Euclidean Distance Matrix Analysis (EDMA): Estimation of Mean Form and Mean Form Difference 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Parametrizations of K-Nonnegative Matrices
Parametrizations of k-Nonnegative Matrices Anna Brosowsky, Neeraja Kulkarni, Alex Mason, Joe Suk, Ewin Tang∗ October 2, 2017 Abstract Totally nonnegative (positive) matrices are matrices whose minors are all nonnegative (positive). We generalize the notion of total nonnegativity, as follows. A k-nonnegative (resp. k-positive) matrix has all minors of size k or less nonnegative (resp. positive). We give a generating set for the semigroup of k-nonnegative matrices, as well as relations for certain special cases, i.e. the k = n − 1 and k = n − 2 unitriangular cases. In the above two cases, we find that the set of k-nonnegative matrices can be partitioned into cells, analogous to the Bruhat cells of totally nonnegative matrices, based on their factorizations into generators. We will show that these cells, like the Bruhat cells, are homeomorphic to open balls, and we prove some results about the topological structure of the closure of these cells, and in fact, in the latter case, the cells form a Bruhat-like CW complex. We also give a family of minimal k-positivity tests which form sub-cluster algebras of the total positivity test cluster algebra. We describe ways to jump between these tests, and give an alternate description of some tests as double wiring diagrams. 1 Introduction A totally nonnegative (respectively totally positive) matrix is a matrix whose minors are all nonnegative (respectively positive). Total positivity and nonnegativity are well-studied phenomena and arise in areas such as planar networks, combinatorics, dynamics, statistics and probability. The study of total positivity and total nonnegativity admit many varied applications, some of which are explored in “Totally Nonnegative Matrices” by Fallat and Johnson [5]. -
Eigenvalues of Euclidean Distance Matrices and Rs-Majorization on R2
Archive of SID 46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University 2 Talk Eigenvalues of Euclidean distance matrices and rs-majorization on R pp.: 1{4 Eigenvalues of Euclidean Distance Matrices and rs-majorization on R2 Asma Ilkhanizadeh Manesh∗ Department of Pure Mathematics, Vali-e-Asr University of Rafsanjan Alemeh Sheikh Hoseini Department of Pure Mathematics, Shahid Bahonar University of Kerman Abstract Let D1 and D2 be two Euclidean distance matrices (EDMs) with correspond- ing positive semidefinite matrices B1 and B2 respectively. Suppose that λ(A) = ((λ(A)) )n is the vector of eigenvalues of a matrix A such that (λ(A)) ... i i=1 1 ≥ ≥ (λ(A))n. In this paper, the relation between the eigenvalues of EDMs and those of the 2 corresponding positive semidefinite matrices respect to rs, on R will be investigated. ≺ Keywords: Euclidean distance matrices, Rs-majorization. Mathematics Subject Classification [2010]: 34B15, 76A10 1 Introduction An n n nonnegative and symmetric matrix D = (d2 ) with zero diagonal elements is × ij called a predistance matrix. A predistance matrix D is called Euclidean or a Euclidean distance matrix (EDM) if there exist a positive integer r and a set of n points p1, . , pn r 2 2 { } such that p1, . , pn R and d = pi pj (i, j = 1, . , n), where . denotes the ∈ ij k − k k k usual Euclidean norm. The smallest value of r that satisfies the above condition is called the embedding dimension. As is well known, a predistance matrix D is Euclidean if and 1 1 t only if the matrix B = − P DP with P = I ee , where I is the n n identity matrix, 2 n − n n × and e is the vector of all ones, is positive semidefinite matrix. -
Polynomial Approximation Algorithms for Belief Matrix Maintenance in Identity Management
Polynomial Approximation Algorithms for Belief Matrix Maintenance in Identity Management Hamsa Balakrishnan, Inseok Hwang, Claire J. Tomlin Dept. of Aeronautics and Astronautics, Stanford University, CA 94305 hamsa,ishwang,[email protected] Abstract— Updating probabilistic belief matrices as new might be constrained to some prespecified (but not doubly- observations arrive, in the presence of noise, is a critical part stochastic) row and column sums. This paper addresses the of many algorithms for target tracking in sensor networks. problem of updating belief matrices by scaling in the face These updates have to be carried out while preserving sum constraints, arising for example, from probabilities. This paper of uncertainty in the system and the observations. addresses the problem of updating belief matrices to satisfy For example, consider the case of the belief matrix for a sum constraints using scaling algorithms. We show that the system with three objects (labelled 1, 2 and 3). Suppose convergence behavior of the Sinkhorn scaling process, used that, at some instant, we are unsure about their identities for scaling belief matrices, can vary dramatically depending (tagged X, Y and Z) completely, and our belief matrix is on whether the prior unscaled matrix is exactly scalable or only almost scalable. We give an efficient polynomial-time algo- a 3 × 3 matrix with every element equal to 1/3. Let us rithm based on the maximum-flow algorithm that determines suppose the we receive additional information that object whether a given matrix is exactly scalable, thus determining 3 is definitely Z. Then our prior, but constraint violating the convergence properties of the Sinkhorn scaling process. -
Chapter Four Determinants
Chapter Four Determinants In the first chapter of this book we considered linear systems and we picked out the special case of systems with the same number of equations as unknowns, those of the form T~x = ~b where T is a square matrix. We noted a distinction between two classes of T ’s. While such systems may have a unique solution or no solutions or infinitely many solutions, if a particular T is associated with a unique solution in any system, such as the homogeneous system ~b = ~0, then T is associated with a unique solution for every ~b. We call such a matrix of coefficients ‘nonsingular’. The other kind of T , where every linear system for which it is the matrix of coefficients has either no solution or infinitely many solutions, we call ‘singular’. Through the second and third chapters the value of this distinction has been a theme. For instance, we now know that nonsingularity of an n£n matrix T is equivalent to each of these: ² a system T~x = ~b has a solution, and that solution is unique; ² Gauss-Jordan reduction of T yields an identity matrix; ² the rows of T form a linearly independent set; ² the columns of T form a basis for Rn; ² any map that T represents is an isomorphism; ² an inverse matrix T ¡1 exists. So when we look at a particular square matrix, the question of whether it is nonsingular is one of the first things that we ask. This chapter develops a formula to determine this. (Since we will restrict the discussion to square matrices, in this chapter we will usually simply say ‘matrix’ in place of ‘square matrix’.) More precisely, we will develop infinitely many formulas, one for 1£1 ma- trices, one for 2£2 matrices, etc. -
Handout 9 More Matrix Properties; the Transpose
Handout 9 More matrix properties; the transpose Square matrix properties These properties only apply to a square matrix, i.e. n £ n. ² The leading diagonal is the diagonal line consisting of the entries a11, a22, a33, . ann. ² A diagonal matrix has zeros everywhere except the leading diagonal. ² The identity matrix I has zeros o® the leading diagonal, and 1 for each entry on the diagonal. It is a special case of a diagonal matrix, and A I = I A = A for any n £ n matrix A. ² An upper triangular matrix has all its non-zero entries on or above the leading diagonal. ² A lower triangular matrix has all its non-zero entries on or below the leading diagonal. ² A symmetric matrix has the same entries below and above the diagonal: aij = aji for any values of i and j between 1 and n. ² An antisymmetric or skew-symmetric matrix has the opposite entries below and above the diagonal: aij = ¡aji for any values of i and j between 1 and n. This automatically means the digaonal entries must all be zero. Transpose To transpose a matrix, we reect it across the line given by the leading diagonal a11, a22 etc. In general the result is a di®erent shape to the original matrix: a11 a21 a11 a12 a13 > > A = A = 0 a12 a22 1 [A ]ij = A : µ a21 a22 a23 ¶ ji a13 a23 @ A > ² If A is m £ n then A is n £ m. > ² The transpose of a symmetric matrix is itself: A = A (recalling that only square matrices can be symmetric). -
On the Eigenvalues of Euclidean Distance Matrices
“main” — 2008/10/13 — 23:12 — page 237 — #1 Volume 27, N. 3, pp. 237–250, 2008 Copyright © 2008 SBMAC ISSN 0101-8205 www.scielo.br/cam On the eigenvalues of Euclidean distance matrices A.Y. ALFAKIH∗ Department of Mathematics and Statistics University of Windsor, Windsor, Ontario N9B 3P4, Canada E-mail: [email protected] Abstract. In this paper, the notion of equitable partitions (EP) is used to study the eigenvalues of Euclidean distance matrices (EDMs). In particular, EP is used to obtain the characteristic poly- nomials of regular EDMs and non-spherical centrally symmetric EDMs. The paper also presents methods for constructing cospectral EDMs and EDMs with exactly three distinct eigenvalues. Mathematical subject classification: 51K05, 15A18, 05C50. Key words: Euclidean distance matrices, eigenvalues, equitable partitions, characteristic poly- nomial. 1 Introduction ( ) An n ×n nonzero matrix D = di j is called a Euclidean distance matrix (EDM) 1, 2,..., n r if there exist points p p p in some Euclidean space < such that i j 2 , ,..., , di j = ||p − p || for all i j = 1 n where || || denotes the Euclidean norm. i , ,..., Let p , i ∈ N = {1 2 n}, be the set of points that generate an EDM π π ( , ,..., ) D. An m-partition of D is an ordered sequence = N1 N2 Nm of ,..., nonempty disjoint subsets of N whose union is N. The subsets N1 Nm are called the cells of the partition. The n-partition of D where each cell consists #760/08. Received: 07/IV/08. Accepted: 17/VI/08. ∗Research supported by the Natural Sciences and Engineering Research Council of Canada and MITACS. -
Smith Normal Formal of Distance Matrix of Block Graphs∗†
Ann. of Appl. Math. 32:1(2016); 20-29 SMITH NORMAL FORMAL OF DISTANCE MATRIX OF BLOCK GRAPHS∗y Jing Chen1;2,z Yaoping Hou2 (1. The Center of Discrete Math., Fuzhou University, Fujian 350003, PR China; 2. School of Math., Hunan First Normal University, Hunan 410205, PR China) Abstract A connected graph, whose blocks are all cliques (of possibly varying sizes), is called a block graph. Let D(G) be its distance matrix. In this note, we prove that the Smith normal form of D(G) is independent of the interconnection way of blocks and give an explicit expression for the Smith normal form in the case that all cliques have the same size, which generalize the results on determinants. Keywords block graph; distance matrix; Smith normal form 2000 Mathematics Subject Classification 05C50 1 Introduction Let G be a connected graph (or strong connected digraph) with vertex set f1; 2; ··· ; ng. The distance matrix D(G) is an n × n matrix in which di;j = d(i; j) denotes the distance from vertex i to vertex j: Like the adjacency matrix and Lapla- cian matrix of a graph, D(G) is also an integer matrix and there are many results on distance matrices and their applications. For distance matrices, Graham and Pollack [10] proved a remarkable result that gives a formula of the determinant of the distance matrix of a tree depend- ing only on the number n of vertices of the tree. The determinant is given by det D = (−1)n−1(n − 1)2n−2: This result has attracted much interest in algebraic graph theory. -
Arxiv:1803.06211V1 [Math.NA] 16 Mar 2018
A NUMERICAL MODEL FOR THE CONSTRUCTION OF FINITE BLASCHKE PRODUCTS WITH PREASSIGNED DISTINCT CRITICAL POINTS CHRISTER GLADER AND RAY PORN¨ Abstract. We present a numerical model for determining a finite Blaschke product of degree n + 1 having n preassigned distinct critical points z1; : : : ; zn in the complex (open) unit disk D. The Blaschke product is uniquely determined up to postcomposition with conformal automor- phisms of D. The proposed method is based on the construction of a sparse nonlinear system where the data dependency is isolated to two vectors and on a certain transformation of the critical points. The effi- ciency and accuracy of the method is illustrated in several examples. 1. Introduction A finite Blaschke product of degree n is a rational function of the form n Y z − αj (1.1) B(z) = c ; c; α 2 ; jcj = 1; jα j < 1 ; 1 − α z j C j j=1 j which thereby has all its zeros in the open unit disc D, all poles outside the closed unit disc D and constant modulus jB(z)j = 1 on the unit circle T. The overbar in (1.1) and in the sequel stands for complex conjugation. The finite Blaschke products of degree n form a subset of the rational functions of degree n which are unimodular on T. These functions are given by all fractions n ~ a0 + a1 z + ::: + an z (1.2) B(z) = n ; a0; :::; an 2 C : an + an−1 z + ::: + a0 z An irreducible rational function of form (1.2) is a finite Blaschke product when all its zeros are in D. -
QUADRATIC FORMS and DEFINITE MATRICES 1.1. Definition of A
QUADRATIC FORMS AND DEFINITE MATRICES 1. DEFINITION AND CLASSIFICATION OF QUADRATIC FORMS 1.1. Definition of a quadratic form. Let A denote an n x n symmetric matrix with real entries and let x denote an n x 1 column vector. Then Q = x’Ax is said to be a quadratic form. Note that a11 ··· a1n . x1 Q = x´Ax =(x1...xn) . xn an1 ··· ann P a1ixi . =(x1,x2, ··· ,xn) . P anixi 2 (1) = a11x1 + a12x1x2 + ... + a1nx1xn 2 + a21x2x1 + a22x2 + ... + a2nx2xn + ... + ... + ... 2 + an1xnx1 + an2xnx2 + ... + annxn = Pi ≤ j aij xi xj For example, consider the matrix 12 A = 21 and the vector x. Q is given by 0 12x1 Q = x Ax =[x1 x2] 21 x2 x1 =[x1 +2x2 2 x1 + x2 ] x2 2 2 = x1 +2x1 x2 +2x1 x2 + x2 2 2 = x1 +4x1 x2 + x2 1.2. Classification of the quadratic form Q = x0Ax: A quadratic form is said to be: a: negative definite: Q<0 when x =06 b: negative semidefinite: Q ≤ 0 for all x and Q =0for some x =06 c: positive definite: Q>0 when x =06 d: positive semidefinite: Q ≥ 0 for all x and Q = 0 for some x =06 e: indefinite: Q>0 for some x and Q<0 for some other x Date: September 14, 2004. 1 2 QUADRATIC FORMS AND DEFINITE MATRICES Consider as an example the 3x3 diagonal matrix D below and a general 3 element vector x. 100 D = 020 004 The general quadratic form is given by 100 x1 0 Q = x Ax =[x1 x2 x3] 020 x2 004 x3 x1 =[x 2 x 4 x ] x2 1 2 3 x3 2 2 2 = x1 +2x2 +4x3 Note that for any real vector x =06 , that Q will be positive, because the square of any number is positive, the coefficients of the squared terms are positive and the sum of positive numbers is always positive. -
Distance Matrix and Laplacian of a Tree with Attached Graphs R.B
Linear Algebra and its Applications 411 (2005) 295–308 www.elsevier.com/locate/laa Distance matrix and Laplacian of a tree with attached graphs R.B. Bapat ∗ Indian Statistical Institute, Delhi Centre, 7 S.J.S.S. Marg, New Delhi 110 016, India Received 5 November 2003; accepted 22 June 2004 Available online 7 August 2004 Submitted by S. Hedayat Abstract A tree with attached graphs is a tree, together with graphs defined on its partite sets. We introduce the notion of incidence matrix, Laplacian and distance matrix for a tree with attached graphs. Formulas are obtained for the minors of the incidence matrix and the Laplacian, and for the inverse and the determinant of the distance matrix. The case when the attached graphs themselves are trees is studied more closely. Several known results, including the Matrix Tree theorem, are special cases when the tree is a star. The case when the attached graphs are paths is also of interest since it is related to the transportation problem. © 2004 Elsevier Inc. All rights reserved. AMS classification: 15A09; 15A15 Keywords: Tree; Distance matrix; Resistance distance; Laplacian matrix; Determinant; Transportation problem 1. Introduction Minors of matrices associated with a graph has been an area of considerable inter- est, starting with the celebrated Matrix Tree theorem of Kirchhoff which asserts that any cofactor of the Laplacian matrix equals the number of spanning trees in the ∗ Fax: +91 11 26856779. E-mail address: [email protected] 0024-3795/$ - see front matter 2004 Elsevier Inc. All rights reserved. doi:10.1016/j.laa.2004.06.017 296 R.B. -
Section 2.4–2.5 Partitioned Matrices and LU Factorization
Section 2.4{2.5 Partitioned Matrices and LU Factorization Gexin Yu [email protected] College of William and Mary Gexin Yu [email protected] Section 2.4{2.5 Partitioned Matrices and LU Factorization One approach to simplify the computation is to partition a matrix into blocks. 2 3 0 −1 5 9 −2 3 Ex: A = 4 −5 2 4 0 −3 1 5. −8 −6 3 1 7 −4 This partition can also be written as the following 2 × 3 block matrix: A A A A = 11 12 13 A21 A22 A23 3 0 −1 In the block form, we have blocks A = and so on. 11 −5 2 4 partition matrices into blocks In real world problems, systems can have huge numbers of equations and un-knowns. Standard computation techniques are inefficient in such cases, so we need to develop techniques which exploit the internal structure of the matrices. In most cases, the matrices of interest have lots of zeros. Gexin Yu [email protected] Section 2.4{2.5 Partitioned Matrices and LU Factorization 2 3 0 −1 5 9 −2 3 Ex: A = 4 −5 2 4 0 −3 1 5. −8 −6 3 1 7 −4 This partition can also be written as the following 2 × 3 block matrix: A A A A = 11 12 13 A21 A22 A23 3 0 −1 In the block form, we have blocks A = and so on. 11 −5 2 4 partition matrices into blocks In real world problems, systems can have huge numbers of equations and un-knowns. -
8.3 Positive Definite Matrices
8.3. Positive Definite Matrices 433 Exercise 8.2.25 Show that every 2 2 orthog- [Hint: If a2 + b2 = 1, then a = cos θ and b = sinθ for × cos θ sinθ some angle θ.] onal matrix has the form − or sinθ cosθ cos θ sin θ Exercise 8.2.26 Use Theorem 8.2.5 to show that every for some angle θ. sinθ cosθ symmetric matrix is orthogonally diagonalizable. − 8.3 Positive Definite Matrices All the eigenvalues of any symmetric matrix are real; this section is about the case in which the eigenvalues are positive. These matrices, which arise whenever optimization (maximum and minimum) problems are encountered, have countless applications throughout science and engineering. They also arise in statistics (for example, in factor analysis used in the social sciences) and in geometry (see Section 8.9). We will encounter them again in Chapter 10 when describing all inner products in Rn. Definition 8.5 Positive Definite Matrices A square matrix is called positive definite if it is symmetric and all its eigenvalues λ are positive, that is λ > 0. Because these matrices are symmetric, the principal axes theorem plays a central role in the theory. Theorem 8.3.1 If A is positive definite, then it is invertible and det A > 0. Proof. If A is n n and the eigenvalues are λ1, λ2, ..., λn, then det A = λ1λ2 λn > 0 by the principal axes theorem (or× the corollary to Theorem 8.2.5). ··· If x is a column in Rn and A is any real n n matrix, we view the 1 1 matrix xT Ax as a real number.