, j)-entry equal to the distance between vertices i and j. Distance matrices of graphs, particularly trees, have been investigated to a great extent in the literature. An early, remarkable result in this context concerns the determinant of the distance matrix of a tree: Graham and Pollack [3] showed that if T is a tree on n vertices with distance matrix D, then the determinant of D is (−1)n−1(n − 1)2n−2, and thus is a function of only the number of vertices; that paper also discusses the inertia of D. (Recall that for symmetric matrix M, its inertia is the triple of integers (n+(M), n0(M), n−(M)),wheren+(M), n0(M),and n−(M) denote the number of positive eigenvalues of M, the multiplicity of 0 as an eigenvalue of M, and the number of negative eigenvalues of M, respectively.) In subsequent work, Graham and Lovasz [4] obtained a formula for D−1, among other results. In Section 2 we extend Graham’s and Lovasz’s formula for D−1 to the case of a weighted tree. We also obtain an extension of the Graham and Pollack determinantal and inertial formulae to the weighted case. In Section 3 we further extend these results to distance matrices arising from unweighted unicyclic graphs. Suppose that we have a weighted graph G = (V, E) with n vertices and m edges, and that we assign an orientation to each edge of G. The associated (vertex-edge) incidence matrix Q of G is the n × m matrix defined as follows. The rows and the columns of Q are indexed by V and E respectively.√ The (i, j)-entry of Q is√ 0 if the ith vertex and the jth edge are not incident and it is w(j) (respectively, − w(j)) if the ith vertex and the jth edge are incident, and the edge originates (respectively, terminates) at the ith vertex, where w(j) denotes the weight of the jth edge. The Laplacian matrix L of G is defined as L = QQT, and is independent of the orienta- tion assigned to G. For basic properties of the Laplacian matrix see [1,7]. We note that in our results involving weighted trees, we will make use of the incidence matrix and the Laplacian matrix that arise by replacing each edge weight of the tree by its reciprocal. In Section 4 we investigate a perturbation problem for distance matrices arising from weighted trees. Let D be a distance matrix arising from a weighted tree and let L be a Laplacian matrix of any weighted graph G.For>0, we consider per- turbations of D−1 of the form D−1 − L and show that matrices of this form are invertible and have a nonnegative inverse. R. Bapat et al. / Linear Algebra and its Applications 401 (2005) 193–209 195 n Recall that if u and v are vectors in R , then the 1-distance between u and − = n | − | v is defined as u v 1 i=1 ui vi . In Section 5 we obtain a formula for the determinant of the 1-distance matrix of a set of points in a rectangular grid. 2 If x1,...,xn are distinct points in R , then their 1-distance matrix D =[di,j ] is an n × n matrix with di,i = 0, i = 1, 2,...,n,anddi,j =xi − xj 1, if i/= j.If m + k − 1 points are chosen from an m × k rectangular grid and if the points do not contain a closed path, then a formula for the determinant of D is obtained. 2. Distance matrix of a tree In this section we extend some well known results on the distance matrix D of an unweighted tree T . The first result is due to Graham and Lovasz [4], who obtained a formula for D−1. The latter two results are due to Graham and Pollack [3], who showed that if T has n vertices, then the determinant of D is (−1)n−1(n − 1)2n−2, and that D has just one positive eigenvalue. In this section, we extend these results to the case of weighted trees. Theorem 2.1. Let T be a weighted tree on n vertices with edge weights α1,...,αn−1 and let D be the corresponding distance matrix. Let L denote the Laplacian matrix for the weighting of T that arises by replacing each edge weight by its reciprocal. For each i = 1,...,n, let di be the degree of the vertex i, let δi = 2 − di, and set T δ =[δ1,...,δn]. Then − 1 1 D 1 =− L + δδT. (2.1) 2 n−1 2 i=1 αi 0 α Proof. We use induction on n.Forn = 2, we have D = 1 , L = α1 0 1 −1 1 1 ,andδ = , and the formula for D−1 follows readily. Now suppose α1 −11 1 we have a weighted tree on n vertices 1, 2,...,n, and form a new weighted tree T on vertices 1,...,n+ 1 by adding in a pendant vertex n + 1, adjacent to vertex n with edge weight αn. Let D, L,andδ be the appropriate quantities for T and let D, ¯ L,andδ be the corresponding quantities for T . Letting en be the nth standard unit basis vector in Rn and 1 be the all ones vector in Rn,wehave + 1 T − 1 − L α enen α en δ en L = n n , δ¯ = , − 1 eT 1 1 αn n αn and D Den + αn1 D = . T + T en D αn1 0 196 R. Bapat et al. / Linear Algebra and its Applications 401 (2005) 193–209 = n−1 = n Let σn−1 i=1 αi and σn i=1 αi, and note that − 1 + 1 ¯ ¯T =−1 + 1 ¯ ¯T L n δδ L δδ 2 2 i=1 αi 2 2σn − 1 − 1 T + 1 T − T − T + T 1 + 1 − 2 L 2α enen 2σ δδ δen enδ enen 2α en 2σ (δ en) = n n n n 1 eT + 1 δT − eT − 1 + 1 2αn n 2σn n 2αn 2σn − 1 + 1 T − T − T − σn−1 T 1 + σn−1 2 L 2σ δδ δen enδ 2α σ enen 2σ δ 2α σ en = n n n n n n . 1 δT + σn−1 eT − σn−1 2σn 2αnσn n 2αnσn −1 1 T 1 From the induction hypothesis, D 1 = δ 1δ = δ,sothatDδ = σn− 1. 2σn−1 σn−1 1 Also from the induction hypothesis, D−1 =−1 L + 1 δδT. We thus find that 2 2σn−1 1 1 − L + δ¯δ¯T 2 2σ n D−1 − αn δδT − 1 δeT + e δT − σn−1 e eT 1 δ + σn−1 e 2σ σ − 2σ n n 2α σ n n 2σ 2α σ n = n n 1 n n n n n n .
Recommended publications
  • Eigenvalues of Euclidean Distance Matrices and Rs-Majorization on R2
    Archive of SID 46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University 2 Talk Eigenvalues of Euclidean distance matrices and rs-majorization on R pp.: 1{4 Eigenvalues of Euclidean Distance Matrices and rs-majorization on R2 Asma Ilkhanizadeh Manesh∗ Department of Pure Mathematics, Vali-e-Asr University of Rafsanjan Alemeh Sheikh Hoseini Department of Pure Mathematics, Shahid Bahonar University of Kerman Abstract Let D1 and D2 be two Euclidean distance matrices (EDMs) with correspond- ing positive semidefinite matrices B1 and B2 respectively. Suppose that λ(A) = ((λ(A)) )n is the vector of eigenvalues of a matrix A such that (λ(A)) ... i i=1 1 ≥ ≥ (λ(A))n. In this paper, the relation between the eigenvalues of EDMs and those of the 2 corresponding positive semidefinite matrices respect to rs, on R will be investigated. ≺ Keywords: Euclidean distance matrices, Rs-majorization. Mathematics Subject Classification [2010]: 34B15, 76A10 1 Introduction An n n nonnegative and symmetric matrix D = (d2 ) with zero diagonal elements is × ij called a predistance matrix. A predistance matrix D is called Euclidean or a Euclidean distance matrix (EDM) if there exist a positive integer r and a set of n points p1, . , pn r 2 2 { } such that p1, . , pn R and d = pi pj (i, j = 1, . , n), where . denotes the ∈ ij k − k k k usual Euclidean norm. The smallest value of r that satisfies the above condition is called the embedding dimension. As is well known, a predistance matrix D is Euclidean if and 1 1 t only if the matrix B = − P DP with P = I ee , where I is the n n identity matrix, 2 n − n n × and e is the vector of all ones, is positive semidefinite matrix.
    [Show full text]
  • Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs
    Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs Wayne Barrett (Brigham Young University), Steve Butler (Iowa State University), Minerva Catral (Xavier University), Shaun Fallat (University of Regina), H. Tracy Hall (Brigham Young University), Leslie Hogben (Iowa State University), Pauline van den Driessche (University of Victoria), Michael Young (Iowa State University) June 16-23, 2013 1 Mathematical Background Combinatorial matrix theory, which involves connections between linear algebra, graph theory, and combi- natorics, is a vital area and dynamic area of research, with applications to fields such as biology, chemistry, economics, and computer engineering. One area generating considerable interest recently is the study of the minimum rank of matrices associated with graphs. Let F be any field. For a graph G = (V; E), which has vertex set V = f1; : : : ; ng and edge set E, S(F; G) is the set of all symmetric n×n matrices A with entries from F such that for any non-diagonal entry aij in A, aij 6= 0 if and only if ij 2 E. The minimum rank of G is mr(F; G) = minfrank(A): A 2 S(F; G)g; and the maximum nullity of G is M(F; G) = maxfnull(A): A 2 S(F; G)g: Note that mr(F; G)+M(F; G) = jGj, where jGj is the number of vertices in G. Thus the problem of finding the minimum rank of a given graph is equivalent to the problem of determining its maximum nullity. The zero forcing number of a graph is the minimum number of blue vertices initially needed to force all the vertices in the graph blue according to the color-change rule.
    [Show full text]
  • Polynomial Approximation Algorithms for Belief Matrix Maintenance in Identity Management
    Polynomial Approximation Algorithms for Belief Matrix Maintenance in Identity Management Hamsa Balakrishnan, Inseok Hwang, Claire J. Tomlin Dept. of Aeronautics and Astronautics, Stanford University, CA 94305 hamsa,ishwang,[email protected] Abstract— Updating probabilistic belief matrices as new might be constrained to some prespecified (but not doubly- observations arrive, in the presence of noise, is a critical part stochastic) row and column sums. This paper addresses the of many algorithms for target tracking in sensor networks. problem of updating belief matrices by scaling in the face These updates have to be carried out while preserving sum constraints, arising for example, from probabilities. This paper of uncertainty in the system and the observations. addresses the problem of updating belief matrices to satisfy For example, consider the case of the belief matrix for a sum constraints using scaling algorithms. We show that the system with three objects (labelled 1, 2 and 3). Suppose convergence behavior of the Sinkhorn scaling process, used that, at some instant, we are unsure about their identities for scaling belief matrices, can vary dramatically depending (tagged X, Y and Z) completely, and our belief matrix is on whether the prior unscaled matrix is exactly scalable or only almost scalable. We give an efficient polynomial-time algo- a 3 × 3 matrix with every element equal to 1/3. Let us rithm based on the maximum-flow algorithm that determines suppose the we receive additional information that object whether a given matrix is exactly scalable, thus determining 3 is definitely Z. Then our prior, but constraint violating the convergence properties of the Sinkhorn scaling process.
    [Show full text]
  • On the Eigenvalues of Euclidean Distance Matrices
    “main” — 2008/10/13 — 23:12 — page 237 — #1 Volume 27, N. 3, pp. 237–250, 2008 Copyright © 2008 SBMAC ISSN 0101-8205 www.scielo.br/cam On the eigenvalues of Euclidean distance matrices A.Y. ALFAKIH∗ Department of Mathematics and Statistics University of Windsor, Windsor, Ontario N9B 3P4, Canada E-mail: [email protected] Abstract. In this paper, the notion of equitable partitions (EP) is used to study the eigenvalues of Euclidean distance matrices (EDMs). In particular, EP is used to obtain the characteristic poly- nomials of regular EDMs and non-spherical centrally symmetric EDMs. The paper also presents methods for constructing cospectral EDMs and EDMs with exactly three distinct eigenvalues. Mathematical subject classification: 51K05, 15A18, 05C50. Key words: Euclidean distance matrices, eigenvalues, equitable partitions, characteristic poly- nomial. 1 Introduction ( ) An n ×n nonzero matrix D = di j is called a Euclidean distance matrix (EDM) 1, 2,..., n r if there exist points p p p in some Euclidean space < such that i j 2 , ,..., , di j = ||p − p || for all i j = 1 n where || || denotes the Euclidean norm. i , ,..., Let p , i ∈ N = {1 2 n}, be the set of points that generate an EDM π π ( , ,..., ) D. An m-partition of D is an ordered sequence = N1 N2 Nm of ,..., nonempty disjoint subsets of N whose union is N. The subsets N1 Nm are called the cells of the partition. The n-partition of D where each cell consists #760/08. Received: 07/IV/08. Accepted: 17/VI/08. ∗Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS.
    [Show full text]
  • Smith Normal Formal of Distance Matrix of Block Graphs∗†
    Ann. of Appl. Math. 32:1(2016); 20-29 SMITH NORMAL FORMAL OF DISTANCE MATRIX OF BLOCK GRAPHS∗y Jing Chen1;2,z Yaoping Hou2 (1. The Center of Discrete Math., Fuzhou University, Fujian 350003, PR China; 2. School of Math., Hunan First Normal University, Hunan 410205, PR China) Abstract A connected graph, whose blocks are all cliques (of possibly varying sizes), is called a block graph. Let D(G) be its distance matrix. In this note, we prove that the Smith normal form of D(G) is independent of the interconnection way of blocks and give an explicit expression for the Smith normal form in the case that all cliques have the same size, which generalize the results on determinants. Keywords block graph; distance matrix; Smith normal form 2000 Mathematics Subject Classification 05C50 1 Introduction Let G be a connected graph (or strong connected digraph) with vertex set f1; 2; ··· ; ng. The distance matrix D(G) is an n × n matrix in which di;j = d(i; j) denotes the distance from vertex i to vertex j: Like the adjacency matrix and Lapla- cian matrix of a graph, D(G) is also an integer matrix and there are many results on distance matrices and their applications. For distance matrices, Graham and Pollack [10] proved a remarkable result that gives a formula of the determinant of the distance matrix of a tree depend- ing only on the number n of vertices of the tree. The determinant is given by det D = (−1)n−1(n − 1)2n−2: This result has attracted much interest in algebraic graph theory.
    [Show full text]
  • Arxiv:1803.06211V1 [Math.NA] 16 Mar 2018
    A NUMERICAL MODEL FOR THE CONSTRUCTION OF FINITE BLASCHKE PRODUCTS WITH PREASSIGNED DISTINCT CRITICAL POINTS CHRISTER GLADER AND RAY PORN¨ Abstract. We present a numerical model for determining a finite Blaschke product of degree n + 1 having n preassigned distinct critical points z1; : : : ; zn in the complex (open) unit disk D. The Blaschke product is uniquely determined up to postcomposition with conformal automor- phisms of D. The proposed method is based on the construction of a sparse nonlinear system where the data dependency is isolated to two vectors and on a certain transformation of the critical points. The effi- ciency and accuracy of the method is illustrated in several examples. 1. Introduction A finite Blaschke product of degree n is a rational function of the form n Y z − αj (1.1) B(z) = c ; c; α 2 ; jcj = 1; jα j < 1 ; 1 − α z j C j j=1 j which thereby has all its zeros in the open unit disc D, all poles outside the closed unit disc D and constant modulus jB(z)j = 1 on the unit circle T. The overbar in (1.1) and in the sequel stands for complex conjugation. The finite Blaschke products of degree n form a subset of the rational functions of degree n which are unimodular on T. These functions are given by all fractions n ~ a0 + a1 z + ::: + an z (1.2) B(z) = n ; a0; :::; an 2 C : an + an−1 z + ::: + a0 z An irreducible rational function of form (1.2) is a finite Blaschke product when all its zeros are in D.
    [Show full text]
  • Distance Matrix and Laplacian of a Tree with Attached Graphs R.B
    Linear Algebra and its Applications 411 (2005) 295–308 www.elsevier.com/locate/laa Distance matrix and Laplacian of a tree with attached graphs R.B. Bapat ∗ Indian Statistical Institute, Delhi Centre, 7 S.J.S.S. Marg, New Delhi 110 016, India Received 5 November 2003; accepted 22 June 2004 Available online 7 August 2004 Submitted by S. Hedayat Abstract A tree with attached graphs is a tree, together with graphs defined on its partite sets. We introduce the notion of incidence matrix, Laplacian and distance matrix for a tree with attached graphs. Formulas are obtained for the minors of the incidence matrix and the Laplacian, and for the inverse and the determinant of the distance matrix. The case when the attached graphs themselves are trees is studied more closely. Several known results, including the Matrix Tree theorem, are special cases when the tree is a star. The case when the attached graphs are paths is also of interest since it is related to the transportation problem. © 2004 Elsevier Inc. All rights reserved. AMS classification: 15A09; 15A15 Keywords: Tree; Distance matrix; Resistance distance; Laplacian matrix; Determinant; Transportation problem 1. Introduction Minors of matrices associated with a graph has been an area of considerable inter- est, starting with the celebrated Matrix Tree theorem of Kirchhoff which asserts that any cofactor of the Laplacian matrix equals the number of spanning trees in the ∗ Fax: +91 11 26856779. E-mail address: [email protected] 0024-3795/$ - see front matter 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2004.06.017 296 R.B.
    [Show full text]
  • Hypercubes Are Determined by Their Distance Spectra 3
    HYPERCUBES ARE DETERMINED BY THEIR DISTANCE SPECTRA JACK H. KOOLEN♦, SAKANDER HAYAT♠, AND QUAID IQBAL♣ Abstract. We show that the d-cube is determined by the spectrum of its distance matrix. 1. Introduction For undefined terms, see next section. For integers n 2 and d 2, the Ham- ming graph H(d, n) has as vertex set, the d-tuples with elements≥ from≥0, 1, 2,...,n 1 , with two d-tuples are adjacent if and only if they differ only in one{ coordinate.− For} a positive integer d, the d-cube is the graph H(d, 2). In this paper, we show that the d-cube is determined by its distance spectrum, see Theorem 5.4. Observe that the d-cube has exactly three distinct distance eigenvalues. Note that the d-cube is not determined by its adjacency spectrum as the Hoffman graph [11] has the same adjacency spectrum as the 4-cube and hence the cartesian product of (d 4)-cube and the Hoffman graph has the same adjacency spectrum − as the d-cube (for d 4, where the 0-cube is just K1). This also implies that the complement of the d-cube≥ is not determined by its distance spectrum, if d 4. ≥ There are quite a few papers on matrices of graphs with a few distinct eigenvalues. An important case is, when the Seidel matrix of a graph has exactly two distinct eigenvalues is very much studied, see, for example [18]. Van Dam and Haemers [20] characterized the graphs whose Laplacian matrix has two distinct nonzero eigenval- ues.
    [Show full text]
  • Distance Matrix of a Class of Completely Positive Graphs
    Spec. Matrices 2020; 8:160–171 Research Article Open Access Joyentanuj Das, Sachindranath Jayaraman, and Sumit Mohanty* Distance Matrix of a Class of Completely Positive Graphs: Determinant and Inverse https://doi.org/10.1515/spma-2020-0109 Received February 6, 2020; accepted May 14, 2020 Abstract: A real symmetric matrix A is said to be completely positive if it can be written as BBt for some (not necessarily square) nonnegative matrix B. A simple graph G is called a completely positive graph if every matrix realization of G that is both nonnegative and positive semidenite is a completely positive matrix. Our aim in this manuscript is to compute the determinant and inverse (when it exists) of the distance matrix of a class of completely positive graphs. We compute a matrix R such that the inverse of the distance matrix of a class of completely positive graphs is expressed a linear combination of the Laplacian matrix, a rank one matrix of all ones and R. This expression is similar to the existing result for trees. We also bring out interesting spectral properties of some of the principal submatrices of R. Keywords: Completely positive graphs, Schur complement, Laplacian matrix, Distance matrix MSC: 05C12, 05C50 1 Introduction and Preliminaries Let G = (V, E) be a nite, connected, simple and undirected graph with V as the set of vertices and E ⊂ V × V as the set of edges. We write i ∼ j to indicate that the vertices i, j are adjacent in G. The degree of the vertex i is denoted by δi. A graph with n vertices is called complete, if each vertex of the graph is adjacent to every other vertex and is denoted by Kn.
    [Show full text]
  • "Distance Measures for Graph Theory"
    Distance measures for graph theory : Comparisons and analyzes of different methods Dissertation presented by Maxime DUYCK for obtaining the Master’s degree in Mathematical Engineering Supervisor(s) Marco SAERENS Reader(s) Guillaume GUEX, Bertrand LEBICHOT Academic year 2016-2017 Acknowledgments First, I would like to thank my supervisor Pr. Marco Saerens for his presence, his advice and his precious help throughout the realization of this thesis. Second, I would also like to thank Bertrand Lebichot and Guillaume Guex for agreeing to read this work. Next, I would like to thank my parents, all my family and my friends to have accompanied and encouraged me during all my studies. Finally, I would thank Malian De Ron for creating this template [65] and making it available to me. This helped me a lot during “le jour et la nuit”. Contents 1. Introduction 1 1.1. Context presentation .................................. 1 1.2. Contents .......................................... 2 2. Theoretical part 3 2.1. Preliminaries ....................................... 4 2.1.1. Networks and graphs .............................. 4 2.1.2. Useful matrices and tools ........................... 4 2.2. Distances and kernels on a graph ........................... 7 2.2.1. Notion of (dis)similarity measures ...................... 7 2.2.2. Kernel on a graph ................................ 8 2.2.3. The shortest-path distance .......................... 9 2.3. Kernels from distances ................................. 9 2.3.1. Multidimensional scaling ............................ 9 2.3.2. Gaussian mapping ............................... 9 2.4. Similarity measures between nodes .......................... 9 2.4.1. Katz index and its Leicht’s extension .................... 10 2.4.2. Commute-time distance and Euclidean commute-time distance .... 10 2.4.3. SimRank similarity measure .........................
    [Show full text]
  • On the Nullity Number of Graphs
    Electronic Journal of Graph Theory and Applications 5 (2) (2017), 335–346 On the nullity number of graphs Mustapha Aouchiche, Pierre Hansen GERAD and HEC Montreal,´ Montreal, Canada [email protected], [email protected] Abstract The paper discusses bounds on the nullity number of graphs. It is proved in [B. Cheng and B. Liu, On the nullity of graphs. Electron. J. Linear Algebra 16 (2007) 60–67] that η ≤ n − D, where η, n and D denote the nullity number, the order and the diameter of a connected graph, respectively. We first give a necessary condition on the extremal graphs corresponding to that bound, and then we strengthen the bound itself using the maximum clique number. In addition, we prove bounds on the nullity using the number of pendant neighbors in a graph. One of those bounds is an improvement of a known bound involving the domination number. Keywords: adjacency matrix, nullity number, diameter, matching number, pendant neighbor, domination number Mathematics Subject Classification: 05C35, 05C50 DOI: 10.5614/ejgta.2017.5.2.14 1. Introduction In the present paper, we consider only finite, undirected and simple graphs, i.e., graphs without loops or multiple edges. A graph is denoted by G = (V; E), where V is its vertex set and E its edge set. The order n of G is the number of its vertices, i.e., n = jV j. The size m of G is the number of its edges, i.e., m = jEj. If W is a subset of the vertex set of G, we denote by G[W ] the graph with vertex set W and edge set composed of the edges of G whose end-vertices belong to W .
    [Show full text]
  • Nullspace Vertex Partition in Graphs
    Nullspace Vertex Partition in Graphs Irene Sciriha ∗ Xandru Mifsudy James Borgz§ May 12, 2020 Keywords Nullspace, core vertices, core–labelling, graph perturbations. Mathematics Classification 202105C50, 15A18 Abstract The core vertex set of a graph is an invariant of the graph. It consists of those ver- tices associated with the non-zero entries of the nullspace vectors of a f0, 1g-adjacency matrix. The remaining vertices of the graph form the core–forbidden vertex set. For graphs with independent core vertices, such as bipartite minimal configurations and trees, the nullspace induces a well defined three part vertex partition. The parts of this partition are the core vertex set, their neighbours and the remote core–forbidden vertices. The set of the remote core–forbidden vertices are those not adjacent to any core vertex. We show that this set can be removed, leaving the nullity unchanged. For graphs with independent core vertices, we show that the submatrix of the adjacency matrix defining the edges incident to the core vertices determines the nullity of the adjacency matrix. For the efficient allocation of edges in a network graph without al- tering the nullity of its adjacency matrix, we determine which perturbations make up sufficient conditions for the core vertex set of the adjacency matrix of a graph to be preserved in the process. 1 Introduction A graph G = (V, E) has a finite vertex set V = fv1, v2,..., vng with vertex labelling [n] := f1, 2, ..., ng and an edge set E of 2-element subsets of V. The graphs we consider are simple, that is without loops or multiple edges.
    [Show full text]