Pages 23-Back Cover
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aldrich Vapor
Aldrich Vapor Library Listing – 6,611 spectra This library is an ideal tool for investigator using FT-IR to analyze gas phase materials. It contains gas phase spectra collected by Aldrich using a GC-IR interface to ensure chromatographically pure samples. The Aldrich FT-IR Vapor Phase Library contains 6,611 gas phase FT-IR spectra collected by Aldrich Chemical Company using a GC interface. The library includes compound name, molecular formula, CAS (Chemical Abstract Service) registry number, Aldrich catalog number, and page number in the Aldrich Library of FT-IR Spectra, Edition 1, Volume 3, Vapor-Phase. Aldrich Vapor Index Compound Name Index Compound Name 6417 ((1- 3495 (1,2-Dibromoethyl)benzene; Styrene Ethoxycyclopropyl)oxy)trimethylsilane dibromide 2081 (+)-3-(Heptafluorobutyryl)camphor 3494 (1-Bromoethyl)benzene; 1-Phenylethyl 2080 (+)-3-(Trifluoroacetyl)camphor bromide 262 (+)-Camphene; 2,2-Dimethyl-3- 6410 (1-Hydroxyallyl)trimethylsilane methylenebicyclo[2.2.1]heptane 6605 (1-Methyl-2,4-cyclopentadien-1- 2828 (+)-Diisopropyl L-tartrate yl)manganese tricarbonyl 947 (+)-Isomenthol; [1S-(1a,2b,5b)]-2- 6250 (1-Propynyl)benzene; 1-Phenylpropyne Isopropyl-5-methylcyclohexano 2079 (1R)-(+)-3-Bromocamphor, endo- 1230 (+)-Limonene oxide, cis + trans; (+)-1,2- 2077 (1R)-(+)-Camphor; (1R)-(+)-1,7,7- Epoxy-4-isopropenyl-1- Trimethylbicyclo[2.2.1]heptan- 317 (+)-Longifolene; (1S)-8-Methylene- 976 (1R)-(+)-Fenchyl alcohol, endo- 3,3,7-trimethyltricyclo[5.4.0 2074 (1R)-(+)-Nopinone; (1R)-(+)-6,6- 949 (+)-Menthol; [1S-(1a,2b,5a)]-(+)-2- Dimethylbicyclo[3.1.1]heptan-2- -
Degradation of Benthiocarb in Soils As Affected by Soil Conditions*
J. Pesticide Sci. 2, 7-16 (1977) Degradation of Benthiocarb in Soils as Affected by Soil Conditions* Yasuo NAKAMURA, ** Kanji ISHIKAWA** and Shozo KUWATSUKA Laboratory of Soil Science, Faculty of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464, Japan (Received May 22, 1976) Some factors affecting the degradation of 14C-benthiocarb (S-4-chlorobenzylN, N- diethylthiocarbamate) labelled at the benzene-ring in soils were studied. The degra- dation rates of 14C-benthiocarb in three different soils under upland, oxidative flooded and reductive flooded conditions were compared. 14C-Benthiocarb wasrapidly degraded under oxidative conditions, but slowly under reductive conditions. Very small differences in the degradation rates were observed among different soils. Under oxidative conditions 14C-carbon dioxide was liberated remarkably with the degrada- tion of 14C-benthiocarb. The degradation was remarkably retarded by sterilizing the soils. The repeated application of benthiocarb, or its incorporation into the soil with simetryne, CNP or propanil had no significant effect on the degradation rate. Benthiocarb (Saturn(R),S-4-chlorobenzyl N, N-diethylthiolcarbamate), alone or in combing MATERIALS AND METHODS tion with simetryne, prometryne and CNP, is 1. Chemicals extensively used to control weeds mainly in 14C-Benthiocarb labelled at the benzene-ring paddy fields. was used as in the previous study. U The In the previous paper, ' the persistence of specific activity was 3. 21 mCi/mmole and the benthiocarb and its degradation products in radioactive purity was more than 99%. Non- a soil were reported, and its degradation path- radioactive pure chemicals were also described ways were also proposed. The behavior of the in the previous reports. -
Llllllillllllllllillllllllllllllllllllllllllllilllllllllllll
llllllIllllllllllIllllllllllllllllllllllllllllIlllllllllllllllllllllllllllSOO5223589A United States Patent -- [19] [11] Patent Number: 5,223,589 Kulprathipanja et al. [45] Date of Patent: Jun. 29, 1993 [54] PROCESS FOR SEPARATING DURENE 3.422.848 1/1969 Liebman et a]. ......... .. 137/625.l5 FROM SUBSTITUTED BENZENE 3.706.812 12/1972 De Rosset et a1. 260/674 SA v 3,864,416 2/1975 Campbell et al. .. 260/674 A HYDROCARBOI\S 4.642.397 2/1987 Zinnen et al. .. 568/934 [75] Inventors: Santi Kulprathipanja, Inverness; 4,743.708 5/1988 Rosenfeld et al. ................ .. 585/828 Kenneth K. Kuhnle, St. Charles; Marjorie s. Patton, Darien, all of 111. OTHER PUBLICATIONS , . Chartov et al. Chem. Abstract 92(7) 58328d [73] Asslgnee: UOP’ Des Flames’ 111‘ (l972)-—Abstract only, page unavailable. [21] APPL No-i 872,191 Primary Examiner-Helen M. S. Sneed [22] Filed. Apr. 22, 1992 Assistant Examiner-Nhat D. Phan Attorney, Agent, or Firm-Thomas K. McBride; John F. [51] Int. (31.5 ......................... .. C07C 7/12; C07C 7/00 Spears’ 1L; Jack H_ Hall - [52] US. Cl. .................................. .. 585/828; 585/825; 585/831; 585/853 [57] ABSTRACT [58] Field Of Search .... ........ .. 585/825. 828, 831, 853 The separation Ofdurene in purity from coal tar or . petroleum fractions by an adsorptive chromatographic [56] References cued process and liquid phase with lithium-exchanged X US- PATENT DOCUMENTS zeolite as the adsorbent and liquid aromatic desorbents. 2.985.589 5/1961 Broughton er al. ................ .. 210/34 3.040.777 6/1962 Carson et al. ................ .. l37/625.l5 4 Claims, No Drawings 5,223,589 1 2 scale (deRosset U.S. -
2005 Annual Monitoring Report
City of Morro Bay and Cayucos Sanitary District OMFFSHORE ONITORING ANDRP EPORTING ROGRAM 2005 ANNUAL REPORT Pt. Piedras Blancas Pt. BuchonPt. Piedras 19°C Blancas 18 17 Estero Bay 16 15 Estero Bay Sea Surface 14 Pt. BuchonTemperature 13 15 April 2004 12 11:32:06 PDT 11 ace Sea Surface ture Temperature 003 4 October 2005 PDT 11:25:10 PDT Marine Research Specialists 3140 Telegraph Rd., Suite A Ventura, California 93003 Report to City of Morro Bay and Cayucos Sanitary District 955 Shasta Avenue Morro Bay, California 93442 (805) 772-6272 OMFFSHORE ONITORING AND RPEPORTING ROGRAM 2005 ANNUAL R EPORT Prepared by Douglas A. Coats and Bonnie Luke ()Marine Research Specialists and Bruce Keogh ()Morro Bay/Cayucos Wastewater Treatment Plant Submitted by Marine Research Specialists 3140 Telegraph Rd., Suite A Ventura, California 93003 Telephone: (805) 644-1180 Telefax: (805) 289-3935 E-mail: [email protected] February 2006 marine research specialists 3140 Telegraph Rd., Suite A • Ventura, CA 93003 • (805) 644-1180 Mr. Bruce Keogh 15 February 2006 Wastewater Division Manager City of Morro Bay 955 Shasta Avenue Morro Bay, CA 93442 Reference: 2005 Annual Monitoring Report Dear Mr. Keogh: Enclosed is the referenced report. It documents the continued effectiveness of the treatment process, the absence of marine impacts, and compliance with the discharge limitations and reporting requirements specified in the NPDES discharge permit. Please contact the undersigned if you have any questions regarding this report. Sincerely, Douglas A. Coats, Ph.D. Project Manager Enclosure (Seven Copies) I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. -
Pesticide Composition Potentiated in Efficacy and Method for Potentiating the Efficacy of Pesticidal Active Ingredients
(19) & (11) EP 2 183 968 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 12.05.2010 Bulletin 2010/19 A01N 25/00 (2006.01) A01N 25/30 (2006.01) A01N 25/32 (2006.01) A01N 31/14 (2006.01) (2006.01) (2006.01) (21) Application number: 08828276.9 A01N 35/10 A01N 47/34 A01N 47/40 (2006.01) A01P 7/04 (2006.01) (22) Date of filing: 25.08.2008 (86) International application number: PCT/JP2008/065101 (87) International publication number: WO 2009/028454 (05.03.2009 Gazette 2009/10) (84) Designated Contracting States: (72) Inventors: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR • DAIRIKI, Hiroshi HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Makinohara-shi RO SE SI SK TR Shizuoka 421-0412 (JP) Designated Extension States: • NAKAMURA, Rieko AL BA MK RS Makinohara-shi Shizuoka 421-0412 (JP) (30) Priority: 31.08.2007 JP 2007226839 (74) Representative: Cabinet Plasseraud (71) Applicant: Nippon Soda Co., Ltd. 52, rue de la Victoire Tokyo 100-8165 (JP) 75440 Paris Cedex 09 (FR) (54) PESTICIDE COMPOSITION POTENTIATED IN EFFICACY AND METHOD FOR POTENTIATING THE EFFICACY OF PESTICIDAL ACTIVE INGREDIENTS (57) The present invention provides a pesticide composition comprising a pesticidal active ingredient and a compound represented by chemical formula (I) or chemical formula (II) R-O-(EO)w-(PO)x-(EO)y-(PO)z-H (I) R-O-(PO)w-(EO)x-(PO)y-(EO)z-H (II) (wherein, EO represents an ethyleneoxy group, PO represents a propyleneoxy group, R represents an alkyl or alkenyl group having 8 to 20 carbons, w represents on average an integer in the range of 1 to 25, x represents on average an integer in the range of 1 to 25, y represents on average an integer in the range of 1 to 25, and z represents on average an integer in the range of 1 to 25). -
Title Unusual Aromatic Nitrations
Unusual Aromatic Nitrations (Commemoration Issue Title Dedicated to Professor Sango Kunichika On the Occasion of his Retirement) Author(s) Suzuki, Hitomi Bulletin of the Institute for Chemical Research, Kyoto Citation University (1972), 50(4): 407-422 Issue Date 1972-11-17 URL http://hdl.handle.net/2433/76436 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Bull. Inst. Chem. Res., Kyoto Univ., Vol. 50, No. 4, 1972 Unusual Aromatic Nitrations Hitomi S uzu Kt* ReceivedApril 30, 1972 Aromaticcompounds undergo three differenttypes of reactions with nitrating agentsunder ionic conditions;replacement by nitro groupof an atom or groupfrom a ring position(ordinary nitration), reaction on substituentgroups, and addition reactionfollowed by various transformations. The presentsurvey is directedtowards the latter two typesof reactions,which have hithertonot yet been summarizedin chemicalliterature. It includes; 1. Reactionson SubstituentGroups. 1.1 Side-chainNitro-oxylation. 1.2 Side-chainAcetoxylation and Acetamidation. 1.3 Side-chainNitration. 1.4 Reactionson Lateral Nitrogenor OxygenAtoms. 2. Reactionson AromaticRing. 2.1 Acyloxylationand Alkoxylation. 2.2 Oxynitration. 2.3 Formation of UnsaturatedCyclic Ketones. 2.4 NitrativeCondensations. 2.5 Nitrations with Rearrangement. Nitration is one of the most basic reactions in organic chemistry and is widely used for the preparation of nitro compounds which are among the most valuable intermediates in organic synthesis. The compounds to be nitrated may be either aliphatic or aromatic, but the reaction has more significance in aromatic chemistry. Aromatic nitration is the process in which the nitro group replaces an atom or group from a ring position of an aromatic compound. The reaction has already been dealt with by a number of reviews and books)) In recent years, however, several new reactions have come to light which give the results considerably deviated from the ordinary concept of aromatic nitration. -
Information to Users
INFORMATION TO USERS While the most advanced technology has been used to photograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. For example: • Manuscript pages may have indistinct print. In such cases, the best available copy has been filmed. • Manuscripts may not always be complete. In such cases, a note will indicate that it is not possible to obtain missing pages. • Copyrighted material may have been removed from the manuscript. In such cases, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, and charts) are photographed by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or as a 17”x 23” black and white photographic print. Most photographs reproduce acceptably on positive microfilm or microfiche but lack the clarity on xerographic copies made from the microfilm. For an additional charge, 35mm slides of 6”x 9” black and white photographic prints are available for any photographs or illustrations that cannot be reproduced satisfactorily by xerography. Order Number 8717706 Selectivity of thiobencarb between two lettuce(Lactuca sativa, L.) cu ltiv ars Reiners, Stephen, Ph.D. The Ohio State University, 1987 Copyright ©1987 by Reiners, Stephen. All rights reserved. U MI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. -
"Hydrocarbons," In: Ullmann's Encyclopedia of Industrial Chemistry
Article No : a13_227 Hydrocarbons KARL GRIESBAUM, Universit€at Karlsruhe (TH), Karlsruhe, Federal Republic of Germany ARNO BEHR, Henkel KGaA, Dusseldorf,€ Federal Republic of Germany DIETER BIEDENKAPP, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany HEINZ-WERNER VOGES, Huls€ Aktiengesellschaft, Marl, Federal Republic of Germany DOROTHEA GARBE, Haarmann & Reimer GmbH, Holzminden, Federal Republic of Germany CHRISTIAN PAETZ, Bayer AG, Leverkusen, Federal Republic of Germany GERD COLLIN, Ruttgerswerke€ AG, Duisburg, Federal Republic of Germany DIETER MAYER, Hoechst Aktiengesellschaft, Frankfurt, Federal Republic of Germany HARTMUT Ho€KE, Ruttgerswerke€ AG, Castrop-Rauxel, Federal Republic of Germany 1. Saturated Hydrocarbons ............ 134 3.7. Cumene ......................... 163 1.1. Physical Properties ................ 134 3.8. Diisopropylbenzenes ............... 164 1.2. Chemical Properties ............... 134 3.9. Cymenes; C4- and C5-Alkylaromatic 1.3. Production ....................... 134 Compounds ...................... 165 1.3.1. From Natural Gas and Petroleum . .... 135 3.10. Monoalkylbenzenes with Alkyl Groups 1.3.2. From Coal and Coal-Derived Products . 138 >C10 ........................... 166 1.3.3. By Synthesis and by Conversion of other 3.11. Diphenylmethane .................. 167 Hydrocarbons . .................. 139 4. Biphenyls and Polyphenyls .......... 168 1.4. Uses ............................ 140 4.1. Biphenyl......................... 168 1.5. Individual Saturated Hydrocarbons ... 142 4.2. Terphenyls...................... -
THE SYNTHESIS of SOME 1,2-Dn!ETHYL-3-;Jzyleenzq;ES Aim L,2,3-Trimirrhyl-Li
THE SYNTHESIS OF SOME 1,2-Dn!ETHYL-3-;JZYlEENZQ;ES Aim l,2,3-TRIMirrHYL-li-ALKYLBENZENES FROM 2-ALKÏLFURAKS AND 2-METHYL-5-AIi'DfLFURANS DISSERTATION Presented in Partial Fulfillment of the Requirements lo: the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By EARL PHILLIP MOORE, JR., B. S., W. S. The Ohio State University 1S?57 Approved by: Adviser Department r.f Chemistrj' ACKNOWLEDGiaæNT The author wishes to express his sincere appreciation to Professor Cecil E. Boord for his advice and counsel* Gratitude also is expressed to Dr. Kenneth W. Greenlee for his continued interest and guidance. Acknowledgement is made to Professor Boord and Dr. Greenlee for their cooperation in making available to the writer the equipment, materials and facilities of the American Petroleum Institute Research Project h$» The financial support of this work by the General Motors Corporation, E.I. du Pont de Nemours and Company, and the American Petroleum Institute Research Project LS is gratefully acknowledged. Table of Contents Page I. Introduction, 1 II. Literature Survey.......... ..... ..................... 3 A. l,2,3"Triinethylbenzene (Heraimellitene ) and l|2,3jl4“ Tetramethylbenzene (Prehnitene) from Natural Resources.............................................3 B. 1,2,3“Trimethylbenzene (Hemimellitene) from De gradations of Natural Products and their Derivatives & C. 1,2,3jh-Tetramethylbenzene (Prehnitene) from De gradations of Natural Products and their Derivatives I4 D. Syntheses of 1,2,3“Trimethylbenzene (Heraimellitene) and l,2,3,U“Tetramethylbenzene (Prehnitene).......... 5 E. The Synthesis of l,2-Diraethyl-3-8thylbenzene .... 10 III. Discussion............ ................................ 11 A. General Scope . 1 1 B. -
Degradation of Benthiocarb Herbicide in Soil*
J. Pesticide Sci. 1, 49-57 (1976) Degradation of Benthiocarb Herbicide in Soil* Kanjl ISHIKAWA,** Yasuo NAKAMURAand Shozo KUWATSUKA Life Science Research Institute, Kumiai Chem. Ind. Co., Ltd., Kikugawa-cho, Ogasa-gun, Shizuoka-ken 439, Japan (Received October 10, 1975) Laboratory experiments were conducted on the persistence and the degradation prod- ucts of benthiocarb (4-chrolobenzyl N, N diethylthiolcarbamate) in soil, using 14C-labeled and unlabeled benthiocarb. The radioactive substances extracted with organic solvents from soil consisted mainly of parent benthiocarb with small amounts of degradation prod- ucts. About 20 radioactive spots were detected by thin layer chromatography. Desethyl benthiocarb, benthiocarb sulfoxide, 4-chlorobenzoic acid, 2-hydroxy Benthiocarb and 4- chlorobenzyl methyl sulfone were identified as relatively major products, and 4-chlorobenzyl methyl sulfoxide and 4-chlorobenzyl alcohol, as minor ones. The degradation rates of benthiocarb and six related compounds in soil were also compared. was synthesized by International Minerals & INTRODUCTION Chemical Corp. and supplied by Kumiai Benthiocarb, 4-chlorobenzyl N, N diethyl- Chemical Ind. Co., Ltd. The specific radio- thiolcarbamate, alone or in combination with activity was 3.21 m Ci/mmole and radioactive simetryne, prometryne and CNP, is now purity was about 990. extensively used to control weeds in paddy 2. Chemicals and upland fields. The herbicide is applied Benthiocarb, the 4-chlorobenzyl esters of mainly to the surface water of paddy fields N, NVdimethylthiolcarbamic, N, NVdiisopro- or to the soil of upland fields. In the fields, pylthiolcarbamic, N, N diethylcarbamic and a part of the herbicide is degraded photo- N, N diethyldithiocarbamic acids, and the l- chemically by sunlight, a part is absorbed and 3-chlorobenzyl esters of N, NVdiethyl- by the plants, while the major part penetrates thiolcarbamic acid were described previous- into the soil. -
United States Patent L M116 “Patented Jan
‘I. i" a ‘l " 2,819,322 United States Patent l M116 “Patented Jan. 7., “1958 .11 .2 catalysts for the process, particularly‘the group VI metal sul?des, as, for example, the sul?des of tungsten, molyb ‘2,819,322 denum and chromium, and the sul?des of metals of atomic number from 25 to 28, especially nickel sul?de. PRODUCTION OF AROMATIC COMPOUNDS l ‘Composites of a metal sul?de from each of these. groups Lloyd C. Fetterly,”El'Cerrito, Cali?, a'ssigno'r to Shell Del are especially preferred. Corresponding oxides and com velopment Company, New York, N. Y., a corporation posites thereof are also suitable catalysts for'the'present of Delaware purpose, as well'as composites of oxides and sul?des. No Drawing. Application December '21, 1953 ‘ The diaryl methane compounds which are to be cracked 10 in accordance’with the invention, in generalare prepar Serial No. 399,570 able by the “alkylation” of the corresponding aryl com 9 Claims. (Cl. 260—668) pound with formaldehyde. ‘For example, it is known to prepare diphenylmethane, ditolylmethane " (mixture of isomers) and dixylylmethane, by reacting the correspond This invention relates to’ thepro'duction of methylaro 15' ing benzene/compound with formaldehyde in- the pres matic compounds,‘ and more'particularly to the produc ence of an acidic catalyst, such as sulfuric acid. _Simi tion of such‘compounds‘which contain a further alkyl larly, other compounds can be prepared,- such as di-beta radical, such as a second methyl radical, such as para 1 naphthylmethane from naphthalene, ~di§beta-5,6,7,8-tetra xylene, 2,6-dimethylnaphthalene and 'durene. -
United States Patent Office Patented Jan
3,636,177 United States Patent Office Patented Jan. 18, 1972 1. 2 it has been found that the disproportionation and trans 3,636,177 methylation reactions of tetramethylbenzenes proceed in PROCESS FOR PRODUCING DURENE Takashi Suzuki and Hiroyuki Iesaka, Niigata, Japan, quite different manners depending upon the type of assignors to Japan Gas Chemical Company, Inc., diluents used. Thus, in particular it was found that in Chiyoda-ku, Tokyo, Japan 5 producing durene by isomerization of isodurene, prehn No Drawing. Filed May 20, 1970, Ser. No. 39,145 itene, or mixtures of tetramethylbenzenes containing Claims priority, application Japan, May 22, 1969, durene in an amount less than that in the equilibrium com 44/39,121 position, it is possible to produce durene without decreas int, C. C07c5/28 ing the rate of isomerization, while effectively suppressing U.S. C. 260-668 A 7 Claims O the disproportionation or transmethylation reaction of tetramethylbenzenes by carrying out the isomerization in the presence of benzene or polymethylbenzenes having 9 ABSTRACT OF THE DISCLOSURE or less carbon atoms. Durene is produced in high yield by isomerizing other According to the present invention, durene is produced tetramethylbenzenes with a HF-BF catalyst in the by isomerization of isodurene, prehnitene, or mixtures of liquid phase in the presence of a diluent comprising ben tetramethylbenzenes in liquid phase in the presence of zene or methyl-substituted benzenes having 9 or less HF-BF3 catalyst. The isomerization is carried out in carbon atoms, whereby suppressing disproportionation and the presence of benzene or methyl-substituted benzenes transmethylation of tetramethylbenzenes.