Graphs and Matrices
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Eigenvalues of Euclidean Distance Matrices and Rs-Majorization on R2
Archive of SID 46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University 2 Talk Eigenvalues of Euclidean distance matrices and rs-majorization on R pp.: 1{4 Eigenvalues of Euclidean Distance Matrices and rs-majorization on R2 Asma Ilkhanizadeh Manesh∗ Department of Pure Mathematics, Vali-e-Asr University of Rafsanjan Alemeh Sheikh Hoseini Department of Pure Mathematics, Shahid Bahonar University of Kerman Abstract Let D1 and D2 be two Euclidean distance matrices (EDMs) with correspond- ing positive semidefinite matrices B1 and B2 respectively. Suppose that λ(A) = ((λ(A)) )n is the vector of eigenvalues of a matrix A such that (λ(A)) ... i i=1 1 ≥ ≥ (λ(A))n. In this paper, the relation between the eigenvalues of EDMs and those of the 2 corresponding positive semidefinite matrices respect to rs, on R will be investigated. ≺ Keywords: Euclidean distance matrices, Rs-majorization. Mathematics Subject Classification [2010]: 34B15, 76A10 1 Introduction An n n nonnegative and symmetric matrix D = (d2 ) with zero diagonal elements is × ij called a predistance matrix. A predistance matrix D is called Euclidean or a Euclidean distance matrix (EDM) if there exist a positive integer r and a set of n points p1, . , pn r 2 2 { } such that p1, . , pn R and d = pi pj (i, j = 1, . , n), where . denotes the ∈ ij k − k k k usual Euclidean norm. The smallest value of r that satisfies the above condition is called the embedding dimension. As is well known, a predistance matrix D is Euclidean if and 1 1 t only if the matrix B = − P DP with P = I ee , where I is the n n identity matrix, 2 n − n n × and e is the vector of all ones, is positive semidefinite matrix. -
Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs
Minimum Rank, Maximum Nullity, and Zero Forcing of Graphs Wayne Barrett (Brigham Young University), Steve Butler (Iowa State University), Minerva Catral (Xavier University), Shaun Fallat (University of Regina), H. Tracy Hall (Brigham Young University), Leslie Hogben (Iowa State University), Pauline van den Driessche (University of Victoria), Michael Young (Iowa State University) June 16-23, 2013 1 Mathematical Background Combinatorial matrix theory, which involves connections between linear algebra, graph theory, and combi- natorics, is a vital area and dynamic area of research, with applications to fields such as biology, chemistry, economics, and computer engineering. One area generating considerable interest recently is the study of the minimum rank of matrices associated with graphs. Let F be any field. For a graph G = (V; E), which has vertex set V = f1; : : : ; ng and edge set E, S(F; G) is the set of all symmetric n×n matrices A with entries from F such that for any non-diagonal entry aij in A, aij 6= 0 if and only if ij 2 E. The minimum rank of G is mr(F; G) = minfrank(A): A 2 S(F; G)g; and the maximum nullity of G is M(F; G) = maxfnull(A): A 2 S(F; G)g: Note that mr(F; G)+M(F; G) = jGj, where jGj is the number of vertices in G. Thus the problem of finding the minimum rank of a given graph is equivalent to the problem of determining its maximum nullity. The zero forcing number of a graph is the minimum number of blue vertices initially needed to force all the vertices in the graph blue according to the color-change rule. -
Polynomial Approximation Algorithms for Belief Matrix Maintenance in Identity Management
Polynomial Approximation Algorithms for Belief Matrix Maintenance in Identity Management Hamsa Balakrishnan, Inseok Hwang, Claire J. Tomlin Dept. of Aeronautics and Astronautics, Stanford University, CA 94305 hamsa,ishwang,[email protected] Abstract— Updating probabilistic belief matrices as new might be constrained to some prespecified (but not doubly- observations arrive, in the presence of noise, is a critical part stochastic) row and column sums. This paper addresses the of many algorithms for target tracking in sensor networks. problem of updating belief matrices by scaling in the face These updates have to be carried out while preserving sum constraints, arising for example, from probabilities. This paper of uncertainty in the system and the observations. addresses the problem of updating belief matrices to satisfy For example, consider the case of the belief matrix for a sum constraints using scaling algorithms. We show that the system with three objects (labelled 1, 2 and 3). Suppose convergence behavior of the Sinkhorn scaling process, used that, at some instant, we are unsure about their identities for scaling belief matrices, can vary dramatically depending (tagged X, Y and Z) completely, and our belief matrix is on whether the prior unscaled matrix is exactly scalable or only almost scalable. We give an efficient polynomial-time algo- a 3 × 3 matrix with every element equal to 1/3. Let us rithm based on the maximum-flow algorithm that determines suppose the we receive additional information that object whether a given matrix is exactly scalable, thus determining 3 is definitely Z. Then our prior, but constraint violating the convergence properties of the Sinkhorn scaling process. -
On the Eigenvalues of Euclidean Distance Matrices
“main” — 2008/10/13 — 23:12 — page 237 — #1 Volume 27, N. 3, pp. 237–250, 2008 Copyright © 2008 SBMAC ISSN 0101-8205 www.scielo.br/cam On the eigenvalues of Euclidean distance matrices A.Y. ALFAKIH∗ Department of Mathematics and Statistics University of Windsor, Windsor, Ontario N9B 3P4, Canada E-mail: [email protected] Abstract. In this paper, the notion of equitable partitions (EP) is used to study the eigenvalues of Euclidean distance matrices (EDMs). In particular, EP is used to obtain the characteristic poly- nomials of regular EDMs and non-spherical centrally symmetric EDMs. The paper also presents methods for constructing cospectral EDMs and EDMs with exactly three distinct eigenvalues. Mathematical subject classification: 51K05, 15A18, 05C50. Key words: Euclidean distance matrices, eigenvalues, equitable partitions, characteristic poly- nomial. 1 Introduction ( ) An n ×n nonzero matrix D = di j is called a Euclidean distance matrix (EDM) 1, 2,..., n r if there exist points p p p in some Euclidean space < such that i j 2 , ,..., , di j = ||p − p || for all i j = 1 n where || || denotes the Euclidean norm. i , ,..., Let p , i ∈ N = {1 2 n}, be the set of points that generate an EDM π π ( , ,..., ) D. An m-partition of D is an ordered sequence = N1 N2 Nm of ,..., nonempty disjoint subsets of N whose union is N. The subsets N1 Nm are called the cells of the partition. The n-partition of D where each cell consists #760/08. Received: 07/IV/08. Accepted: 17/VI/08. ∗Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS. -
Smith Normal Formal of Distance Matrix of Block Graphs∗†
Ann. of Appl. Math. 32:1(2016); 20-29 SMITH NORMAL FORMAL OF DISTANCE MATRIX OF BLOCK GRAPHS∗y Jing Chen1;2,z Yaoping Hou2 (1. The Center of Discrete Math., Fuzhou University, Fujian 350003, PR China; 2. School of Math., Hunan First Normal University, Hunan 410205, PR China) Abstract A connected graph, whose blocks are all cliques (of possibly varying sizes), is called a block graph. Let D(G) be its distance matrix. In this note, we prove that the Smith normal form of D(G) is independent of the interconnection way of blocks and give an explicit expression for the Smith normal form in the case that all cliques have the same size, which generalize the results on determinants. Keywords block graph; distance matrix; Smith normal form 2000 Mathematics Subject Classification 05C50 1 Introduction Let G be a connected graph (or strong connected digraph) with vertex set f1; 2; ··· ; ng. The distance matrix D(G) is an n × n matrix in which di;j = d(i; j) denotes the distance from vertex i to vertex j: Like the adjacency matrix and Lapla- cian matrix of a graph, D(G) is also an integer matrix and there are many results on distance matrices and their applications. For distance matrices, Graham and Pollack [10] proved a remarkable result that gives a formula of the determinant of the distance matrix of a tree depend- ing only on the number n of vertices of the tree. The determinant is given by det D = (−1)n−1(n − 1)2n−2: This result has attracted much interest in algebraic graph theory. -
Package 'Igraphmatch'
Package ‘iGraphMatch’ January 27, 2021 Type Package Title Tools Graph Matching Version 1.0.1 Description Graph matching methods and analysis. The package works for both 'igraph' objects and matrix objects. You provide the adjacency matrices of two graphs and some other information you might know, choose the graph matching method, and it returns the graph matching results. 'iGraphMatch' also provides a bunch of useful functions you might need related to graph matching. Depends R (>= 3.3.1) Imports clue (>= 0.3-54), Matrix (>= 1.2-11), igraph (>= 1.1.2), irlba, methods, Rcpp Suggests dplyr (>= 0.5.0), testthat (>= 2.0.0), knitr, rmarkdown VignetteBuilder knitr License GPL (>= 2) LazyData TRUE RoxygenNote 7.1.1 Language en-US Encoding UTF-8 LinkingTo Rcpp NeedsCompilation yes Author Daniel Sussman [aut, cre], Zihuan Qiao [aut], Joshua Agterberg [ctb], Lujia Wang [ctb], Vince Lyzinski [ctb] Maintainer Daniel Sussman <[email protected]> Repository CRAN Date/Publication 2021-01-27 16:00:02 UTC 1 2 bari_start R topics documented: bari_start . .2 best_matches . .4 C.Elegans . .5 center_graph . .6 check_seeds . .7 do_lap . .8 Enron . .9 get_perm . .9 graph_match_convex . 10 graph_match_ExpandWhenStuck . 12 graph_match_IsoRank . 13 graph_match_Umeyama . 15 init_start . 16 innerproduct . 17 lapjv . 18 lapmod . 18 largest_common_cc . 19 matched_adjs . 20 match_plot_igraph . 20 match_report . 22 pad.............................................. 23 row_cor . 24 rperm . 25 sample_correlated_gnp_pair . 25 sample_correlated_ieg_pair . 26 sample_correlated_sbm_pair . 28 split_igraph . 29 splrMatrix-class . 30 splr_sparse_plus_constant . 31 splr_to_sparse . 31 Index 32 bari_start Start matrix initialization Description initialize the start matrix for graph matching iteration. bari_start 3 Usage bari_start(nns, ns = 0, soft_seeds = NULL) rds_sinkhorn_start(nns, ns = 0, soft_seeds = NULL, distribution = "runif") rds_perm_bari_start(nns, ns = 0, soft_seeds = NULL, g = 1, is_splr = TRUE) rds_from_sim_start(nns, ns = 0, soft_seeds = NULL, sim) Arguments nns An integer. -
On the Theory of Point Weight Designs Royal Holloway
On the theory of Point Weight Designs Alexander W. Dent Technical Report RHUL–MA–2003–2 26 March 2001 Royal Holloway University of London Department of Mathematics Royal Holloway, University of London Egham, Surrey TW20 0EX, England http://www.rhul.ac.uk/mathematics/techreports Abstract A point-weight incidence structure is a structure of blocks and points where each point is associated with a positive integer weight. A point-weight design is a point-weight incidence structure where the sum of the weights of the points on a block is constant and there exist some condition that specifies the number of blocks that certain sets of points lie on. These structures share many similarities to classical designs. Chapter one provides an introduction to design theory and to some of the existing theory of point-weight designs. Chapter two develops a new type of point-weight design, termed a row-sum point-weight design, that has some of the matrix properties of classical designs. We examine the combinatorial aspects of these designs and show that a Fisher inequality holds and that this is dependent on certain combinatorial properties of the points of minimal weight. We define these points, and the designs containing them, to be either ‘awkward’ or ‘difficult’ depending on these properties. Chapter three extends the combinatorial analysis of row-sum point-weight designs. We examine structures that are simultaneously row-sum and point-sum point-weight designs, paying particular attention to the question of regularity. We also present several general construction techniques and specific examples of row-sum point-weight designs that are generated using these techniques. -
Second Edition Volume I
Second Edition Thomas Beth Universitat¨ Karlsruhe Dieter Jungnickel Universitat¨ Augsburg Hanfried Lenz Freie Universitat¨ Berlin Volume I PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarc´on 13, 28014 Madrid, Spain First edition c Bibliographisches Institut, Zurich, 1985 c Cambridge University Press, 1993 Second edition c Cambridge University Press, 1999 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1999 Printed in the United Kingdom at the University Press, Cambridge Typeset in Times Roman 10/13pt. in LATEX2ε[TB] A catalogue record for this book is available from the British Library Library of Congress Cataloguing in Publication data Beth, Thomas, 1949– Design theory / Thomas Beth, Dieter Jungnickel, Hanfried Lenz. – 2nd ed. p. cm. Includes bibliographical references and index. ISBN 0 521 44432 2 (hardbound) 1. Combinatorial designs and configurations. I. Jungnickel, D. (Dieter), 1952– . II. Lenz, Hanfried. III. Title. QA166.25.B47 1999 5110.6 – dc21 98-29508 CIP ISBN 0 521 44432 2 hardback Contents I. Examples and basic definitions .................... 1 §1. Incidence structures and incidence matrices ............ 1 §2. Block designs and examples from affine and projective geometry ........................6 §3. t-designs, Steiner systems and configurations ......... -
On Reciprocal Systems and Controllability
On reciprocal systems and controllability Timothy H. Hughes a aDepartment of Mathematics, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9EZ, UK Abstract In this paper, we extend classical results on (i) signature symmetric realizations, and (ii) signature symmetric and passive realizations, to systems which need not be controllable. These results are motivated in part by the existence of important electrical networks, such as the famous Bott-Duffin networks, which possess signature symmetric and passive realizations that are uncontrollable. In this regard, we provide necessary and sufficient algebraic conditions for a behavior to be realized as the driving-point behavior of an electrical network comprising resistors, inductors, capacitors and transformers. Key words: Reciprocity; Passive system; Linear system; Controllability; Observability; Behaviors; Electrical networks. 1 Introduction Practical motivation for developing a theory of reci- procity that does not assume controllability arises from This paper is concerned with reciprocal systems (see, electrical networks. Notably, the driving-point behavior e.g., Casimir, 1963; Willems, 1972; Anderson and Vong- of an electrical network comprising resistors, inductors, panitlerd, 2006; Newcomb, 1966; van der Schaft, 2011). capacitors and transformers (an RLCT network) is nec- Reciprocity is an important form of symmetry in physi- essarily reciprocal, and also passive, 2 but it need not be cal systems which arises in acoustics (Rayleigh-Carson controllable (see C¸amlibel et al., 2003; Willems, 2004; reciprocity); elasticity (the Maxwell-Betti reciprocal Hughes, 2017d). Indeed, as noted by C¸amlibel et al. work theorem); electrostatics (Green's reciprocity); and (2003), it is not known what (uncontrollable) behav- electromagnetics (Lorentz reciprocity), where it follows iors can be realized as the driving-point behavior of an as a result of Maxwell's laws (Newcomb, 1966, p. -
Emergent Spacetimes
Emergent spacetimes Silke Christine Edith Weinfurtner Department of Mathematics, Statistics and Computer Science — Te Kura Tatau arXiv:0711.4416v1 [gr-qc] 28 Nov 2007 Thesis submitted for the degree of Doctor of Philosophy at the Victoria University of Wellington. In Memory of Johann Weinfurtner Abstract In this thesis we discuss the possibility that spacetime geometry may be an emergent phenomenon. This idea has been motivated by the Analogue Gravity programme. An “effective gravitational field” dominates the kinematics of small perturbations in an Analogue Model. In these models there is no obvious connection between the “gravitational” field tensor and the Einstein equations, as the emergent spacetime geometry arises as a consequence of linearising around some classical field. After a brief survey of the most relevant literature on this topic, we present our contributions to the field. First, we show that the spacetime geometry on the equatorial slice through a rotating Kerr black hole is formally equivalent to the geometry felt by phonons entrained in a rotating fluid vortex. The most general acoustic geometry is compatible with the fluid dynamic equations in a collapsing/ ex- panding perfect-fluid line vortex. We demonstrate that there is a suitable choice of coordinates on the equatorial slice through a Kerr black hole that puts it into this vortex form; though it is not possible to put the entire Kerr spacetime into perfect-fluid “acoustic” form. We then discuss an analogue spacetime based on the propagation of excitations in a 2-component Bose–Einstein condensate. This analogue spacetime has a very rich and complex structure, which permits us to provide a mass-generating mechanism for the quasi-particle excitations. -
Invariants of Incidence Matrices
Invariants of Incidence Matrices Chris Godsil (University of Waterloo), Peter Sin (University of Florida), Qing Xiang (University of Delaware). March 29 – April 3, 2009 1 Overview of the Field Incidence matrices arise whenever one attempts to find invariants of a relation between two (usually finite) sets. Researchers in design theory, coding theory, algebraic graph theory, representation theory, and finite geometry all encounter problems about modular ranks and Smith normal forms (SNF) of incidence matrices. For example, the work by Hamada [9] on the dimension of the code generated by r-flats in a projective geometry was motivated by problems in coding theory (Reed-Muller codes) and finite geometry; the work of Wilson [18] on the diagonal forms of subset-inclusion matrices was motivated by questions on existence of designs; and the papers [2] and [5] on p-ranks and Smith normal forms of subspace-inclusion matrices have their roots in representation theory and finite geometry. An impression of the current directions in research can be gained by considering our level of understanding of some fundamental examples. Incidence of subsets of a finite set Let Xr denote the set of subsets of size r in a finite set X. We can consider various incidence relations between Xr and Xs, such as inclusion, empty intersection or, more generally, intersection of fixed size t. These incidence systems are of central importance in the theory of designs, where they play a key role in Wilson’s fundamental work on existence theorems. They also appear in the theory of association schemes. 1 2 Incidence of subspaces of a finite vector space This class of incidence systems is the exact q-analogue of the class of subset incidences. -
7 Combinatorial Geometry
7 Combinatorial Geometry Planes Incidence Structure: An incidence structure is a triple (V; B; ∼) so that V; B are disjoint sets and ∼ is a relation on V × B. We call elements of V points, elements of B blocks or lines and we associate each line with the set of points incident with it. So, if p 2 V and b 2 B satisfy p ∼ b we say that p is contained in b and write p 2 b and if b; b0 2 B we let b \ b0 = fp 2 P : p ∼ b; p ∼ b0g. Levi Graph: If (V; B; ∼) is an incidence structure, the associated Levi Graph is the bipartite graph with bipartition (V; B) and incidence given by ∼. Parallel: We say that the lines b; b0 are parallel, and write bjjb0 if b \ b0 = ;. Affine Plane: An affine plane is an incidence structure P = (V; B; ∼) which satisfies the following properties: (i) Any two distinct points are contained in exactly one line. (ii) If p 2 V and ` 2 B satisfy p 62 `, there is a unique line containing p and parallel to `. (iii) There exist three points not all contained in a common line. n Line: Let ~u;~v 2 F with ~v 6= 0 and let L~u;~v = f~u + t~v : t 2 Fg. Any set of the form L~u;~v is called a line in Fn. AG(2; F): We define AG(2; F) to be the incidence structure (V; B; ∼) where V = F2, B is the set of lines in F2 and if v 2 V and ` 2 B we define v ∼ ` if v 2 `.