Vanderbilt University Daily Register File:///C:/Users/Waldroca/Downloads/New Folder/Vanderbilt University D

Total Page:16

File Type:pdf, Size:1020Kb

Vanderbilt University Daily Register File:///C:/Users/Waldroca/Downloads/New Folder/Vanderbilt University D Vanderbilt University Daily Register file:///C:/Users/waldroca/Downloads/New folder/Vanderbilt University D... New plaque commemorates scientist who played role in VU's Nobel legacy by David F. Salisbury On the third floor of Buttrick Hall, there is a new bronze plaque dedicated to Nobel Laureate Max Delbrück. It reads, “Located here was the laboratory of Max Delbrück, a member of the physics department faculty from 1940 to 1947. It was then that he and his group conducted fundamental studies that provided the foundation for modern molecular biology. This work led to his receiving, along with Alfred Hershey and Salvador Luria, the Nobel Prize in Physiology or Medicine in 1969 for discoveries concerning ‘the replication mechanism and genetic structure of viruses.’” Although well documented in Robert Lagemann’s book To Quarks and A plaque dedicated to Nobel Prize Laureate Max Delbrck and Quasars: A History of Physics and Astronomy at Vanderbilt University, the the groundbreaking work he did while at Vanderbilt is crucial role that Vanderbilt played in Delbrück’s life and career has largely located on the third floor of Buttrick Hall. been overlooked in his official biographies. To help rectify this oversight, John Wikswo, the Gordon A. Cain University Professor, organized a centenary Delbrück symposium last fall and had the plaque created and installed. “Max Delbrück had the greatest influence of any physicist on biology in the 20th century, and we should be proud of the fundamental role that Vanderbilt played in his career,” Wikswo said. Delbrück, who was born in 1906, was the son of a history professor at the University of Berlin and grew up in a highly intellectual environment. Influenced by the likes of Max Planck, Albert Einstein, Werner Heisenberg, Wolfgang Pauli and Max Born, he decided first to study astronomy and then switched to theoretical physics. Around the time that he received his doctoral degree, the National Socialist Party came into power. Because university professors were state employees, this gave the Nazis control over university hiring. Although government officials allowed him to do university research, they refused to give Delbrück the teaching license that he needed to qualify for a faculty position. Following the example of many other German scientists at the time, Delbrück came to America to work. He applied for and received a grant from the Rockefeller Foundation to conduct research at the California Institute of Technology for a year, later extended for a second year. There, he changed his research from theoretical physics to biology. This kept him in the United States until 1939 and the outbreak of World War II. Given the situation in Europe, he decided to stay in the country, but Caltech didn’t have a place for him, so he asked the Rockefeller Foundation for help in finding a job. Around the same time, Vanderbilt wrote the Rockefeller Foundation saying that it would be interested in hiring one of the German scientists stranded in the united States. The foundation suggested Delbrück, and Francis Slack, then chairman of Vanderbilt’s physics department, recognized he would be a valuable addition to the faculty. As a result, Vanderbilt offered him a position as “instructor in physics.” One of Delbrück’s initial assignments was teaching introductory physics to an influx of students enrolled in the Army Specialized Training Program. However, it soon became clear that his real talent lay in designing scientific experiments that produced unequivocal and often landmark results. 1 of 2 1/29/2021, 12:41 PM Vanderbilt University Daily Register file:///C:/Users/waldroca/Downloads/New folder/Vanderbilt University D... In his small Buttrick lab, Delbrück continued his pioneering studies of viruses that attack bacteria (phages or bacteriophages) that he had begun at Caltech. Delbrück thought of phages as “the atoms of biology” and designed a series of simple experiments that measured the progress of phage attacks on bacteria. He began collaborating with Salvador Luria, an Italian expatriate biologist at Columbia University, and they conceived and conducted an experiment that demonstrated that bacteria contain genes, giving birth to the field of bacterial genetics. In 1942-43, Luria spent a sabbatical at Vanderbilt and Princeton as a Guggenheim fellow, and the first meeting of the famous “Phage Group” that dominated research in the new field for decades was held at Vanderbilt in 1947. Delbrück and Luria then teamed up with Alfred Hershey, a bacteriologist at Washington University in St. Louis, and began the collaboration that would eventually win them the Nobel Prize. The value of Delbrück’s research was recognized at the time; the university’s 1942-43 annual report contained the statement, “Another research of great importance is that conducted by Dr. Delbrück and his associates in the field of bacteriophage. This is probably the most important piece of research that has been carried on at Vanderbilt for some time. It has attracted national attention.” As appreciation of Delbrück’s accomplishments spread, he began receiving offers from other universities, including the Carnegie Institution of Washington and the University of Manchester, both of which had started active phage research programs. However, as late as 1945, Delbrück told colleagues that he was happy at Vanderbilt and had no desire to leave as long as he could continue his research. To do so, however, he felt that he needed upgraded lab facilities and additional assistants and faculty colleagues. He approached the administration with a proposal to establish a separate institute for studying phage at a cost of $500,000. In the post-war period, however, the university was strapped for funds, and the administration was obliged to tell Delbrück that it could not raise such a sum. As a result, when Caltech offered him a professorship in biology in December 1946, Delbrück accepted the position and returned to Pasadena, Calif., where, just 10 years before, he had first embarked on the research direction that had proven so successful. After moving to Caltech, where he remained until retirement, Delbrück’s research interests quickly moved away from the phage studies that he perfected while at Vanderbilt and for which he received the Nobel Prize. Posted 02/15/07 Back to Register Archive Listing For important news and announcements, visit the faculty and staff Web page at http://www.vanderbilt.edu/myVU. To read the monthly magazine for the Vanderbilt community, the Vanderbilt View, check newsstands on campus, or visit http://www.vanderbilt.edu/vanderbiltview. 2 of 2 1/29/2021, 12:41 PM.
Recommended publications
  • James D. Watson Molecular Biologist, Nobel Laureate ( 1928 – )
    James D. Watson Molecular biologist, Nobel Laureate ( 1928 – ) Watson is a molecular biologist, best known as one of the co-discoverers of the struc- ture of DNA. Watson, Francis Crick, and Maurice Wilkins were awarded the 1962 Nobel Prize in Physiology or Medicine. Watson was born in Chicago, and early on showed his brilliance, appearing on Quiz Kids, a popular radio show that challenged precocious youngsters to answer ques- tions. Thanks to the liberal policy of University of Chicago president ROBERT HUTCHINS, Watson was able to enroll there at the age of 15, earning a B.S. in Zoology in 1947. He was attracted to the work of Salvador Luria, who eventually shared a Nobel Prize with Max Delbrück for their work on the nature of genetic mutations. In 1948, Watson began research in Luria’s laboratory and he received his Ph.D. in Zoology at Indiana University in 1950 at age 22. In 1951, the chemist Linus Pauling published his model of the protein alpha helix, find- ings that grew out of Pauling’s relentless efforts in X-ray crystallography and molecu- lar model building. Watson now wanted to learn to perform X-ray diffraction experi- ments so that he could work to determine the structure of DNA. Watson and Francis Crick proceeded to deduce the double helix structure of DNA, which they submitted to the journal Nature and was subsequently published on April 25, 1953. Watson subsequently presented a paper on the double helical structure of DNA at the Cold Spring Harbor Symposium on Viruses in early June 1953.
    [Show full text]
  • Introduction and Historical Perspective
    Chapter 1 Introduction and Historical Perspective “ Nothing in biology makes sense except in the light of evolution. ” modified by the developmental history of the organism, Theodosius Dobzhansky its physiology – from cellular to systems levels – and by the social and physical environment. Finally, behaviors are shaped through evolutionary forces of natural selection OVERVIEW that optimize survival and reproduction ( Figure 1.1 ). Truly, the study of behavior provides us with a window through Behavioral genetics aims to understand the genetic which we can view much of biology. mechanisms that enable the nervous system to direct Understanding behaviors requires a multidisciplinary appropriate interactions between organisms and their perspective, with regulation of gene expression at its core. social and physical environments. Early scientific The emerging field of behavioral genetics is still taking explorations of animal behavior defined the fields shape and its boundaries are still being defined. Behavioral of experimental psychology and classical ethology. genetics has evolved through the merger of experimental Behavioral genetics has emerged as an interdisciplin- psychology and classical ethology with evolutionary biol- ary science at the interface of experimental psychology, ogy and genetics, and also incorporates aspects of neuro- classical ethology, genetics, and neuroscience. This science ( Figure 1.2 ). To gain a perspective on the current chapter provides a brief overview of the emergence of definition of this field, it is helpful
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Jewels in the Crown
    Jewels in the crown CSHL’s 8 Nobel laureates Eight scientists who have worked at Cold Max Delbrück and Salvador Luria Spring Harbor Laboratory over its first 125 years have earned the ultimate Beginning in 1941, two scientists, both refugees of European honor, the Nobel Prize for Physiology fascism, began spending their summers doing research at Cold or Medicine. Some have been full- Spring Harbor. In this idyllic setting, the pair—who had full-time time faculty members; others came appointments elsewhere—explored the deep mystery of genetics to the Lab to do summer research by exploiting the simplicity of tiny viruses called bacteriophages, or a postdoctoral fellowship. Two, or phages, which infect bacteria. Max Delbrück and Salvador who performed experiments at Luria, original protagonists in what came to be called the Phage the Lab as part of the historic Group, were at the center of a movement whose members made Phage Group, later served as seminal discoveries that launched the revolutionary field of mo- Directors. lecular genetics. Their distinctive math- and physics-oriented ap- Peter Tarr proach to biology, partly a reflection of Delbrück’s physics train- ing, was propagated far and wide via the famous Phage Course that Delbrück first taught in 1945. The famous Luria-Delbrück experiment of 1943 showed that genetic mutations occur ran- domly in bacteria, not necessarily in response to selection. The pair also showed that resistance was a heritable trait in the tiny organisms. Delbrück and Luria, along with Alfred Hershey, were awarded a Nobel Prize in 1969 “for their discoveries concerning the replication mechanism and the genetic structure of viruses.” Barbara McClintock Alfred Hershey Today we know that “jumping genes”—transposable elements (TEs)—are littered everywhere, like so much Alfred Hershey first came to Cold Spring Harbor to participate in Phage Group wreckage, in the chromosomes of every organism.
    [Show full text]
  • Genes, Genomes and Genetic Analysis
    © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION UNIT 1 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FORDefining SALE OR DISTRIBUTION and WorkingNOT FOR SALE OR DISTRIBUTION with Genes © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter 1 Genes, Genomes, and Genetic Analysis Chapter 2 DNA Structure and Genetic Variation © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Molekuul/Science Photo Library/Getty Images. © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION 9781284136609_CH01_Hartl.indd 1 08/11/17 8:50 am © Jones & Bartlett Learning, LLC
    [Show full text]
  • MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo
    Cracking the Genetic Code MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) Frederick Griffith The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) Oswald Avery Alfred Hershey Martha Chase The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) Linus Carl Pauling The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) James Watson and Francis Crick The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) How is DNA (4 nucleotides) the genetic material while proteins (20 amino acids) are the building blocks? ? DNA Protein ? The Coding Craze ? DNA Protein What was already known? • DNA resides inside the nucleus - DNA is not the carrier • Protein synthesis occur in the cytoplasm through ribosomes {• Only RNA is associated with ribosomes (no DNA) - rRNA is not the carrier { • Ribosomal RNA (rRNA) was a homogeneous population The “messenger RNA” hypothesis François Jacob Jacques Monod The Coding Craze ? DNA RNA Protein RNA Tie Club Table from Wikipedia The Coding Craze Who won the race Marshall Nirenberg J.
    [Show full text]
  • Happy Birthday to Renato Dulbecco, Cancer Researcher Extraordinaire
    pbs.org http://www.pbs.org/newshour/updates/happy-birthday-renato-dulbecco-cancer-researcher-extraordinaire/ Happy birthday to Renato Dulbecco, cancer researcher extraordinaire Photo of Renato Dulbecco (public domain) Every elementary school student knows that Feb. 22 is George Washington’s birthday. Far fewer (if any) know that it is also the birthday of the Nobel Prize-winning scientist Renato Dulbecco. While not the father of his country — he was born in Italy and immigrated to the United States in 1947 — Renato Dulbecco is credited with playing a crucial role in our understanding of oncoviruses, a class of viruses that cause cancer when they infect animal cells. Dulbecco was born in Catanzaro, the capital of the Calabria region of Italy. Early in his childhood, after his father was drafted into the army during World War I, his family moved to northern Italy (first Cuneo, then Turin, and thence to Liguria). A bright boy, young Renato whizzed through high school and graduated in 1930 at the age of 16. From there, he attended the University of Turin, where he studied mathematics, physics, and ultimately medicine. Dulbecco found biology far more fascinating than the actual practice of medicine. As a result, he studied under the famed anatomist, Giuseppe Levi, and graduated at age 22 in 1936 at the top of his class with a degree in morbid anatomy and pathology (in essence, the study of disease). Soon after receiving his diploma, Dr. Dulbecco was inducted into the Italian army as a medical officer. Although he completed his military tour of duty by 1938, he was called back in 1940 when Italy entered World War II.
    [Show full text]
  • Renato Dulbecco
    BIOLOGIE ET HISTOIRE Renato Dulbecco Renato Dulbecco : de la virologie à la cancérologie F.N.R. RENAUD 1 résumé Né en Italie, Renato Dulbecco fait de brillantes études médicales mais est plus intéressé par la recherche en biologie que par la pratique médicale. Accueilli par Giuseppe Levi, il apprend l’histologie et la culture cellulaire avant de rejoindre le laboratoire de S.E. Luria puis celui de M. Delbrück pour travailler sur les systèmes bactéries-bactériophages puis sur la relation cellules-virus. Il met au point la méthode des plages de lyse virales sur des cultures cellulaires. Il est aussi à l’origine de la virologie tumorale moléculaire. D. Baltimore, HM Temin et lui-même sont récompensés par le prix Nobel de médecine et physiologie en 1975 pour leurs travaux sur l'interaction entre les virus tumoraux et le matériel génétique du matériel cellulaire. Très tourné vers les aspects pratiques et expérimentaux de la recherche, il est resté le plus long - temps possible à la paillasse et a initié un très grand nombre de jeunes chercheurs. mots-clés : culture cellulaire, virologie tumorale, plages de lyse, bactériophages. I. - LA JEUNESSE DE RENATO DULBECCO C'est à Catanzaro, capitale régionale de la Calabre en Italie, que naît Renato Dulbecco le 22 février 1914. Sa mère est Calabraise et son père Ligurien. Il ne reste que très peu de temps dans le sud de l’Italie, car son père est mobilisé et sa famille doit déménager dans le nord à Cuneo, puis à Turin. À la fin de la guerre, la famille Dulbeco s'ins - talle à Imperia en Ligurie.
    [Show full text]
  • Martha Chase Dies
    PublisherInfo PublisherName : BioMed Central PublisherLocation : London PublisherImprintName : BioMed Central Martha Chase dies ArticleInfo ArticleID : 4830 ArticleDOI : 10.1186/gb-spotlight-20030820-01 ArticleCitationID : spotlight-20030820-01 ArticleSequenceNumber : 182 ArticleCategory : Research news ArticleFirstPage : 1 ArticleLastPage : 4 RegistrationDate : 2003–8–20 ArticleHistory : OnlineDate : 2003–8–20 ArticleCopyright : BioMed Central Ltd2003 ArticleGrants : ArticleContext : 130594411 Milly Dawson Email: [email protected] Martha Chase, renowned for her part in the pivotal "blender experiment," which firmly established DNA as the substance that transmits genetic information, died of pneumonia on August 8 in Lorain, Ohio. She was 75. In 1952, Chase participated in what came to be known as the Hershey-Chase experiment in her capacity as a laboratory assistant to Alfred D. Hershey. He won a Nobel Prize for his insights into the nature of viruses in 1969, along with Max Delbrück and Salvador Luria. Peter Sherwood, a spokesman for Cold Spring Harbor Laboratory, where the work took place, described the Hershey-Chase study as "one of the most simple and elegant experiments in the early days of the emerging field of molecular biology." "Her name would always be associated with that experiment, so she is some sort of monument," said her longtime friend Waclaw Szybalski, who met her when he joined Cold Spring Harbor Laboratory in 1951 and who is now a professor of oncology at the University of Wisconsin-Madison. Szybalski attended the first staff presentation of the Hershey-Chase experiment and was so impressed that he invited Chase for dinner and dancing the same evening. "I had an impression that she did not realize what an important piece of work that she did, but I think that I convinced her that evening," he said.
    [Show full text]
  • The Eighth Day of Creation”: Looking Back Across 40 Years to the Birth of Molecular Biology and the Roots of Modern Cell Biology
    “The Eighth Day of Creation”: looking back across 40 years to the birth of molecular biology and the roots of modern cell biology Mark Peifer1 1 Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA * To whom correspondence should be addressed Email: [email protected] Phone: (919) 962-2272 1 Forty years ago, Horace Judson’s “The Eight Day of Creation” was published, a book vividly recounting the foundations of modern biology, the molecular biology revolution. This book inspired many in my generation. The anniversary provides a chance for a new generation to take a look back, to see how science has changed and hasn’t changed. Many central players in the book, including Sydney Brenner, Seymour Benzer and Francois Jacob, would go on to be among the founders of modern cell, developmental, and neurobiology. These players come alive via their own words, as complex individuals, both heroes and anti-heroes. The technologies and experimental approaches they pioneered, ranging from cell fractionation to immunoprecipitation to structural biology, and the multidisciplinary approaches they took continue to power and inspire our work today. In the process, Judson brings out of the shadows the central roles played by women in many of the era’s discoveries. He provides us with a vision of how science and scientists have changed, of how many things about our endeavor never change, and how some new ideas are perhaps not as new as we’d like to think. 2 In 1979 Horace Judson completed a ten-year project about cell and molecular biology’s foundations, unveiling “The Eighth Day of Creation”, a book I view as one of the most masterful evocations of a scientific revolution (Judson, 1979).
    [Show full text]
  • Milestones and Personalities in Science and Technology
    History of Science Stories and anecdotes about famous – and not-so-famous – milestones and personalities in science and technology BUILDING BETTER SCIENCE AGILENT AND YOU For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 1 Agilent Technologies is committed to the educational community and is willing to provide access to company-owned material contained herein. This slide set is created by Agilent Technologies. The usage of the slides is limited to teaching purpose only. These materials and the information contained herein are accepted “as is” and Agilent makes no representations or warranties of any kind with respect to the materials and disclaims any responsibility for them as may be used or reproduced by you. Agilent will not be liable for any damages resulting from or in connection with your use, copying or disclosure of the materials contained herein. You agree to indemnify and hold Agilent harmless for any claims incurred by Agilent as a result of your use or reproduction of these materials. In case pictures, sketches or drawings should be used for any other purpose please contact Agilent Technologies a priori. For teaching purpose only December 19, 2016 © Agilent Technologies, Inc. 2016 2 Table of Contents The Father of Modern Chemistry The Man Who Discovered Vitamin C Tags: Antoine-Laurent de Lavoisier, chemical nomenclature Tags: Albert Szent-Györgyi, L-ascorbic acid He Discovered an Entire Area of the Periodic Table The Discovery of Insulin Tags: Sir William Ramsay, noble gas Tags: Frederick Banting,
    [Show full text]
  • From Controlling Elements to Transposons: Barbara Mcclintock and the Nobel Prize Nathaniel C
    454 Forum TRENDS in Biochemical Sciences Vol.26 No.7 July 2001 Historical Perspective From controlling elements to transposons: Barbara McClintock and the Nobel Prize Nathaniel C. Comfort Why did it take so long for Barbara correspondence. From these and other to prevent her controlling elements from McClintock (Fig. 1) to win the Nobel Prize? materials, we can reconstruct the events moving because their effects were difficult In the mid-1940s, McClintock discovered leading up to the 1983 prize*. to study when they jumped around. She genetic transposition in maize. She What today are known as transposable never had any inclination to pursue the published her results over several years elements, McClintock called ‘controlling biochemistry of transposition. and, in 1951, gave a famous presentation elements’. During the years 1945–1946, at Current understanding of how gene at the Cold Spring Harbor Symposium, the Carnegie Dept of Genetics, Cold activity is regulated, of course, springs yet it took until 1983 for her to win a Nobel Spring Harbor, McClintock discovered a from the operon, François Jacob and Prize. The delay is widely attributed to a pair of genetic loci in maize that seemed to Jacques Monod’s 1960 model of a block of combination of gender bias and gendered trigger spontaneous and reversible structural genes under the control of an science. McClintock’s results were not mutations in what had been ordinary, adjacent set of regulatory genes (Fig. 2). accepted, the story goes, because women stable alleles. In the term of the day, they Though subsequent studies revealed in science are marginalized, because the made stable alleles into ‘mutable’ ones.
    [Show full text]